[\EROFLEX

GAISLER

Aeroflex Gaisler RTEMS driver documentation

Software Drivers for Aeroflex Gaisler RTEMS distribution GR-RTEMS-DRIVER
Version 1.2.11.0
May 2013
Kungsgatan 12 tel +46 31 7758650
411 19 Goteborg fax +46 31 421407
Sweden

www.aeroflex.com/gaisler

http://www.gaisler.com/
http://www.gaisler.com/

Table of Contents

N =

NoubkwNRRRP

N =

-

NourrLWWNNNNMNMODNNRRR
—_

NNNoOUuRWNhR R
=y

N =

_

QU WN R P

Drivers documentation introducCtion.............coooiiiiiiiii i 12
GRLIB AMBA PIUQG & PLaV ... cciuiiiiiiiiieiiie ettt eeie et e et e eateestnesasaneananeasnesnessnssneees 13
| s Y na'eTo U Te] o) s BN PPN 13
AMBA Plug&Play terms and NAmIES......ccuuviiuiiiiiiiiieii et et e teeieesaeaneieeneenes 13
10101 ol =T SO TP 13
(01772 a4 To) T 14
| s N in Eo N 2= Y n o) s D PPN 14
Finding AMBAPP devices by PIUG&PIaY......cccoviiiiiiiiiiiie et 15
AllOCATING 8 AEVICE....uiiiiiiiiii ittt ettt et e e e e e et e et e et e e et eteeaeanaans 16
NAIME AALADASE. . .uieiiiiiii et 16
Frequency Of @ AeVICE......iii ittt ettt e et e e s e e e e e e aneanes 17
D) vy Y E N s Lo 1 o U UPPPPRPPPN 18
| o} e Yo A0 T] i o) o WU PPN 18
Driver manager terms and NaAMIES.........ovuuieinieinieieiieeie e e e e eeieereereeenaeanaeaneerneenaes 18
010 i 4ol ST 18
(0114 Y (SN O 19
BUS GNA DUS ATIVET ... cuiiiniiiiie et enenen 20
Bus specific device information............oooiuiiiiiiii i 22
|0 Y0) A I oy Y= of 22
| D) vaTol Y e by A=) o TP 22
| D 1=} T4 Lo TP 23
D) A=) A T 011 b o T PN 24
| D AT£<Y ol o Y o = Lo FR N 25
(OF0) i To 10 L ir=1 1 (o) s P TP PRSPPIt 25
Available LEON AIiVeIS. . ..ouuiiiiiiiie ettt ettt e e e e e e e e eeennens 27
| oV =Y oY n (o) o DO U PPN 29
LEOIN B B Pttt ettt ettt et et e naaas 29
| Ba) =) o o] PP 29
AdAress tranSIation........oiuiiiii s 30
FUNCHION INEETTACE. ... eeieiieieiie et 31
A AN Y vt Tod SO P 32
| o} e Yo A0 T] i o) o WU PN 32
= 100 o) (TSP 32
| D) AT£<) N o Y o = Lo F N 32
Logical and Path AddreSSIing......ccueviiiiiiiiiiiireiireiie et ei e e e ei e e e e e e s aneanas 32
Zero-Copy implementation.........coiueiii i e 32
RIMAP GRSPW DIV .. cuiiniitiitiiiiiiieieee e ettt e e e e e e e e e e e e eaeeaeeasenenanes 33
B 00 <YYo Y= (Y 33
LUy a1 =)y =Y o] < TN 33
| D Fo Yt Ty 1 o (ol 1 o Y= T 33
Function interface desCription........c.oiiiiiiiiii i 35
SpaceWire NetWork MOdel.........co.iiiiiiiiiiiii e e e e eans 37
| o} e Yo L0] o) o RN 37
L0175 a4) S USSRt 37
REQUITEIMEINTES. .. ettt et et et et et et e e et e s et s et eneaneneanenasasasasaans 37
J\[oTe [a 1oT-T ol] o] 1o) o H U P UUPPRRRt 37
B TSI A oY L= 1 5 38
Read and WIite OPeTation........ccouiiiuiiiiiiiieie e e e e e e e e e aaeanas 38
INterrupt handling......ccoueiiiiii et e e et e et e e e e e e e aans 38
Using the SpaceWire BUsS DIIVET.......cccviiiiiiiiiiiiiiiiii ettt et eae e e eaa e 38

AMBA OVET SPACEWITE. . .uuitiiiiiiiiieee et e e e et e e e e e e e et et s e eaeneaeaanaanens 39

