
RCC 1.2.0

AEROFLEX GAISLER

 RCC User’s Manual Version 1.2.0

 October 2010

RCC User’s Manual

AEROFLEX GAISLER

- 2 -

Copyright 2011 Aeroflex Gaisler.
Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language, under
the above conditions for modified versions.

RCC 1.2.0

AEROFLEX GAISLER

1 Introduction... 4
1.1 General.. 4
1.2 Installation on host platform... 4
1.2.1 Host requirements... 4
1.2.2 Installing RCC on Windows platforms... 4
1.2.3 Installing on Linux platforms ... 6
1.3 Contents of /opt/rtems-4.10 .. 7
1.4 RCC tools.. 7
1.5 Documentation.. 8
1.6 Support.. 8

2 Using RCC.. 9
2.1 General development flow.. 9
2.2 sparc-rtems-gcc options .. 9
2.3 RTEMS applications... 9
2.4 Floating-point considerations ... 10
2.5 LEON SPARC V8 instructions .. 10
2.6 Memory organisation.. 10
2.7 Board-support packages (BSPs) ... 11
2.7.1 LEON3 BSP.. 11
2.8 Driver Manager... 11
2.8.1 Initialization.. 12
2.8.2 Configuration.. 12
2.8.3 Driver configuration ... 13
2.8.4 drvmgr command.. 15
2.9 Network configuration.. 17
2.10 PCI .. 17
2.11 Making boot-proms .. 18
2.12 Simple examples... 18
2.13 Multiprocessing .. 18
2.13.1 MP testsuite .. 20

3 Execution and debugging ... 21
3.1 TSIM... 21
3.2 GRMON ... 21
3.3 GDB with GRMON and TSIM... 23
3.4 Using DDD graphical front-end to gdb .. 24

RCC User’s Manual

AEROFLEX GAISLER

- 4 -

1 Introduction

1.1 General

This document describes the RTEMS LEON/ERC32 GNU cross-compiler system (RCC). Discussions are pro-
vided for the following topics:

• installing RCC
• contents and directory structure of RCC
• compiling and linking LEON and ERC32 RTEMS applications
• usage of GRMON
• debugging application with GDB

RCC is a multi-platform development system based on the GNU family of freely available tools with addi-
tional ‘point’ tools developed by Cygnus, OAR and Aeroflex Gaisler. RCC consists of the following packages:

• GCC-4.4.6 C/C++ compiler
• GNU binary utilities 2.20.1 with support for LEON CASA/UMAC/SMAC instructions
• RTEMS-4.10 C/C++ real-time kernel with LEON2, LEON3, LEON4 and ERC32 support
• Newlib-1.18.0 standalone C-library
• GDB-6.8 SPARC cross-debugger

1.2 Installation on host platform

1.2.1 Host requirements

RCC is provided for two host platforms: linux/x86 and MS Windows. The following are the platform system
requirements:

Linux: Linux-2.6.x, glibc-2.11.1 (or higher)

Windows: MSYS-1.0.10 (or higher)

In order to recompile the RTEMS kernel sources automake-1.11.1 and autoconf-2.68 is required. MSYS-DTK-
1.0.1 is needed on Windows platforms to build autoconf and automake. The sources of automake and autoconf
can be found on the GNU ftp server:

ftp://ftp.gnu.org/gnu/autoconf/

ftp://ftp.gnu.org/gnu/automake/

MSYS and MSYS-DTK can be found at http://www.mingw.org.

1.2.2 Installing RCC on Windows platforms

The toolchain installation zip file (sparc-rtems-4.10-gcc-4.4.x-1.2.x-mingw.zip) must be extracted to C:\opt
creating the directory C:\opt\rtems-4.10-mingw. The toolchain executables can be invoked from the command
prompt by adding the executable directory to the PATH environment variable. The directory C:\opt\rtems-4.10-
mingw\bin can be added to the PATH variable by selecting “My Computer->Properties->Advanced->Environ-
ment Variables”.
Development often requires some basic utilities such as make, but is not required to compile, on Windows plat-
forms the MSYS Base system can be installed to get a basic UNIX like development environment (including
make). The RTEMS sources rely on the autoconf and automake utilities to create Makefiles. The MSYS Base

RCC User’s Manual

AEROFLEX GAISLER

- 5 -

system doesn’t include the required version of autoconf and automake, instead they can be compiled from
sources as described below.

1.2.2.1 Installing MSYS

The MSYS package can be freely downloaded from http://www.mingw.org, it comes as an self extracting
installation application (MSYS-1.0.10.exe). The following text assumes the MSYS has been successfully
installed to C:\msys.
The directory where the toolchain is installed (C:\opt\rtems-4.10-mingw) must be found in /opt/rtems-4.10-
mingw from the MSYS environment, this can done by adding an mount entry similar to one of the examples
below to the /etc/fstab file in the MSYS environment.

C:/opt/rtems-4.10-mingw /opt/rtems-4.10-mingw

or

C:/opt /opt

The path to the toolchain binaries (C:\opt\rtems-4.10-mingw\bin) must added to the MSYS PATH environment
variable. Below is an example of how to change the PATH variable in the MSYS shell.

export PATH=/opt/rtems-4.10-mingw/bin:$PATH

The toolchain installation can be tested by compiling the samples included in the toolchain,

$ cd /opt/rtems-4.10-mingw/src/samples

$ make

1.2.2.2 Installing RTEMS source

Installing the RTEMS kernel sources are optional but recommended when debugging applications. The tool-
chain libraries are built with debugging symbols making it possible for GDB to find the source files. The RCC
RTEMS sources is assumed to be located in C:\opt\rtems-4.10-mingw\src\rtems-4.10.
The RTEMS sources (sparc-rtems-4.10-1.2.x-src.tar.bz2) can be installed by extracting the source distribution
to C:\opt\rtems-4.10-mingw\src creating the directory C:\opt\rtems-4.10-mingw\src\rtems-4.10.

1.2.2.3 Building RTEMS from source

The RTEMS build environment can be set up by following the Windows instructions available www.rtems.org,
the environment requires MSYS-DTK-1.0.1, autoconf-2.68 and automake-1.11.1. This section describes how
to install MSYS-DTK, autoconf, automake and building RTEMS SPARC BSPS from source.

