
RCC 1.0.12

GAISLER RESEARCH

 RCC User’s Manual Version 1.0.12

April 2006

RCC User’s Manual

GAISLER RESEARCH

- 2 -

Copyright 2005 Gaisler Research.
Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language, under
the above conditions for modified versions.

RCC 1.0.12

GAISLER RESEARCH

1 Introduction... 4
1.1 General.. 4
1.2 Installation on host platform... 4
1.2.1 Host requirements ... 4
1.2.2 Windows- specific issues.. 4
1.2.3 Installation .. 5
1.3 Contents of /opt/rtems-4.6 .. 5
1.4 RCC tools.. 5
1.5 Documentation.. 6
1.6 Support.. 6

2 Using RCC.. 7
2.1 General development flow.. 7
2.2 sparc-rtems-gcc options .. 7
2.3 RTEMS applications... 7
2.4 Floating-point considerations ... 8
2.5 LEON SPARC V8 instructions .. 8
2.6 Memory organisation.. 8
2.7 Board-support packages (BSPs) ... 9
2.8 Making boot-proms .. 9
2.9 Simple examples... 10

3 Execution and debugging ... 11
3.1 TSIM... 11
3.2 GRMON ... 11
3.3 GDB with GRMON and TSIM... 13
3.4 Using DDD graphical front-end to gdb .. 14

4 sparc-rtems-mkprom manual .. 15

RCC User’s Manual

GAISLER RESEARCH

- 4 -

1 Intr oduction

1.1 General

ThisdocumentdescribestheRTEMSLEON/ERC32GNU cross-compilersystem(RCC).Discussionsarepro-
vided for the following topics:

• contents and directory structure of RCC
• compiling and linking LEON and ERC32 RTEMS applications
• usage of GRMON and MKPROM
• debugging application with GDB

RCC is a multi-platform developmentsystembasedon the GNU family of freely available tools with addi-
tional ‘point’ toolsdevelopedby Cygnus,OAR andGaislerResearch.RCCconsistsof thefollowing packages:

• GCC-3.2.3 C/C++ compiler
• GNU binary utilities 2.13.1 with support for LEON UMAC/SMAC instructions
• RTEMS-4.6.5 C/C++ real-time kernel with LEON2, LEON3 and ERC32 support
• Newlib-1.13.1 standalone C-library
• GDB-6.3 SPARC cross-debugger
• DDD graphical front-end for GDB
• mkprom-erc32 boot-prom builder (ERC32)
• sparc-rtems-mkprom boot-prom builder (LEON2/LEON3)

1.2 Installation on host platform

1.2.1Host requirements

RCCis provided for two hostplatforms:linux/x86 andMS Windows. The following aretheplatformsystem
requirements:

Linux: Linux-2.4.x, glibc-2.3 (or higher)

Windows: Cygwin-1.1.7 (or higher)

1.2.2Windows- specific issues

To run on Windows platforms,theCygwin-1.3.10unix emulationlayerneedsto be installed.Thedirectories
wherethecompileris installed(/opt/rtems-4.6)andwhereapplicationsarecompiledneedsbothto bemounted
in binmode.Thegraphicalfront-endfor gdb(DDD) is notprovidedwith thecygwin versionof RCC.It should
be installedduring the cygwin installation,togetherwith the cygwin/X package.Onceinstalled,the cygwin
version of DDD operates the same way as the linux version.

RCC User’s Manual

GAISLER RESEARCH

- 5 -

1.2.3Installation

The RCC directory tree is compiled to reside in the /opt/rtems-4.6 directory on all platforms. After obtaining
the bzipped tarfile with the binary distribution, uncompress and untar it in a suitable location - if this is not /opt/
rtems-4.6 then a link have to be created to point to the location of the RCC directory. The distribution can be
installed with the following commands:

cd /opt

bunzip2 -c sparc-rtems-4.6.5-gcc-3.2.3-1.0.12-linux.tar.bz2 | tar xf -

After the compiler is installed, add /opt/rtems-4.6/bin to your executables search path.