DU WN =

B LW WL
WN =

WN =

_ =
N =

= e e

Wwwww N

WNNDNDNDNNNDNMNNDNNNE - N
WN =

—_
w

Nouvuuvukwihhe
N =

N i = Y S Sy By R GRS RN

RN
anllo
—_

| o oo Yo A0 T o] o) o RN 39

L0 A7 v Lo P PP 39
ReQUITEIMENES. ..ceniiii et e e e et e et e e e e e e et eae s eneanens 39
INterrupt handling......ccoeiiiii et e e e et e e e e aans 39
Memory allocation 0N Target........coceeiiiiiiieiie e e e 39
Differences between on-chip AMBA dAriVerS......ccccoeiiiiiiiiiiiiii e 40
SPARC/LEON PCI DRIVERS.ciiiiiiiiiiiiie et e st e et e et e e et e e s e s et e e e eaeaneeanes 41
INTRODUCTTION.....uutttittiiieetie et e et e et e eete e et e ettneeaaaeatansetansaarnseatnnseennsesnsanseensennees 41
= 100) [T S 41
SOUTCES. . ittt et e e et et et et et e et s et s et e et e e e e et e e e e et ans 41
(0703 biiTo 11 or= 1 (o) s PR PPN 41
L] 20 = 0 PP 42
() 20 2 03 SN 42
N G 1 PPN 42
LT oL cY it Lo TR 43
PCI AQATESS SPACE. . u itiitiiiiiieie ettt e e e e e e et et et et e a e s eaaesnastestastastnstnaanssnarnannns 43
| O I 0} = ot o) PN 43
| O B 25 o o S B TS PPN 44
GR-RASTA-ADCDAC PCITARGET ...ttt et e e e e e et e e eans 45
GR-RASTA-TO PCITARGETcitiiiiiieeee ettt e et e e et e et e et e e et e e e aa e e ees 46
GR-RASTA-TMTC PCI TARGETcottiiiiieeiiie ettt ettt e e e et e et e et e e e e et e e e eans 47
GR-RASTA-SPW ROUTER PCI TARGETouiiiiiiiiieeiieeee et et e e e e e e aees 48
GR-CPCI-LEON4-N2X PCI Peripheral.........ccccuiiiiiieiiie e eae e 49
D) vy ol =T0 1] 1 = 1 0) o DU 49
Driver resource configuration........c.c.eiiiiiiiiiiiii e 49
Gaisler SPaceWIre (GRSPW) . ..ottt e e e aeaas 50
| B oo Te L ol [) o HE PPN 50
SOTEWATE AIIVET ... ieiieiiii et ettt e e e e e e e e e e renenans 50
b =N 10) 0] =TS U TP 50
RV 0 010 o PP 50
LU i a1 cY = Lo = T PP P PP PPNt 50
D] kvl =T o] 1 = L 0) o DT 50
Driver resource COnfiguration........coiuviiiiiiiiiiiiiiiii et e 51
Custom DMA area ParamlelerS.t e et e et e e e e eeete et et st eaeaaananas 51
OPENING the AEVICE.....uiiiiiiiiii et et e e e e e e s e e s aaeaneanns 51
ClOSING the GEVICE....iu it et e e e et e e et e e e e aaeanns 52
| F{@ N 703 a1n o] BhH a1 =) it Lol - VPPN 52
Data STIUCEULES. ... ittt ettt et s e e e et et e e e e e e e e ans 53
(0703 b T 1V o= 1 (o) s F PR 56
B =N 03008 1T 10) TP 63
| 2 U=T 1] o) o] o WSS 64
RECEIVET EXAIMPLE. ... e ittt e e e e e e et et et et et e e aaeaanaans 65
SpaceWire ROUTER.......oiii et e e et e et et e e e e e aans 66
| Bia Lm0 Yo LU Fo] o) s RPNt 66
SpaceWire Router register dTiVer......ccouiiiiiiii e 66
ANLY DS VAN oTo) o oy A7 =Y P 66
SpaceWire ROUTER RegiSter DIIVeT......ccuiiiiiiiiiiiii et e e eeaas 67
oL oo Yo L o] o) s WP 67
USET INEEITACE. . ..t iiiiiiii ettt et e e et e et s e et s e et e et e e s et eansaaeensaanen 67
| D] kv ol A =To 1] 1 = 1 0) o DU PPN 67
Driver resource Configuration........c.c.oeiiiiiiiiiiiiiii e 67