MSYS-DTK can be downloaded from www.mingw.org, it comes as an self extracting installation application
(msysDTK-1.0.1.exe). The following text assumes that MSYS-DTK has been installed successfully into the
MSYS environment.

Autoconf and automake can be downloaded from ftp://ftp.gnu.org/gnu/autoconf and ftp://ftp.gnu.org/gnu/auto-
make. Below is a example of how to build and install the required tools.

$ mkdir /src

$ cd /src

< ... download autoconf and automake to /src ... >

$ tar -jxf autoconf-2.68.tar.bz2

$ mkdir autoconf-2.68/build

RCC User’s Manual

AEROFLEX GAISLER

- 6 -

$ cd autoconf-2.68/build

$../configure --prefix=/usr

$ make

$ make install

< ...autoconf-2.68 has been installed ... >

$ cd /src

$ tar -jxf automake-1.11.1.tar.bz2

$ mkdir automake-1.11.1/build

$ cd automake-1.11.1/build

$../configure --prefix=/usr

$ make

$ make install

< ... automake-1.11.1 has been installed ... >

$ exit

After installing automake and autoconf it may be required to restart the MSYS shell.

Once the tools required by RTEMS source tree has been installed and the MSYS shell has been restarted the
installed RTEMS sources can be built manually or using the prepared Makefile available at C:\opt\rtems-4.10-
mingw\src\Makefile. The build process is divided in four steps, in the first step the make scripts are generated
this step is called bootstrap. The bootstrapping can be done with the make target boot as the examples shows
below. The bootstrap step is only needed to be rerun when adding or removing files from the source tree.

$ cd /opt/rtems-4.10-mingw/src

$ make bootstrap

The second step configures a build environment in /opt/rtems-4.10-mingw/src/build,

$ make configure

The third and fourth steps compile and install the new kernel to /opt/rtems-4.10-mingw/sparc-rtems

$ make compile

$ make install

1.2.3 Installing on Linux platforms

The RCC directory tree is compiled to reside in the /opt/rtems-4.10 directory on all platforms. After obtaining
the bzipped tarfile with the binary distribution, uncompress and untar it in a suitable location - if this is not /opt/
rtems-4.10 then a link have to be created to point to the location of the RCC directory. The distribution can be
installed with the following commands:

cd /opt

bunzip2 -c sparc-rtems-4.10-gcc-4.4.x-1.2.x-linux.tar.bz2 | tar xf -

After the compiler is installed, add /opt/rtems-4.10/bin to the executables search path and /opt/rtems-4.10/man
to the man path.

RCC User’s Manual

AEROFLEX GAISLER

- 7 -

1.2.3.1 Installing RTEMS source

The RTEMS sources used to compile the SPARC BSPS included in RCC is prepared to be installed into /opt/
rtems-4.10/src, it can be done as follows.

$ cd /opt/rtems-4.10/src

$ tar -jxf /path/to/sparc-rtems-4.10-1.2.x.tar.bz2

1.2.3.2 Building RTEMS from sources

The RTEMS libraries found in /opt/rtems-4.10/sparc-rtems/BSP can be built from the sources using the Make-
file found in /opt/rtems-4.10/src. The RTEMS build environment assumes that autoconf-2.68 and automake-
1.11.1 are installed. Documentation on how to install autoconf and automake is included in respective source
and an example can be found above in section 1.2.2.3.

1.3 Contents of /opt/rtems-4.10

The created rtems directory has the following sub-directories:
bin Executables
doc RCC and GNU documentation
include Host includes
lib Host libraries
make RTEMS make scripts
man Man pages for GNU tools
sparc-rtems Sparc target libraries
src Various sources, make scripts used to build kernel from source

1.4 RCC tools

The following tools are included in RCC:

sparc-rtems-addr2line Convert address to C/C++ line number
sparc-rtems-ar Library archiver
sparc-rtems-as Cross-assembler
sparc-rtems-c++ C++ cross-compiler
sparc-rtems-c++filt Utility to demangle C++ symbols
sparc-rtems-cpp The C preprocessor
sparc-rtems-g++ Same as sparc-rtems-c++
sparc-rtems-gcc C/C++ cross-compiler
sparc-rtems-gcov Coverage testing tool
sparc-rtems-gdb Debugger
sparc-rtems-gprof Profiling utility
sparc-rtems-ld GNU linker
sparc-rtems-nm Utility to print symbol table
sparc-rtems-objcopy Utility to convert between binary formats
sparc-rtems-objdump Utility to dump various parts of executables
sparc-rtems-ranlib Library sorter
sparc-rtems-readelf ELF file information utility
sparc-rtems-size Utility to display segment sizes
sparc-rtems-strings Utility to dump strings from executables
sparc-rtems-strip Utility to remove symbol table

RCC User’s Manual

AEROFLEX GAISLER

- 8 -

1.5 Documentation

The RCC and GNU documentation are distributed together with the toolchain, it consists of RTEMS manuals
and GNU tools manuals localted in the doc/ directory of the toolchain. The drivers are documented in a sepa-
rate drivers document.

GNU manuals:

as.pdf Using as - the GNU assembler
binutils.pdf The GNU binary utilities
cpp.pdf The C Preprocessor
gcc.pdf Using and porting GCC
gdb.pdf Debugging with GDB
gprof.pdf the GNU profiling utility
ld.pdf The GNU linker

Newlib C library:

libc.pdf Newlib C Library
libm.pdf Newlib Math Library

RTEMS manuals:

bsp_howto.pdf BSP and Device Driver Development Guide
c_user.pdf RTEMS C User’s Guide (this is the one you want!)
cpu_supplement.pdf RTEMS SPARC CPU Application Supplement
develenv.pdf RTEMS Development environment guide
filesystem.pdf RTEMS Filesystem Design Guide
itron.pdf RTEMS ITRON 3.0 User’s Guide
networking.pdf RTEMS Network Supplement
new_chapters.pdf RTEMS Newly added features
porting.pdf RTEMS Porting Guide
posix1003-1.pdf RTEMS POSIX 1003.1 Compliance Guide
posix_users.pdf RTEMS POSIX API User’s Guide
relnotes.pdf RTEMS Release Notes
started.pdf Getting Started with RTEMS for C/C++ Users

The documents are all provided in PDF format, with searchable indexes.

1.6 Support

The RCC compiler system is provided freely without any warranties. Technical support can be obtained from
Aeroflex Gaisler through the purchase of a technical support contract. See www.gaisler.com for more details.