1.3 Contents of /opt/rtems-4.6

The created rtems directory has the following sub-directories:
bin Executables
doc RCC documentation
include Host includes
lib Host libraries
man Main pages for GNU tools
sparc-rtems Sparc target libraries
src Various sources

1.4 RCC tools

The following tools are included in RCC:

ddd Graphic X11 front-end to GDB
grmon LEON combined remote monitor and simulator
mkprom-erc32 ERC32 boot-prom builder
sparc-rtems-mkprom LEON2/3 boot-prom builder
protoize GNU protoize utility
sparc-rtems-ar Library archiver
sparc-rtems-as Cross-assembler
sparc-rtems-c++ C++ cross-compiler
sparc-rtems-c++filt Utility to demangle C++ symbols
sparc-rtems-g++ Same as sparc-rtems-c++
sparc-rtems-gasp Assembler pre-processor
sparc-rtems-gcc C/C++ cross-compiler
sparc-rtems-gdb Debugger
sparc-rtems-ld GNU linker
sparc-rtems-nm Utility to print symbol table
sparc-rtems-objcopy Utility to convert between binary formats
sparc-rtems-objdump Utility to dump various parts of executables
sparc-rtems-ranlib Library sorter
sparc-rtems-size Utility to display segment sizes
sparc-rtems-strings Utility to dump strings from executables
sparc-rtems-strip Utility to remove symbol table
unprotoize GNU Unprotoize utility

RCC User’s Manual

GAISLER RESEARCH

- 6 -

1.5 Documentation

The RCC documentation is distributed separately in two packages: RTEMS manuals and GNU tools manuals.

GNU manuals:

as.pdf Using as - the GNU assembler
binutils.pdf The GNU binary utilities
cpp.pdf The C Preprocessor
ddd.pdf DDD - The Data Display Debugger
gcc.pdf Using and porting GCC
gdb.pdf Debugging with GDB

RTEMS manuals:

FAQ.pdf RTEMS Frequently Asked Questions
bsp_howto.pdf BSP and Device Driver Development Guide
c_user.pdf RTEMS C User’s Guide (this is the one you want!)
develenv.pdf RTEMS Development environment guide
filesystem.pdf RTEMS Filesystem Design Guide
itron.pdf RTEMS ITRON 3.0 User’s Guide
networking.pdf RTEMS Network Supplement
new_chapters.pdf RTEMS Newly added features
porting.pdf RTEMS Porting Guide
posix1003-1.pdf RTEMS POSIX 1003.1 Compliance Guide
posix.pdf RTEMS POSIX API User’s Guide
relnotes.pdf RTEMS Release Notes
sparc.pdf RTEMS SPARC Applications Supplement
start.pdf Getting Started with RTEMS for C/C++ Users

The documents are all provided in PDF format, with searchable indexes.

1.6 Support

The RCC compiler system is provided freely without any warranties. Technical support can be obtained from
Gaisler Research through the purchase of a technical support contract. See www.gaisler.com for more details.

RCC User’s Manual

GAISLER RESEARCH

- 7 -

2 Using RCC

2.1 General development flow

Compilation and debugging of applications is typically done in the following steps:

1. Compile and link program with gcc
2. Debug program using a simulator (gdb connected to grmon using simulator backend)
3. Debug program on remote target (gdb connected to grmon using monitor backend)
4. Create boot-prom for a standalone application

RCCsupportsmulti-taskingreal-timeC/C++programsbasedon theRTEMS kernel.Compilingandlinking is
done in much the same manner as with a host-based gcc.

2.2 sparc-rtems-gcc options

The gcc compiler has been modified to support the following addtional options:

-qleon2 generate LEON2 executable.

-tsc691 generate ERC32 executable.