OPENING the AEVICE.....uiiniiiieii e e e et e et e e e e e e e e e e e enenns 67

I e S g e T s S gy
oo orororor o O1 01 O O
NNDNMNNNDNDNDDNDDNDNDDNDNDDNDDND
bbbhthabnbnnoe

PR PRP OO WN -

N = O

=
oo
[

—_
~
N

RO NOURWN R

o

e T e e S B o T Tl e S e g e
SN NNN NN NN NN NN N SNN NN NN NN N NN
NNDNDNNNDNNNNMNNNDNMNDDNMNNNDNDNDNMNDNNDNDNDNDDNDNDNDNDDNDNDDNDDNDDND

MV VDMNNDNNDNRRrRRrRRRRRRR

NRRRRRR,R,R,RROONOUTD WN -

QUOVOONOUIWNRFO

ClOSING the GEVICE....iuiiiiiiiii ettt e e e et e et e et e et e et e st e aesaeanaanns 68

| F{@ I OF0) s 1n o] BhH a1 = it Lol =Y 68
5 A AV O PPN 70
(O 2) PR 71
O 2 C) 2 PP 72
ROUTES SET ...ttt et e e et e e et e et e ett s e et s e et s eaanseataseanneansanneensaes 72
ROUTES GET ..ottt ittt et e e e e et e et e et e e etesaaaa e e eaneaaseseaansaennseesnaarnnsesannes 72
LS T T o OO OPPPRN 72
oS T) S 73
R S) A SOOI 73
o) 2 S 73
(O S I T) S S PPN 74
CEGSTS GET ..ttt ettt e et e e e et e e e et e e et e e e e e e e e eanaes 74
B O) P 74
GRI1553B DRIVER. ...ttt ettt e e ettt e e et e e et e e et e e e e eaaeeens 75
LA 2O) B U O L) N 75
GRID53B HaIAWAT €. ..uuiiiiiiiiiie et e et e te e te et e et e et e et e et e et e sanseaneeensaneaaanesnaenannns 75
SOTEWATE DIIVET . cuuiiiiiiiiie ettt et e e e e e e et e et e aa e e e eaneaaneaaneenens 75
D] kv ol 2 UeTe 1 551 o= 1 0) o DO PPN 75
GR1553B REMOTE TERMINAL DRIVER.......iiiiiiiiiiiiiiie ettt 76
LA 20 U O 1 N U 76
GR1553B Remote Terminal HAardWare.........ccceiiueiiiiiiieiieeiie e eei e e e e 76
|5 =N 100 L= S 76
LYl o L =Y = Y o D 76
OV BIVIEW ..ttt ettt ettt et ettt et e et e e et et et et et s e an s et s et s et s etaetn et esnanneneanens 76
AcCesSING @N RT AEVICE.....iiniiiiiii it e et e et e et e e r e et e ea e e e e ans 77
Introduction to the RT MEmMOTY QTEaS......ccueiuueiineiineiieeieeieeieeeieeeieeeieeeieereereeneeneanaes 77
SUD AdAress Table.....cuuiiiiieiiee e e et e e e e e e e e e e aas 78
D= o i} 0] o) TR 78
Data BUI OIS ...iiiiiiii ettt e e e e e e e e 79
R TZ<3 oL oY fo 11 4 o FR PP TP PPP 79
B e R c) o o] Y=Y ot Ta T o] YU PPN 79
INAICATION SETVICE. . cuuiiiiiiiii it e e et et et e et s et e et s et e et e et eaaeeanannanns 80
J\Y (oo Lo @00 LoTES1 1 o] o o) it HUN T UUPSPRRRt 80
2 I ' 1 TP 80
Application Programming INterface.........ccouiiiiiiiiiiii e, 80
Data STIUCEUTES. ...ciiie et e et e e e e e e e a e e e ens 82
o a1 103 a o] o 1<) s H PP PP PP PI PRSPt 84
Lo 1l o151 o vl o] 1o 1] - TP 84
OTLO03TE CONIIG .ivniiiiii ittt e e et et e aae e e e e e e e s e esnaannes 84
Lo 1ol TS 13 4 L] < 1 o APPSO PPPI 84
Lo 1l I TS 13 o 1 70) TSPt 85
OTLOD3TE STATUS oeuiiiiii ittt et ettt e e e e e e e e e eans 85
o pal ST 153 o vl o T (o= 1 (o) o HN PR 85
gT1053TE EVIOQ TEAM...ccuuiiii ittt e e e et e a et e e ees 85
gT1553TE SEE VECWOToiiiiiiiiiie et e et et e et e e e e e e e e eenaenns 85
gT1053TE SEE DUSSES .oiiuiiiiiiiiii et e e 85
OT15D3TE SA SELOPLS Luuiiniiiiieii ettt ettt e e e e 85
(o1 B 1o 1C T o vl 11 AT PO 86
grl553rt 5@ SChEAULE ..covueii e 86
o a1 163 a il 1o =) o ST TP TP P PP PR PRPPPRt 86
OTLOD3TE ITQ INIC «eenniiiiiiiei ettt et e e e e et e et e et e et e et e eaeebeeneenaanns 86
o a1 103 il o T TP UT PO PO PPNt 86
(o1 B 1o 1C 3 vl 1S3 Al 1 L PSP PPPN 87
gT1503TE DA NI couniii it e et e aa e 87