RCC User’s Manual

AEROFLEX GAISLER

- 9 -

2 Using RCC

2.1 General development flow

Compilation and debugging of applications is typically done in the following steps:

1. Compile and link program with gcc
2. Debug program using a simulator (gdb connected to TSIM/GRSIM)
3. Debug program on remote target (gdb connected to GRMON)
4. Create boot-prom for a standalone application with mkprom2

RCC supports multi-tasking real-time C/C++ programs based on the RTEMS kernel. Compiling and linking is
done in much the same manner as with a host-based gcc.

2.2 sparc-rtems-gcc options

The gcc compiler has been modified to support the following addtional options:

-qleon2 generate LEON2 executable (without driver manager startup initialization).

-tsc691 generate ERC32 executable.

-qleon3 generate LEON3/4 executable (default if no other option given).

-qleon3std generate LEON3/4 executable without driver manager startup initialization

-qleon3mp generate LEON3/4 Multiprocessor executable (AMP)

-qngmp use NGMP linker script instead of default. Can be used in conjunction with-qleon3,

-qleon3str and-qleon3mp. The RAM address is set to 0 instead of 0x40000000.

Other usefull (standard) options are:

-g generate debugging information - must be used for debugging with gdb

-msoft-float emulate floating-point - must be used if no FPU exists in the system

-mcpu=v8 generate SPARC V8 mul/div instructions- only for LEON with hardware multiply and
divide configured

-mtune=ut699 sets UT699 specific parameters

-O2 optimize code - should be used for optimum performance and minimal code size

Other gcc options are explained in the gcc manual (gcc.pdf).

2.3 RTEMS applications

To compile and link an RTEMS application, use ‘sparc-rtems-gcc’:

sparc-rtems-gcc -g -O2 rtems-hello.c -o rtems-hello

RCC creates executables for LEON3/4 by default. To generate executables for LEON2 or ERC32 add -qleon2
or -tsc691 switches during both compile and link stages. The default load address is start of RAM, i.e.

RCC User’s Manual

AEROFLEX GAISLER

- 10 -

0x40000000 for LEON2/3/4 and 0x2000000 for ERC32. Other load addresses can be specified through the use
of the -Ttext option (see gcc manual). See -qngmp option above for systems with RAM at address 0.

RCC uses the sources of RTEMS-4.10 with minor patches, and allows recompilation if a modification has been
made to a bsp or the kernel. Install the RTEMS sources in /opt/rtems-4.10/src, and re-compile and install with:

cd /opt/rtems-4.10/src
make install

2.4 Floating-point considerations

If the targeted processor has no floating-point hardware, then all applications must be compiled (and linked)
with the -msoft-float option to enable floating-point emulation. When running the program on the TSIM simu-
lator, the simulator should be started with the -nfp option (no floating-point) to disable the FPU.

2.5 LEON SPARC V8 instructions

LEON2, LEON3 and LEON4 processors can be configured to implement the SPARC V8 multiply and divide
instructions. The RCC compiler does by default NOT issue those instructions, but emulates them trough a
library. To enable generation of mul/div instruction, use the -mcpu=v8 switch during both compilation and
linking. The -mcpu=v8 switch improves performance on compute-intensive applications and floating-point
emulation.

LEON2/3/4 also supports multiply and accumulate (MAC). The compiler will never issue those instructions,
they have to be coded in assembly. Note that the RCC assembler and other utilities are based on a modified ver-
sion of GNU binutils-2.20.1 that supports the LEON MAC instructions.

2.6 Memory organisation

The resulting RTEMS executables are in elf format and has three main segments; text, data and bss. The text
segment is by default at address 0x40000000 for LEON2/3/4 and 0x2000000 for ERC32, followed immedi-
ately by the data and bss segments. The stack starts at top-of-ram and extends downwards.

Figure 1: RCC RAM applications memory map

Startup Stack

Heap

Standalone App

0X40000000

Top-Of-RAM

Data

Text

RCC User’s Manual

AEROFLEX GAISLER

- 11 -

The SPARC trap table always occupies the first 4 Kbytes of the .text segment.

2.7 Board-support packages (BSPs)

RCC includes board-support packages for LEON2, LEON3 and ERC32. LEON4 is supported by the LEON3
BSP. BSPs provide interface between RTEMS and target hardware through initialization code specific to target
processor and a number of device drivers. Console and timer drivers are supported for all processors.

LEON2 and ERC32 BSPs assume a default system resource configuration such as memory mapping of on-chip
devices and usage of interrupt resources. LEON3/4 systems are based on GRLIB plug&play configuration, and
are thereby highly configurable regarding memory mapping and interrupt routing. At start-up, the LEON3 BSP
scans the system bus to obtain system configuration information. Device drivers support a number of devices
which are automatically recognized, initiated and handled by the device drivers.

2.7.1 LEON3 BSP

The LEON3 BSP includes two different console and timer drivers, standard (official RTEMS) drivers (-
qleon3std) and drivers which rely on the driver manager. The latter drivers are possible to configure from the
project configuration using standard driver manager configuration options, for example which APBUART is
mapped to /dev/console and which timer is used as system clock which is required for complex AMP systems.

The console drivers supports APBUARTs. The first UART is registered under name “/dev/console”, second
and third UARTs get names “/dev/console_b” and “dev/console_c” and so on. LEON3 BSP requires at least
one APBUART.

The timer driver uses General Purpose Timer (GPT). The driver handles GPT timer 0 and the lowest interrupt
request line used by GPT. GPT timer 0 and lowest request line should never be used by an RTEMS application.
If an application needs to use more timers GPT should be configured to have two or more timers using separate
request lines. Timer 0 interrupt can not be shared with other devices or GPT timers 1-6.

For more information on how to configure a system based on GRLIB see GRLIB IP Library User’s Manual.

2.8 Driver Manager

The LEON3 BSP uses an optional Driver Manger that handles drivers and devices on the AMBA and PCI Plug
& Play buses. The drivers are automatically assigned with one or more hardware devices. The Driver Manager
is either initilized by the user from the Init() thread after RTEMS as started up, or during startup of RTEMS.
The LEON3 BSP has by default (-qleon3 and -qleon3mp) the driver manager enabled (--drvmgr was given to
configure during compiletime) that means that no extra initialization calls from Init() is needed, however which
drivers to be included must be configured uniquely per project. One can use -qleon3std to avoid using the
driver manager. In most cases the GPTIMER and the APBUART drivers are required to boot.