Other usefull (standard) optionas are:

-g generate debugging information - must be used for debugging with gdb

-msoft-float emulate floating-point - must be used if no FPU exists in the system

-mv8 generate SPARC V8 mul/div instructions- only LEON with hardware multiply and
divide configured

-O2 optimize code - should be used for optimum performance and minimal code size

Other gcc options are explained in the gcc manual (gcc.pdf).

2.3 RTEMS applications

To compile and link an RTEMS application, use ‘sparc-rtems-gcc’:

sparc-rtems-gcc -g -O2 rtems-hello.c -o rtems-hello

RCCcreatesexecutablesfor LEON3by default.To generateexecutablesfor LEON2or ERC32add-qleon2or
-tsc691 switches during both compile and link stages.The default load addressis start of RAM, i.e.
0x40000000for LEON2/3and0x2000000for ERC32.Otherloadaddressescanbespecifiedthroughtheuse
of the -Ttext option (see gcc manual).

RCC usesthe sourcesof RTEMS-4.6.5with minor patches,andallows re-compilationif a modificationhas
beenmadeto a bspor thekernel.Install theRTEMS sourcesin /opt/rtems-4.6/src,andre-compileandinstall
with:

cd /opt/rtems-4.6/src
make install

RCC User’s Manual

GAISLER RESEARCH

- 8 -

2.4 Floating-point considerations

If the targetedLEON2/3 (or ERC32)processorhasno floating-pointhardware,thenall applicationsmustbe
compiled(andlinked)with the -msoft-floatoption to enablefloating-pointemulation.Whenrunningthepro-
gramon theTSIM simulatoror GRMONwith simulatorbackend,thesimulatorshouldbestartedwith the-nfp
option (no floating-point) to disable the FPU.

2.5 LEON SPARC V8 instructions

Both LEON2 and LEON3 processorscan be configuredto implementthe SPARC V8 multiply and divide
instructions.The RCC compiler doesby default NOT issuethoseinstructions,but emulatesthem trough a
library. To enablegenerationof mul/div instruction,usethe-mv8 switchduringbothcompilationandlinking.
The -mv8 switch improves performance on compute-intensive applications and floating-point emulation.

LEON2/3 also supportsmultiply and accumulate(MAC). The compiler will never issuethoseinstructions,
they haveto becodedin assembly. NotethattheRCCassemblerandotherutilities arebasedonamodifiedver-
sion of GNU binutils-2.11 that supports the LEON MAC instructions.

2.6 Memory organisation

TheresultingRTEMS executablesarein elf formatandhasthreemainsegments;text, dataandbss.The text
segmentis by default at address0x40000000for LEON2/3and0x2000000for ERC32,followedimmediately
by the data and bss segments. The stack starts at top-of-ram and extends downwards.

Figure 1: RCC RAM applications memory map

The SPARC trap table always occupies the first 4 Kbyte of the .text segment.

Stack

Heap

Standalone App

0X40000000

Top-Of-RAM

Data

Text

RCC User’s Manual

GAISLER RESEARCH

- 9 -

2.7 Board-support packages (BSPs)

RCC includesboard-supportpackagesfor LEON2, LEON3 and ERC32.BSPsprovide interface between
RTEMS andtarget hardware throughinitialization codespecificto target processoranda numberof device
drivers. Console and timer drivers are supported for all three processors.

TheLEON2/3BSPssupportthreenetwork drivers:theGaislerResearchGRETHMAC, OpenCoresEthernet
MAC andtheLAN91C111.Thedefaultdriver is theGRETHMAC. To selectadifferentnetwork driver, oneof
following defines should be set before including the bsp.h file:

#define RTEMS_BSP_NETWORK_DRIVER_ATTACH RTEMS_BSP_NETWORK_DRIVER_ATTACH_OPENETH

#define RTEMS_BSP_NETWORK_DRIVER_ATTACH RTEMS_BSP_NETWORK_DRIVER_ATTACH_SMC91111

See src/examples/samples/rtems_ttcp.c or rtems_http.c for a sample networking applications.