gr1553Tt DA UPAALE....iiiiiiiiiiiiie e e eas 87

—_
@
N

vk wiF

= R R R R R R e R R R e e R e e
NINDNDNDNDNMNDNDNDNDDNDNDDNDDNDNDDND NN

© 00000 00 000000 9 0000 00 0o
N e N N bl
OO UIkWN -

—_

[REY
Lo

—_
WWWWWWWWWWWWWWWWWNNNNNNNNNNNNNRFRRFR P

W~

N e
PR OONOUTAWN R

O e T e e B e Y e B T o T T G S gy Sy WY
LLLLOO OO0 o0o0o0oLL
LRI URWNF

- O

NO O WN -

GR1553B BUS MONITOR DRIVER........ccovviiiiiiiiiiiiiiiiiciiici e 88

LA 20 1 O 1 (0 1 88
GR1553B Remote Terminal HardWare............cviiuriiiiriiinieiineiineeiieeenieeeiieesnnneennneenns 88
b =N 101 0] L= S 88
LT ol B a1 Y = o =TSP 88
OV BIVIEW ..ttt ettt ettt et ettt et e et et et et et e tn e e an s et s et s et s et et et esnannansenens 88
AcCCESSING @ BM AEVICE...cuuiiiiiiiiii it e e e e e e e e e e e ans 89
|21 I Yo g 110 1= 01010) PR 89
Accessing the BM LOg MEIMOTTY.....ciiuiiiiiieiireieiieeieeieeieeieei et et eeineennereeansansansans 89
01 T U P PPN 90
T LY o T o PP 90
| Ba N c) o1 Y=Y oA T o] YU TPPN 90
Application Programming INterface........ccoouiiiiiiiiiiiiii e 90
Data STIUCEULES. ... eieiii ettt et e e e e et et e e e e e e e e e ans 91
Lo pall ST 157 o)1 o) 1<) o FO PP 94
Lo a1 101 o)1 od (011 TP P PPNt 94
gT1053DIMN CONTIG..ciuuiiiiiiii et et e et e e e e 94
Lo Bl ST 101 o)1 =] -) o PRSP PPRP 94
(o1 B 1o 161 0310 K] 7o) o TSN PP PR 95
(o pall ST 107 o) o' T w1 ' L YT 95
grl553bm available. ... e 95
Lo pall 1515151 o) ' T 'Y= Lo HO PPN 95
GR1553B Bus Controller DRIVER........ciiiuiiiiiiiiiiieiii ettt e e e ei e e e eans 96
INTRODUCTTIONttt ettt ettt et e ettt e e e et e e e eta e e e eennaeeeeannaeeaaaaenneaenaeens 96
GR1553B Bus Controller HardWare...........covuviiiiiiiieiiineiie et eeieeeiieeenneeneaneenns 96
R T0) AT R =T B T Y 96
b =1 10) 0] =TSP 97
BC Device Handling.....occuuiiiiiiiiieie e e e et et e et e e e e e e e ene e e e e e enenns 97
DEVICE AP .ot e e e et et et et et et et et e e ans 97
Data STIUCTUTES. ...uiiiiii ettt et et e et et e et et e et e ea e e ean e e ans 98
Lo p a1 101 o Toli 0] 1<) o HOUN PRI UPRPI 98
(o1 B 1o 16] o Yol o] (o -] TN PPN 99
Lo AT 10T o Lol) -) o PSP PPPPPPRPRNt 99
(o1 RS TS 1C] o Yol o T 11 -] T O 99
OTL1503DC TESUIMIE....ciuiiiiii ittt e et e et e et e et e et s et e et e et eeanseensanneannannns 99
(o1 B TS 16 T o Yol =1 o) o TSP 99
o palIST157 o Yol 1o ko1 w10) o HON PR 99
OTL003DC STATUS. c.uiiiii ittt et et e e et e e e e e e e e et aans 99
(o p a1 101 o Lol =: < Pl o o PO PR 99
OT1503DC ITg SETUD...uiiiiiiiiiiiii ettt et et et e et e et e et e et e ea e e e een 100
Descriptor List Handling........ooeuueiiiiiiiiie e e e e e e e e ees 100
L0 A=) a7 Lo PR 100
Example: steps for creating @ LiSt.......coovuiiiiiiiiii e 101
Y Y (o) ol =1 o L= TP PPN 102
1Y N L0) b o= 1010 L PPN 102
S (o1 AU B 1Y Y03 i} 0] o) o) F TPt 102
Changing a scheduled BC list (during BC-runtime)...........cccoeuviiiiiiniiiniiieieeieeenne 103
CUSEOM MEIMOTY SEEUD. ...ttt et et e e e e e e e e aae e e enn s 103
INterrupt handling.......oceiiiii e et e e e e et e e e e 104
] P = PSPPSR 105
Data STIUCEUTLES. . .iieiii ittt et et e e e e e e e e b et eneanees 107
gT1553DC LISt AIlOC tuuniiiiiiii it ea s 108
o p BT 16T o Yol S Al i T TSP 109
(op S TST6T o TRl §) Wl o0} a Vi (o PR PPN 109
gr1553Dbc list link Major.....c.viuniiiiiiiiiiii e 109
o p ST T6T o TRl § 5y Wl T=1 Al ' = 1 [) TR PPR RPN 109