If the driver manager was configured to be initialized by the BSP, the RTEMS_DRVMGR_STARTUP define is
defined. If not configured the define is not set and the user can choose to initialize the driver manager manually
from for example the Init() task or not use it at all.

LEON2 systems are divided into two different systems, standard LEON2 systems and GRLIB-LEON2 systems
where the AMBA Plug & Play bus is available. Both systems can use the LEON2 hardcoded bus with the
Driver Manager, however it’s primary intention is to provide a root bus for a second bus supporting Plug &

RCC User’s Manual

AEROFLEX GAISLER

- 12 -

Play. For example a GRLIB-LEON2 system has hardcoded peripherals (the standard LEON2 peripherals) and
GRLIB cores attached available from the AMBA Plug & Play information, the setup for a system like that
would be a LEON2 hardcoded bus and a LEON2 AMBA Plug & Play sub bus. Once the AMBA Plug & Play
bus is initialized all device and their drivers can be used the same way as in LEON3/4 systems.

For AT697 PCI systems the driver manager can be used to scan the PCI bus.

The ERC32 BSP does not support the driver manager.

2.8.1 Initialization

Regardless when the manager is initialized the following steps must be taken, however RTEMS and the BSP
takes all steps during startup for us when --drvmgr was passed to configure.

Before the driver manager is initialized one must register a root bus driver so that the driver manager knows
which bus to start search for devices at. The driver manager itself must also be initialized by calling
drvmgr_init() before any driver supporting the driver manager can be accessed. The manager replaces the
DRIVER_register() calls used in previous releases of RTEMS to register drivers.

2.8.2 Configuration

The driver manager is configured by defining the arraydrvmgr_drivers, it contains one function pointer per
driver that is responsible to register one or more drivers. The drvmgr_drivers can be set up by defining
CONFIGURE_INIT, selecting the appropriate drivers and includingdrvmgr/drvmgr_confdefs.h. The approach
is similar to configuring a standard RTEMS project usingrtems/confdefs.h. Below is an example how to select
drivers.

#include <rtems.h>
#define CONFIGURE_INIT
#include <bsp.h>

/* Standard RTEMS setup */
#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_MAXIMUM_DRIVERS 32
#include <rtems/confdefs.h>

/* Driver manager setup */
#if defined(RTEMS_DRVMGR_STARTUP)
 /* if --drvmgr was given to configure (-qleon3, -qleon3mp) include GPTIMER and
APBUART drivers
 * that rely on the driver manager
 */
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
#endif

#define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRETH
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRCAN
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_OCCAN
#define CONFIGURE_DRIVER_AMBAPP_MCTRL
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_PCIF

RCC User’s Manual

AEROFLEX GAISLER

- 13 -

#define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRPCI
#define CONFIGURE_DRIVER_PCI_GR_RASTA_IO
#define CONFIGURE_DRIVER_PCI_GR_RASTA_TMTC
#define CONFIGURE_DRIVER_PCI_GR_701

#include <drvmgr/drvmgr_confdefs.h>

The timer and console driver must be included when the driver manager is initialized on startup, whereas the
standard drivers are included automatically by the standard (-qleon3std) BSP setup.

2.8.3 Driver configuration

In the past the driver resources were often a string interpreted by the driver passed into theDRIVER_register()
function. Since the register functions have been replaced the driver resource format has also been changed, it is
now described by an array of different data types which are assigned names for flexibility. The name is
searched for by the driver once started, if found the value replaces the default value internal to the driver. The
driver uses a driver resource API to easily extract the information. The resources are provided by the bus driver,
it is up to the bus driver how the resources are assigned to the bus, the LEON bus drivers use a default weak
array that can be overridden by the project configuration. The driver parameters are documented separately for
each driver in the driver manual. The example below sets up GRSPW0 and GRSPW1 descriptor count driver
resources for the AMBA Plug & Play bus on two different GR-RASTA-IO PCI boards and the root bus.

/* ROOT AMBA PnP Bus: GRSPW0 and GRSPW1 resources */
struct drvmgr_key grlib_grspw01_res[] =
{
 {"txDesc", KEY_TYPE_INT, {(unsigned int)32}},
 {"rxDesc", KEY_TYPE_INT, {(unsigned int)32}},

KEY_EMPTY
};

/* If RTEMS_DRVMGR_STARTUP is defined we override the "weak defaults" that
 * is defined by the LEON3 BSP.
 */
struct drvmgr_bus_res grlib_drv_resources =
{
 .next = NULL,

.resource = {
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 0, &grlib_grspw01_res[0]},
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 1, &grlib_grspw01_res[0]},

RES_EMPTY
 },
};

#ifndef RTEMS_DRVMGR_STARTUP
struct grlib_config grlib_bus_config =
{

&ambapp_plb,/* AMBAPP bus setup */
&grlib_drv_resources,/* Driver configuration */

};
#endif

/* GR-RASTA-IO 0: GRSPW0 resources */
struct drvmgr_key rastaio0_grspw0_res[] =
{

RCC User’s Manual

AEROFLEX GAISLER

- 14 -

 {"txDesc", KEY_TYPE_INT, {(unsigned int)8}},
 {"rxDesc", KEY_TYPE_INT, {(unsigned int)32}},

KEY_EMPTY
};

/* GR-RASTA-IO 1: GRSPW1 resources */
struct drvmgr_key rastaio0_grspw0_res[] =
{
 {"txDesc", KEY_TYPE_INT, {(unsigned int)16}},
 {"rxDesc", KEY_TYPE_INT, {(unsigned int)16}},

KEY_EMPTY
};

/* GR-RASTA-IO 1: GRSPW0 and GRPSW1 resources use same configuration */
struct drvmgr_key rastaio1_grspw01_res[] =
{
 {"txDesc", KEY_TYPE_INT, {(unsigned int)16}},
 {"rxDesc", KEY_TYPE_INT, {(unsigned int)64}},
 KEY_EMPTY
};

/*** Driver resources for GR-RASTA-IO 0 AMBA PnP bus ***/
struct drvmgr_bus_res gr_rasta_io0_res =
{
 .next = NULL,