LEON2andERC32BSPsassumeadefaultsystemresourceconfigurationsuchasmemorymappingof on-chip
devicesandusageof interruptresources.LEON3 systemsarebasedon GRLIB plug&play configuration,and
are therebyhighly configurableregardingmemorymappingand interrupt routing. At start-up,LEON3 BSP
scansthesystembus to obtainsystemconfigurationinformation.Device driverssupporta numberof devices
which are automatically recognized, initiated and handled by the device drivers.

Theconsoledriversupportsoneto eightGRAPB UARTs.Thefirst UART is registeredundername“/dev/con-
sole”, secondand third UARTs get names“/dev/console_b”and “dev/console_c”and so on. LEON3 BSP
requires at least one GR APB UART.

Thetimer driver usesGR GeneralPurposeTimer (GPT).Thedriver handlesGPTtimer 0 andthelowestinter-
rupt requestline usedby GPT. GPTtimer 0 andlowestrequestline shouldnever beusedby anRTEMS appli-
cation.If applicationneedsto usemoretimersGPT shouldbe configuredto have two or moretimersusing
separate request lines. Timer 0 interrupt can not be shared with other devices or GPT timers 2-7.

Formoreinformationonhow toconfigureasystembasedonGRLIB seeGRLIB IPLibraryUser’sManual.

2.8 Making boot-proms

RTEMS applicationsarelinkedto run from beginningof RAM. To make a boot-PROM thatwill run from the
PROM on a standalonetarget,usethesparc-rtems-mkpromutility. This will createa compressedboot image
that will load the applicationinto RAM, initiate variousprocessorregisters,andfinally start the application.
Sparc-rtems-mkpromwill setall targetdependentparameters,suchasmemorysizes,waitstates,baudrate,and
systemclock.Theapplicationsdonotsettheseparametersthemselves,andthusdonotneedto bere-linkedfor
different board architectures.

Theexamplebelow createsa LEON3 boot-promfor a systemwith 1 Mbyte RAM, onewaitstateduringwrite,
3 waitstates for rom access, and 40 MHz system clock. For more details see the mkprom manual

sparc-rtems-mkprom -ramsz 1024 -ramwws 1 -romws 3 hello.exe -freq 40 hello.exe

Note that sparc-rtems-mkpromcreatesbinariesfor LEON2/3.To generatebinariesfor ERC32,usemkprom-
erc32. To create an SRECORD file for a prom programmer, use objcopy:

sparc-rtems-objcopy -O srec rtems-hello rtems-hello.srec

RCC User’s Manual

GAISLER RESEARCH

- 10 -

2.9 Simple examples

Following example compiles the famous "hello world" program and creates a boot-prom in SRECORD format:

bash-2.04$ sparc-rtems-gcc -mv8 -msoft-float -O2 rtems-hello.c -o rtems-hello

bash-2.04$ sparc-rtems-mkprom -freq 40 -dump -baud 38400 -ramsize 1024 -rmw rtems-hello
bash-2.04$ sparc-rtems-objcopy -O srec rtems-hello rtems-hello.srec
bash-2.04$

Several example C programs can be found in /opt/rtems-4.6/src/examples/samples.

RCC User’s Manual

GAISLER RESEARCH

- 11 -

3 Execution and debugging

Applicationsbuilt by RCC can be debuggedon the TSIM LEON/ERC32simulator, or on target hardware
using the GRMON debug monitor (LEON only). Both TSIM and GRMON can be connctedto the GNU
debugger (gdb) for full source-level debugging.