grl553bc minor table SiZe........co.iiiiiiiiii e 109

e N e T o T S S gy Sy SR SIEY
LCOLLLOLOOLLLOLOLOOLLOLLLLLOLOO
NNNNNNNNNRRRRRRRRRERO®

S ©COOOOOOOOOOOOOOOOOOO VO
OO UPWNFROOLONOOUIRWNEO

CECEN
e

NNONNNNNNNNNNNNNNNNNNNONNONNNNNNNRR R R
B WN =

_

—_

PP OO U WN -

NINNNDNNDNNNMNNNNNNNDNNNDNNNNNDNNDNDN
— O

= 0000000000000 000000000000O0

A LR L L EE P g

grl1553DbC list table SIZ@.....cc.iiiiiiiiiiiiiiiii i 109

gr1553Dbc list table QllOC......ccouuiiiiiiiiiiiii e 110
gr1553Dbc list table fTee.....cccuciiiiiiiii e 110
gr1553bc list table DUild.......coooiuiiiiiiiiiii e 110
gr1553bc mMajor alloC SKEL........iiiiuiiiiiiiiiiie e 110
grl1553DC list freetime. .uuiiien it 110
gT1553DC SIOL @lIOC. ...ttt e e 110
gT1553DC SIOt fT@E...uiiiiiiiiieiiie ettt e e et e et e e e 110
gr1553bc mid from Dd.......coooiiiiiiiiii e 110
o ST 16 1 o Yol 1 o) Al 1o PR OPTPRN 111
(oAl IST107 o Yol 1 (o) vl o 0} Y o - o TSP 111
gr1553Dbc Slot irg eNable.....c..ciiiiiiiiiii e 111
gr1553bc slot irg diSable.......couiieiiiiiiie e 111
gT1553DC SIOL JUMID ...ttt e e e e e e 111
(o p Al IST151 o Yol =1 (o) vl =) < 1 1 o T PO 111
gr1553DC SIOt ITaNSTET....iiiiiiii e 111
gr1553DC SIOt AUIMIMY....oiuniiiiiiii et et e e et e e e e 112
(o p Al ST 107 o Tl 1 (o) vl =) 001 o] 728 P 112
gr1553DC SIOt UPAATE...uuiiiiiiiiiiiii e 112
(o p ST 101 o Yol =1 Lo vl o= PPN 113
gT1553DC ShOW LiSt..uuiiiiiiiiiiii ettt eas 113
Gaisler B1553BRM DRIVER (BRM).....ccuuiiiiiiiiiiiiiiiieceie et etee e eee e et s e e sae e ees 114
INTRODUCTION.utttitititetie et e ettt e et e et s e et s et s ettaseeaneetnnsasnnsentnsasnsansesneennes 114
L2 UG 5 N0 A) N 114
SOTEWATE DIIVET ...ttt e et e e e e e et s e et e e ebneeeaseaaseesneeanneanns 114
SUPPOTEEA OS ...ttt e e e e et et et e e e e e eaeaanas 114
b =N 101 0] =TS PPN 114
LTS o) =Y ot Lo YN 114
[D) kvl = To 1] 1< 1 A0) o DN 115
Driver resource configuration............ceiueiiiiiiiiii e 115
Custom DMA area Paramleler.......ccu.iiiiiiiiiiei et e e e e e e e e e e e e e es 115
OPENING the AEVICE.....uiiiiiiiiie et e e e e e et et e e eaeanaan 115
ClOSING the QEVICE...ciuiiiiii it e et et e et e et e et e eae e e e eanees 116
| F{O I O70) akn o] BN a1 7C) o - Lol - TP 116