.resource = {
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 0, &rastaio0_grspw0_res[0]},
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 1, &rastaio0_grspw1_res[0]},

RES_EMPTY
 },
};

/*** Driver resources for GR-RASTA-IO 1 AMBA PnP bus ***/
struct drvmgr_bus_res gr_rasta_io1_res =
{
 .next = NULL,

.resource = {
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 0, &rastaio1_grspw01_res[0]},
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 1, &rastaio1_grspw01_res[0]},

RES_EMPTY
 },
};

/* Tell GR-RASTA-IO driver about the bus resources.
 * Resources for one GR-RASTA-IO board are available.
 * AMBAPP->PCI->GR-RASTA-IO->AMBAPP bus resources
 *
 * The resources will be used by the drivers for the
 * cores found on the GR-RASTA-IO->AMBAPP bus.
 *
 * The "weak defaults" are overriden here.
 */
struct drvmgr_bus_res *gr_rasta_io_resources[] =
{

&gr_rasta_io0_res,/* GR-RASTA-IO board 1 resources */

RCC User’s Manual

AEROFLEX GAISLER

- 15 -

&gr_rasta_io1_res,/* GR-RASTA-IO board 2 resources */
NULL, /* End of table */

};

rtems_task Init(rtems_task_argument argument)
{
 /* Manual driver manager initialization only required when driver manager not ini-
tialized during
 * startup (-qleon2, -qleon3std)
 */
#ifndef RTEMS_DRVMGR_STARTUP
 /* Register GRLIB root bus (LEON3/4) */

ambapp_grlib_root_register(&grlib_bus_config);

 /* Initialize Driver Manager */
 drvmgr_init();
#endif

 ...

2.8.4 drvmgr command

The RTEMS shell comes with a number of commands, the drvmgr command can be used to extract informa-
tion about the current setup and hardware. Please see thertems-shell.csample application that comes with
RCC. The rtems-shell on a GR712RC ASIC:

Creating /etc/passwd and group with three useable accounts
root/pwd , test/pwd, rtems/NO PASSWORD

RTEMS SHELL (Ver.1.0-FRC):dev/console. Oct 3 2011. ’help’ to list commands.
[/] # drvmgr --help
 usage:
 drvmgr buses List bus specfic information on all buses
 drvmgr devs List general and driver specfic information
 about all devices
 drvmgr drvs List driver specfic information on all drivers
 drvmgr info [ID] List general and driver specfic information
 about all devices or one device, bus or driver
 drvmgr mem Dynamically memory usage
 drvmgr parent ID Short info about parent bus of a device
 drvmgr remove ID Remove a device or a bus
 drvmgr res ID List Resources of a device or bus
 drvmgr short [ID] Short info about all devices/buses or one
 device/bus
 drvmgr topo Show bus topology with all devices
 drvmgr tr ID OPT ADR Translate hw(0)/cpu(1) (OPT bit0) address ADR
 down(0)/up(1) streams (OPT bit1) for device
 drvmgr --help

[/] # drvmgr topo
 --- BUS TOPOLOGY ---
 |-> DEV 0x400fd3a0 GRLIB AMBA PnP
 |-> DEV 0x400fd450 GAISLER_LEON3FT
 |-> DEV 0x400fd4a8 GAISLER_LEON3FT
 |-> DEV 0x400fd500 GAISLER_AHBJTAG

RCC User’s Manual

AEROFLEX GAISLER

- 16 -

 |-> DEV 0x400fd558 GAISLER_ETHMAC
 |-> DEV 0x400fd5b0 GAISLER_SATCAN
 |-> DEV 0x400fd608 GAISLER_SPW2
 |-> DEV 0x400fd660 GAISLER_SPW2
 |-> DEV 0x400fd6b8 GAISLER_SPW2
 |-> DEV 0x400fd710 GAISLER_SPW2
 |-> DEV 0x400fd768 GAISLER_SPW2
 |-> DEV 0x400fd7c0 GAISLER_SPW2
 |-> DEV 0x400fd818 GAISLER_B1553BRM
 |-> DEV 0x400fd870 GAISLER_GRTC
 |-> DEV 0x400fd8c8 GAISLER_GRTM
 |-> DEV 0x400fd920 GAISLER_SLINK
 |-> DEV 0x400fd978 GAISLER_FTMCTRL
 |-> DEV 0x400fd9d0 GAISLER_APBMST
 |-> DEV 0x400fda28 GAISLER_LEON3DSU
 |-> DEV 0x400fda80 GAISLER_APBMST
 |-> DEV 0x400fdb30 GAISLER_CANAHB
 |-> DEV 0x400fdad8 GAISLER_CANAHB
 |-> DEV 0x400fdb88 GAISLER_FTAHBRAM
 |-> DEV 0x400fdbe0 GAISLER_APBUART
 |-> DEV 0x400fdc38 GAISLER_IRQMP
 |-> DEV 0x400fdc90 GAISLER_GPTIMER
 |-> DEV 0x400fdce8 GAISLER_SPICTRL
 |-> DEV 0x400fdd40 GAISLER_CANMUX
 |-> DEV 0x400fdd98 NO_NAME
 |-> DEV 0x400fddf0 GAISLER_ASCS
 |-> DEV 0x400fde48 GAISLER_GPIO
 |-> DEV 0x400fdea0 GAISLER_GPIO
 |-> DEV 0x400fdef8 GAISLER_I2CMST
 |-> DEV 0x400fdf50 GAISLER_CLKGATE
 |-> DEV 0x400fdfa8 GAISLER_AHBSTAT
 |-> DEV 0x400fe000 GAISLER_APBUART
 |-> DEV 0x400fe058 GAISLER_APBUART
 |-> DEV 0x400fe0b0 GAISLER_APBUART
 |-> DEV 0x400fe108 GAISLER_APBUART
 |-> DEV 0x400fe160 GAISLER_APBUART
 |-> DEV 0x400fe1b8 GAISLER_GRTIMER

[/] # drvmgr info 0x400fdbe0
 -- DEVICE 0x400fdbe0 --
 PARENT BUS: 0x400fd408
 NAME: GAISLER_APBUART
 STATE: 0x00000100
 INIT LEVEL: 4
 ERROR: 0
 MINOR BUS: 0
 MINOR DRV: 0
 DRIVER: 0x400a2198 (APBUART_DRV)
 PRIVATE: 0x400fe210
 --- DEVICE INFO FROM BUS DRIVER ---
 AMBA PnP DEVICE
 VENDOR ID: 0x0001 (VENDOR_GAISLER)
 DEVICE ID: 0x000c (GAISLER_APBUART)
 IRQ: 2
 VERSION: 0x1