3.1 TSIM

The TSIM simulatorcanemulatea full ERC32andLEON2/3 systemwith on-chipperipheralsandexternal
memories.For full detailson how to useTSIM, seetheTSIM User’s Manual.Below is a simpleexamplethat
shows how the ‘hello world’ program is run in the simulator:

$ tsim-leon3 rtems-hello

 TSIM/LEON3 SPARC simulator, version 2.0.4a (professional version)

 Copyright (C) 2001, Gaisler Research - all rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to tsim@gaisler.com

using 64-bit time
serial port A on stdin/stdout
allocated 4096 K RAM memory, in 1 bank(s)
allocated 2048 K ROM memory
icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
section: .text, addr: 0x40000000, size 92096 bytes
section: .data, addr: 0x400167c0, size 2752 bytes
read 463 symbols
tsim> go
resuming at 0x40000000
Hello World

Program exited normally.
tsim>

3.2 GRMON

GRMONis usedto download,runanddebugLEON2/3softwareon targethardware.For full detailsonhow to
useGRMON, seetheGRMON User’s Manual.Below is a simpleexamplethat shows how the ‘hello world’
program is downloaded and run:

$ grmon -u -jtag

 GRMON LEON debug monitor v1.1.11

 Copyright (C) 2004,2005 Gaisler Research - all rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to support@gaisler.com

 using JTAG cable on parallel port
 JTAG chain: xc3s1500 xcf04s xcf04s

 initialising
 detected frequency: 41 MHz
 GRLIB build version: 1347

RCC User’s Manual

GAISLER RESEARCH

- 12 -

 Component Vendor
 LEON3 SPARC V8 Processor Gaisler Research
 AHB Debug UART Gaisler Research
 AHB Debug JTAG TAP Gaisler Research
 GR Ethernet MAC Gaisler Research
 LEON2 Memory Controller European Space Agency
 AHB/APB Bridge Gaisler Research
 LEON3 Debug Support Unit Gaisler Research
 Nuhorizons Spartan3 I/O interfac Gaisler Research
 OC CAN controller Gaisler Research
 Generic APB UART Gaisler Research
 Multi-processor Interrupt Ctrl Gaisler Research
 Modular Timer Unit Gaisler Research

 Use command ’info sys’ to print a detailed report of attached cores

grlib> lo rtems-hello
section: .text at 0x40000000, size 92096 bytes
section: .data at 0x400167c0, size 2752 bytes
total size: 94848 bytes (339.7 kbit/s)
read 463 symbols
entry point: 0x40000000
grlib> run
Hello World
grlib>

Note that the program was started from address 0x40000000, the default start address.

GRMON can also be used to program the boot-PROM image created by sparc-rtems-mkprom into the target’s
flash PROM.

grmon[grlib]> flash unlock all
grmon[grlib]> flash erase all
Erase in progress
Block @ 0x00000000 : code = 0x00800080 OK
Block @ 0x00004000 : code = 0x00800080 OK
 ...
grmon[grlib]> flash load prom.out
section: .text at 0x0, size 54272 bytes
total size: 54272 bytes (93.2 kbit/s)
read 45 symbols
grmon[grlib]> flash lock all

When boot-PROM is run (i.e. after reset) it will initialize various LEON registers, unpack the application to the
RAM and start the application. The output on console when running “hello world” from PROM is shown
below:

 MkProm LEON3 boot loader v1.2
 Copyright Gaisler Research - all right reserved

 system clock : 40.0 MHz
 baud rate : 38352 baud

RCC User’s Manual

GAISLER RESEARCH

- 13 -

 prom : 512 K, (2/2) ws (r/w)
 sram : 1024 K, 1 bank(s), 0/0 ws (r/w)

 decompressing .text
 decompressing .data

 starting rtems-hello

Hello World

The application must be re-loaded with the ‘load’ command before it is possible to re-execute it.