RCC User’s Manual

AEROFLEX GAISLER

- 17 -

 ambapp_core: 0x400fdc1c
 interfaces: APBSLV
 APBSLV FREQ: 80000kHz
 apb: 0x80000100-0x800001ff
 --- DEVICE INFO FROM DEVICE DRIVER ---
 UART Mode: TERMIOS_POLLED
 STATUS REG: 0x100082
 CTRL REG: 0x80000803
 SCALER REG: 0x103 baud rate 38610

2.9 Network configuration

The LEON2/3 BSPs support two network devices: the Aeroflex Gaisler GRETH MAC and the LAN91C111.
The GRETH driver comes in two editions, one that needs the driver manager (in libbsp) to operate and the
standard driver (in libchip).
The driver manager dependent GRETH driver adds the network interface automatically to the
rtems_bsdnet_confignetwork interface configuration usingnetwork_interface_add() function. The
LAN91C111 chip cannot be found by plug and play so it has to be manually set up by either hardcoding an
entry in thertems_bsdnet_configinterface list or dynamically registered by callingnetwork_interface_add.
The LAN91C111 attach routine is defined by RTEMS_BSP_NETWORK_DRIVER_ATTACH_SMC91111 in
bsp.h. The standard GRETH device is setup in a similar way, see bsp.h.

See src/samples/rtems-ttcp.c for sample a networking application.

2.10 PCI

Aeroflex Gaisler provides a PCI Library together with RTEMS located in cpukit/libpci in the soruces. The doc-
umentation for the PCI Library is located in the RTEMS documentation doc/usr/libpci.t.

The RTEMS shell has been extended with a pci command can be used to extract information about the current
setup and hardware. Please see thertems-shell.c sample application that comes with RCC. A non-PCI system:

Creating /etc/passwd and group with three useable accounts
root/pwd , test/pwd, rtems/NO PASSWORD

RTEMS SHELL (Ver.1.0-FRC):dev/console. Oct 3 2011. ’help’ to list commands.
[/] # pci --help
 usage:
 pci ls [bus:dev:fun|PCIID] List one or all devices
 pci r{8|16|32} bus:dev:fun OFS Configuration space read
 pci r{8|16|32} PCIID OFS Configuration space read
 access by PCIID
 pci w{8|16|32} bus:dev:fun OFS D Configuration space write
 pci w{8|16|32} PCIID OFS D Configuration space write
 access by PCIID
 pci pciid bus:dev:fun Print PCIID for bus:dev:fun
 pci pciid PCIID Print bus:dev:fun for PCIID
 pci pcfg Print current PCI config for
 static configuration library
 pci getdev {PCIID|bus:dev:fun} Get PCI Device from RAM tree
 pci infodev DEV_ADR Info about a PCI RAM Device

RCC 1.2.0

AEROFLEX GAISLER

 pci --help

[/] # pci
 SYSTEM: UNKNOWN / UNINITIALIZED
 CFG LIBRARY: AUTO
 NO. PCI BUSES: 0 buses
 PCI ENDIAN: Little
 MACHINE ENDIAN: Big

2.11 Making boot-proms

RTEMS applications are linked to run from beginning of RAM. To make a boot-PROM that will run from the
PROM on a standalone target, use the mkprom2 utility freely available from www.gaisler.com. The mkprom
utility is documented in a separate document that is distributed together with the mkprom2 utility. Mkprom
will create a compressed boot image that will load the application into RAM, initiate various processor regis-
ters, and finally start the application. Mkprom will set all target dependent parameters, such as memory sizes,
waitstates, baudrate, and system clock. The applications do not set these parameters themselves, and thus do
not need to be re-linked for different board architectures.

The example below creates a LEON3 boot-prom for a system with 1 Mbyte RAM, one waitstate during write,
3 waitstates for rom access, and 40 MHz system clock. For more details see the mkprom manual

mkprom2 -ramsz 1024 -ramwws 1 -romws 3 hello.exe -freq 40 hello.exe

Note that mkprom creates binaries for LEON2/3 and for ERC32, select processor type with the mkprom
options -leon3, -leon2 or -erc32 flag. To create an SRECORD file for a prom programmer, use objcopy:

sparc-rtems-objcopy -O srec rtems-hello rtems-hello.srec

2.12 Simple examples

Following example compiles the famous "hello world" program and creates a boot-prom in SRECORD format:

bash-2.04$ sparc-rtems-gcc -mcpu=v8 -msoft-float -O2 rtems-hello.c -o rtems-hello

bash-2.04$ mkprom2 -leon3 -freq 40 -dump -baud 38400 -ramsize 1024 -rmw rtems-hello
bash-2.04$ sparc-rtems-objcopy -O srec rtems-hello rtems-hello.srec
bash-2.04$

Several example C programs can be found in /opt/rtems-4.10/src/samples.

2.13 Multiprocessing

RTEMS supports asymmetric multiprocessing (AMP), the LEON3 BSP supports AMP in two different setups.
Either the RTEMS kernel is compiled with multiprocessing support (-qleon3mp) or the user setup custom
resource sharing with driver manager resources (-qleon3), the difference is that RTEMS provide multiprocess-
ing objects and communication channels in the former case and in the latter case the user is responsible for all
synchronization itself which in many cases are sufficient. All nodes in a asymmetric multiprocessor system
executes thier own program image. Messages are passed between the nodes containing synchronization infor-

RCC 1.2.0

AEROFLEX GAISLER

mation, for example take global semaphore A. Messages are sent over memory using the Shared Memory Sup-
port Driver in the LEON3 BSP, and interrupts are used to alert the receiving CPU.

The kernel must be compiled with multiprocessing support in order for the RTEMS AMP support to be avail-
able, the toolchain includes a precompiled LEON3 MP kernel in rtems-4.10/sparc-rtems/leon3mp, it is the
LEON3 BSP compiled with multiprocessing support. The MP kernel is selected when the -qleon3mp argument
is given to sparc-rtems-gcc.