3.3 GDB with GRMON and TSIM

To perform source-level debugging with gdb, start TSIM or GRMON with -gdb or enter the ‘gdb’command at
the prompt. Then, attach gdb by giving command ‘tar extended-remote localhost:2222’ to gdb when connect-
ing to GRMON or ‘tar extended-remote localhost:1234’ when connecting to TSIM. Note that RTEMS applica-
tions do not have a user-defined main() function as ordinary C-programs. Instead, put a breakpoint on Init(),
which is the default user-defined start-up function.

jupiter> sparc-rtems-gdb rtems-hello
GNU gdb 6.3
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-tsim-elf"...
(gdb) tar extended-remote localhost:2222
Remote debugging using localhost:2222
(gdb) load
Loading section .text, size 0x164e0 lma 0x40000000
Loading section .jcr, size 0x4 lma 0x400164e0
Loading section .data, size 0xaa8 lma 0x400164e8
Start address 0x40000000, load size 94092
Transfer rate: 57902 bits/sec, 277 bytes/write.
(gdb) break Init
Breakpoint 2 at 0x400011f8: file rtems-hello.c, line 33.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /opt/rtems-4.6/src/examples/samples/rtems-hello

Breakpoint 2, Init (ignored=0) at rtems-hello.c:33
33 printf("Hello World\n");
(gdb) cont
Continuing.
Hello World
Program exited with code 0363.

The application must be re-loaded with the ‘load’ command before it is possible to re-execute it.

RCC User’s Manual

GAISLER RESEARCH

- 14 -

3.4 Using DDD graphical front-end to gdb

DDD is a graphical front-end to gdb, and can be used regardless of target. To start DDD with the sparc-rtems-
gdb debugger use:

ddd --debugger sparc-rtems-gdb

You might need the full path in front of DDD if you already have a version of ddd installed. The required gdb
commands to connect to a target can be entered in the command window. See the GDB and DDD manuals for
how to set the default settings. If you have problems with getting DDD to run, run it with --check-configurati-
onto probe for necessary libraries etc. DDD has many advanced features, see the on-line manual under the
‘Help’menu.

On windows/cygwin hosts, DDD must be started from an xterm shell. First launch the cygwin X-server by
issuing ‘startx’ in a cygwin shell, and the launch DDD in the newly created xterm shell.

RCC User’s Manual

GAISLER RESEARCH

- 15 -

4 sparc-rtems-mkprom manual

NAME

sparc-rtems-mkprom

SYNOPSYS

sparc-rtems-mkprom [options] input_files

DESCRIPTION

The mkprom utility program creates boot-images for programs compiled with RCC. It
encapsulates the application in a loader suitable to be placed in a boot prom. The application is
compressed with a modified LZSS algorithm, typically achieving a compression factor of 2. The
loader initiates the system according to the specified parameters. The loader operates in the
following steps:

• The register files of IU and FPU (if present) are initialised.
• The LEON control, waitstate and memory configuration registers are set according to the

specified options.
• The ram is initialised and the application is decompressed and installed.
• The text part of the application is optionally write-protected, except the lower 4K where the

traptable is assumed to reside.
• Finally, the application is started, setting the stack pointer to the top of ram.

sparc-elf-mkprom will perform initialization of a LEON2 or LEON3 system with a standard
configuration. Initialization code for additional peripherals can be provided in bdinit1 and bdinit2
functions (see -bdinit switch under General Options). If the LEON system is configured without
some of standard configuration peripherals, sparc-rtems-mkprom should be called with -noinit
and -bdinit switches and with system specific initialization code provided in bdinit.o.

GENERAL OPTIONS

-baud baudrate

Set console UART baudrate to baudrate. Default value is 19200.

-bdinit

The user can optionally call two user-defined routines, bdinit1() and bdinit2(), during
the boot process. bdinit1() is called after the LEON registers have been initialised but
before the memory has been cleared. bdinit2() is called after the memory has been
initialised but before the application is loaded. Note that when bdinit1() is called, the

RCC User’s Manual

GAISLER RESEARCH

- 16 -

stack has not been setup meaning that bdinit1() must be a leaf-routine and not allocate
any stack space (no local variables). When -bdinit is used, a file called bdinit.o must
exist in the current directory, containing the two routines.

-dump
The intermediate assembly code with the compressed application and the LEON
register values is put in dump.s (only for debugging of mkprom3).

-duart addr
GR AHB UART (DSU UART) address. Default is 0x80000700.