Since each CPU executes its own program image, a memory area has to be allocated for each CPU’s program
image and stack. This is achieved by linking each CPU’s RTEMS program at the start addresses of the CPU’s
memory area and setting stack pointer to the top of the memory area. E.g. for two CPU system, the application
running on CPU 0 could run in memory area 0x40100000 - 0x401fffff, while CPU 1 runs in memory area
0x4020000 - 0x402fffff. Shared Memory Support Driver allocates 4 KB buffer at address 0x40000000 for mes-
sage passing (this area can not be used for applications).

Each CPU requires its own set of standard peripherals such as UARTs and timers. In an MP system the BSP
will automatically allocate UART 1 and GPT 0 timer 1 to CPU 0, UART 2 and GPT 0 timer 2 to CPU 1 and so
on. When the default configuration does not meet the requirements or hardware setup a custom resource alloca-
tion can be setup using the driver manager, see below.

The shared memory driver’s default memory layout configuration can be overidden without recompiling the
kernel. The default settings are set in the variable weak variable BSP_shm_cfgtbl, it can be overridden by
defining BSP_shm_cfgtbl once in the project as in the below example. The parameters that has an effect in
changing is the fields base and length.

/* Override default SHM configuration */
shm_config_table BSP_shm_cfgtbl =
{
.base = (void *)0x40000000,
.length = 0x00010000
};

Hardware resource allocation is done by the BSP for UART, IRQ controller and System Clock Timer. Devices
which has a driver that is implemented using the driver manager can be ignored by a specific CPU by assigning
the keys value NULL in the driver resouces. The driver manager simply ignores the device when a NULL
resource is detect. An example is given below where CPU0 is assigned GRGPIO0 and CPU1 GRGPIO1.
GPTIMER driver have options that limit number of timers and which timer is used for system clock, the sys-
tem console and debug output can be selected to a specific UART with the APBUART driver.

CPU0 Application:
struct rtems_drvmgr_drv_res grlib_drv_resources[] =
{

{DRIVER_AMBAPP_GAISLER_GRGPIO_ID, 1, NULL} /* Used by CPU1 */
};

CPU1 Application:
struct rtems_drvmgr_drv_res grlib_drv_resources[] =
{

{DRIVER_AMBAPP_GAISLER_GRGPIO_ID, 0, NULL}, /* Used by CPU0 */
{DRIVER_AMBAPP_GAISLER_GRGPIO_ID, 1, &grlib_drv_res_grgpio1[0]}

};

RCC 1.2.0

AEROFLEX GAISLER

Following example shows how to run RTEMS MP application on a two CPU system using GRMON. CPU 0
executes image node1.exe in address space 0x6000000 - 0x600fffff while CPU 1 executes image node2.exe in
address space 0x60100000 - 0x601fffff.

GRMON LEON debug monitor v1.1.22

Copyright (C) 2004,2005 Gaisler Research - all rights reserved.
For latest updates, go to http://www.gaisler.com/
Comments or bug-reports to support@gaisler.com
...

grlib> lo node1.exe
section: .text at 0x60000000, size 143616 bytes
section: .data at 0x60023100, size 3200 bytes
total size: 146816 bytes (174.4 kbit/s)
read 852 symbols
entry point: 0x60000000
grlib> lo node2.exe
section: .text at 0x60100000, size 143616 bytes
section: .data at 0x60123100, size 3200 bytes
total size: 146816 bytes (172.7 kbit/s)
read 852 symbols
entry point: 0x60100000
grlib> cpu act 0
active cpu: 0
grlib> ep 0x60000000
entry point: 0x60000000
grlib> stack 0x600fff00
 stack pointer: 0x600fff00
grlib> cpu act 1
active cpu: 1
grlib> ep 0x60100000
entry point: 0x60100000
grlib> stack 0x601fff00
 stack pointer: 0x601fff00
grlib> cpu act 0
active cpu: 0
grlib> run

RTEMS MP applications can not be run directly in GRSIM (using load and run commands). Instead a boot
image containing several RTEMS MP applications should be created and simulated.

2.13.1 MP testsuite

The MP testsuite is located in the sources under testsuite/mptests, it requires modifications to the make scripts
in order to select a unique image RAM location. The default shared memory area is at 0x40000000-
0x40000fff, the two images for node1 and node2 needs to be located on a unique address and the heap/stack
must also fit. The argument -Wl,-Ttext,0x40001000 for node1 and -Wl,-Ttext,0x40200000 for node2 can be
added to the link stage, and the entry point (0x40001000 and 0x40200000) and stacks (0x401ffff0 and
0x403ffff0) must also be set by the loader (GRMON or mkprom for example). Depending on where the RAM
memory is located and how much memory is available the paramters may vary.

RCC 1.2.0

AEROFLEX GAISLER

3 Execution and debugging

Applications built by RCC can be debugged on the TSIM LEON/ERC32 simulator, or on target hardware
using the GRMON debug monitor (LEON only). Both TSIM and GRMON can be connected to the GNU
debugger (gdb) for full source-level debugging.

3.1 TSIM

The TSIM simulator can emulate a full ERC32 and LEON2/3 system with on-chip peripherals and external
memories. For full details on how to use TSIM, see the TSIM User’s Manual. Below is a simple example that
shows how the ‘hello world’ program is run in the simulator:

$ tsim-leon3 rtems-hello

 TSIM/LEON3 SPARC simulator, version 2.0.4a (professional version)

 Copyright (C) 2001, Gaisler Research - all rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to tsim@gaisler.com

using 64-bit time
serial port A on stdin/stdout
allocated 4096 K RAM memory, in 1 bank(s)
allocated 2048 K ROM memory
icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
section: .text, addr: 0x40000000, size 92096 bytes
section: .data, addr: 0x400167c0, size 2752 bytes
read 463 symbols
tsim> go
resuming at 0x40000000
Hello World

Program exited normally.
tsim>

3.2 GRMON

GRMON is used to download, run and debug LEON2/3 software on target hardware. For full details on how to
use GRMON, see the GRMON User’s Manual. Below is a simple example that shows how the ‘hello world’
program is downloaded and run:

$ grmon -u -jtag

 GRMON LEON debug monitor v1.1.11

 Copyright (C) 2004,2005 Gaisler Research - all rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to support@gaisler.com

 using JTAG cable on parallel port
 JTAG chain: xc3s1500 xcf04s xcf04s

 initialising
 detected frequency: 41 MHz
 GRLIB build version: 1347

RCC 1.2.0

AEROFLEX GAISLER

 Component Vendor
 LEON3 SPARC V8 Processor Gaisler Research
 AHB Debug UART Gaisler Research
 AHB Debug JTAG TAP Gaisler Research
 GR Ethernet MAC Gaisler Research
 LEON2 Memory Controller European Space Agency
 AHB/APB Bridge Gaisler Research
 LEON3 Debug Support Unit Gaisler Research
 Nuhorizons Spartan3 I/O interfac Gaisler Research
 OC CAN controller Gaisler Research
 Generic APB UART Gaisler Research
 Multi-processor Interrupt Ctrl Gaisler Research
 Modular Timer Unit Gaisler Research

 Use command ’info sys’ to print a detailed report of attached cores

grlib> lo rtems-hello
section: .text at 0x40000000, size 92096 bytes
section: .data at 0x400167c0, size 2752 bytes
total size: 94848 bytes (339.7 kbit/s)
read 463 symbols
entry point: 0x40000000
grlib> run
Hello World
grlib>

Note that the program was started from address 0x40000000, the default start address.

GRMON can also be used to program the boot-PROM image created by sparc-rtems-mkprom into the target’s
flash PROM.

grmon[grlib]> flash unlock all
grmon[grlib]> flash erase all
Erase in progress
Block @ 0x00000000 : code = 0x00800080 OK
Block @ 0x00004000 : code = 0x00800080 OK
 ...
grmon[grlib]> flash load prom.out
section: .text at 0x0, size 54272 bytes
total size: 54272 bytes (93.2 kbit/s)
read 45 symbols
grmon[grlib]> flash lock all

When boot-PROM is run (i.e. after reset) it will initialize various LEON registers, unpack the application to the
RAM and start the application. The output on console when running “hello world” from PROM is shown
below:

 MkProm LEON3 boot loader v1.2
 Copyright Gaisler Research - all right reserved

 system clock : 40.0 MHz
 baud rate : 38352 baud

RCC 1.2.0

AEROFLEX GAISLER

 prom : 512 K, (2/2) ws (r/w)
 sram : 1024 K, 1 bank(s), 0/0 ws (r/w)

 decompressing .text
 decompressing .data

 starting rtems-hello

Hello World

The application must be re-loaded with the ‘load’ command before it is possible to re-execute it.

When running multiple RTEMS programs on a multiprocessing system, entry point and stack pointer have to
be set up individually for each CPU. E.g. when running app1.exe (link address 0x40100000) on CPU0 and
app2.exe (link address 0x40200000) on CPU1:

grlib> lo app1.exe
grlib> lo app2.exe
grlib> cpu act 0
grlib> ep 0x40100000
grlib> stack 0x401fff00
grlib> cpu act 1
grlib> ep 0x40200000
grlib> stack 0x402fff00
grlib> cpu act 0
grlib> run

3.3 GDB with GRMON and TSIM

To perform source-level debugging with gdb, start TSIM or GRMON with -gdb or enter the ‘gdb’command at
the prompt. Then, attach gdb by giving command ‘tar extended-remote localhost:2222’ to gdb when connect-
ing to GRMON or ‘tar extended-remote localhost:1234’ when connecting to TSIM. Note that RTEMS applica-
tions do not have a user-defined main() function as ordinary C-programs. Instead, put a breakpoint on Init(),
which is the default user-defined start-up function.

jupiter> sparc-rtems-gdb rtems-hello
GNU gdb 6.7.1
Copyright (C) 2007 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-rtems".
(gdb) tar extended-remote localhost:2222
Remote debugging using localhost:2222
(gdb) load
Loading section .text, size 0x164e0 lma 0x40000000
Loading section .jcr, size 0x4 lma 0x400164e0
Loading section .data, size 0xaa8 lma 0x400164e8
Start address 0x40000000, load size 94092
Transfer rate: 57902 bits/sec, 277 bytes/write.
(gdb) break Init
Breakpoint 2 at 0x400011f8: file rtems-hello.c, line 33.
(gdb) run

RCC 1.2.0

AEROFLEX GAISLER

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /opt/rtems-4.10/src/samples/rtems-hello

Breakpoint 2, Init (ignored=0) at rtems-hello.c:33
33 printf("Hello World\n");
(gdb) cont
Continuing.
Hello World
Program exited with code 0363.

The application must be re-loaded with the ‘load’ command before it is possible to re-execute it.

3.4 Using DDD graphical front-end to gdb

DDD is a graphical front-end to gdb, and can be used regardless of target. The DDD graphical debugger is
freely available from http://www.gnu.org/software/ddd. To start DDD with the sparc-rtems-gdb debugger do:

ddd --debugger sparc-rtems-gdb

The required gdb commands to connect to a target can be entered in the command window. See the GDB and
DDD manuals for how to set the default settings. If you have problems with getting DDD to run, run it with --
check-configuration to probe for necessary libraries etc. DDD has many advanced features, see the on-line
manual under the ‘Help’menu.

On windows/cygwin hosts, DDD must be started from an xterm shell. First launch the cygwin X-server by
issuing ‘startx’ in a cygwin shell, and the launch DDD in the newly created xterm shell.

	1 Introduction
	1.1 General
	1.2 Installation on host platform
	1.2.1 Host requirements
	1.2.2 Installing RCC on Windows platforms
	1.2.3 Installing on Linux platforms

	1.3 Contents of /opt/rtems-4.10
	1.4 RCC tools
	1.5 Documentation
	1.6 Support

	2 Using RCC
	2.1 General development flow
	2.2 sparc-rtems-gcc options
	2.3 RTEMS applications
	2.4 Floating-point considerations
	2.5 LEON SPARC V8 instructions
	2.6 Memory organisation
	2.7 Board-support packages (BSPs)
	2.7.1 LEON3 BSP

	2.8 Driver Manager
	2.8.1 Initialization
	2.8.2 Configuration
	2.8.3 Driver configuration
	2.8.4 drvmgr command

	2.9 Network configuration
	2.10 PCI
	2.11 Making boot-proms
	2.12 Simple examples
	2.13 Multiprocessing
	2.13.1 MP testsuite

	3 Execution and debugging
	3.1 TSIM
	3.2 GRMON
	3.3 GDB with GRMON and TSIM
	3.4 Using DDD graphical front-end to gdb