-freq system_clock
Defines the system clock in MHz. This value is used to calculate the divider value
for the baud rate generator and the real-time clock. Default is 25 MHz.

-gpt addr
GR General Purpose Timer (GPT) address. Default is 0x80000300.

-memc addr
ESA’s LEON Memory Controller address. Default is 0x80000000.

-noinit
Suppress all code which initializes on-chip peripherals such as uarts, timers and
memory controllers. This option requires -bdinit to add custom initialisation code,
or the boot process will fail.

-nocomp
Don’t compress application. Decreases loading time on the expense of rom size.

- o outfile
Put the resulting image in outfile, rather then prom.out (default).

-stack addr
Sets the initial stack pointer to addr. If not specified, the stack starts at top-of-ram.

-uart addr
GR APB UART address. Default is 0x80000100.

-v
Be verbose; reports compression statistics and compile commands

input_files
The input files must be in aout or elf32 format. If more than one file is specified,
all files are loaded by the loader and control is transferred to the first segment of
the first file.

ESA LEON MEMORY CONTROLLER OPTIONS

Following options are used to initiate ESA’s LEON memory controller. If other memory
controller is used initialization code has to be provided in bdinit1 or bdinit2 functions.

-cas delay
Set the SDRAM CAS delay. Allowed values are 2 and 3, 2 is default.

RCC User’s Manual

GAISLER RESEARCH

- 17 -

-col bits
Set the number of SDRAM column bits. Allowed values are 8 - 11, 9 is default.

-nosram
Disables the static RAM and maps SDRAM at address 0x40000000.

-ramsize size
Definesthe total available RAM. Used to initialize the in the memory configura-
tion register(s). The default value is 2048 (2 Mbyte).

-ramcs chip_selects
Set the number of ram banks to chip_selects. Default is 1.

-ramws ws
Set the number of waitstates during ram reads and writes to ws. Default is 0.

-ramrws ws
Set the number of waitstates during ram reads to ws. Default is 0.

-ramwws ws
Set the number of waitstates during ram writes to ws. Default is 0.

-ramwidth width
Set the data bus width to 8, 16 or 32-bits, default is 32. The prom width is set
through the PIO[1:0] ports.

-refresh delay
Set the SDRAM refresh period (in us). Default is 7.8 us, although many SDRAMS
actually use 15.6 us.

-rmw Perform read-modify-write cycles during byte and halfword writes.
-romsize size

Set the rom size to size. Default is 512 (512 Kbyte)
-romws ws

Set the number of rom waitstates during read and write to ws. Default is 2.
-romrws ws

Set the number of rom waitstates during read to ws. Default is 2.
-romwws ws

Set the number of rom waitstates during write to ws. Default is 2.
-sdram size

The amount of attached SDRAM in Mbyte. 0 by default
-sdrambanks num_banks

Set the number of populated SDRAM banks (default is 1).
-trfc delay

Set the SDRAM tRFC parameter (in ns). Default is 66 ns.
-trp delay

Set the SDRAM tRP parameter (in ns). Default is 20 ns.

	1 Introduction
	1.1 General
	1.2 Installation on host platform
	1.2.1 Host requirements
	1.2.2 Windows- specific issues
	1.2.3 Installation

	1.3 Contents of /opt/rtems-4.6
	1.4 RCC tools
	1.5 Documentation
	1.6 Support

	2 Using RCC
	2.1 General development flow
	2.2 sparc-rtems-gcc options
	2.3 RTEMS applications
	2.4 Floating-point considerations
	2.5 LEON SPARC V8 instructions
	2.6 Memory organisation
	2.7 Board-support packages (BSPs)
	2.8 Making boot-proms
	2.9 Simple examples

	3 Execution and debugging
	3.1 TSIM
	3.2 GRMON
	3.3 GDB with GRMON and TSIM
	3.4 Using DDD graphical front-end to gdb

	4 sparc-rtems-mkprom manual