Data STIUCEULES. . .iiiiii et e et et e e e e e et e et e e e e e e aaaaneanen 116
(070} T 10 Eir=1 1 (o) s F U 120
IS A LY 0) B) 121
IS = B = 1 U 1 P 121
oY o LY ST 1 TS 121
IS o N 2N AV B) B) & S 122
1 2Y LY Y N A N B TS RPRRN 122
123 Y) A A 2T O PPN 122
12) 2L . G =) 10 103 PR 122
L33 Y I 2 G) 10 1 O RN 122
BRM CLR STATUS ..ottt ettt ettt e e et e e ettt e e e eea e e e eesaneeeeennaeaanaaennaannnns 122
53 Y)) A 17N L TN 122
BRM SET EVENTID....ciiiiiiiiiiiiiiiiie ettt et et eetieeees e et e eainseatasans et sanseansansennes 122
Remote Terminal Operation.........coouiuiiiiiiiiii e 123
Bus Controller OPeTration.........ccuu i e e e et e et e e e e e ans 123
Bus Monitor OPeration.......ouieiii e 124
Gaisler B1553RT DRIVER (RT)..uuiiiuiiiiiiiiiiiiiieeiineeiieeeiieeeiieeeiineenneeensansennsansannesnsees 125
INTRODUCTION. ...uuiiteiiii ettt e et e et e et e e e te e et e e st e e saaeesstesstnesataestnasnessesnnns 125
| 3 =Y 40 AT 1 T OO 125
b =N 10 0] =SS 125
UL b a1 cY it Lo = T PPN 125
[D] kvl =T o 1] 1= L A0) o D PPN 125

Driver resource CoOnfiguration........ccocuviiiiiiiiiiiiiiiiiir e 125

-

_

NNNNNNDNNNNNNNNDN
OO Uk WN ~

o 0 80 b 10 o 80 R B 1o 9 80 B B B
NoOLoDOoDRB LU RWN

N R e e

NN DN
NN

—_

_ e e e e e e e e e
N =

NNDNDNDNDNDDNNDN
® NNNNNNNNN
Lo oo

NECEN
W w

NNNNNNNNNNRFPRRR R R
G WN -

NNNDNMNDNNDNDNNDDNDDNDDNDDNDDN
LR R RN SFNFNFNRERERERIROx
Qoo oo
N =

RN
ol

NNNMNNNRPRPRRPRRFR R

RN SR

CICECECE O CECEN)
il el ol ol
U Wi e

N

Custom DMA area Paramleler.......c.iuiiiiiiiiiiie et e e et e et e e e e eeneaenans 126
OPENINgG the AEVICE......ciiuiiiieie e et e e e e e e e e e ee e e anes 126
ClOSING the AEVICE....cuiiiiii e e e e e et e et e et e et e e e e e e eaneas 127
I/O Control INEETTACE.cve it 127
Data STIUCEULES. ... iieiii ittt et et e e e s e e e e e et ensaneen 127
(070 T 10 or= 1 (o) s F RS 129
RT SET ADDR...ciiiiiiiiiiii ettt ettt e et e et te e et e eeta e e et seansanasnsansesnsansesneaneennns 129
| S] 4 A = 1O RO RPTPRN 129
RT SET VECTORW. ...ttt ettt e et e e ete e et e et e eaaneeetasernnsastnsananaesnsensesnees 129
RT RX BLOGCK iiiieitiiiiiiieeiiteeie e et ettt e ettseatiesasensaasnsessnaersnsannnstnessnsenessnsensrsneennes 130
RT SET EXTIMDATA. ..ottt ettt e e e et e et e et e e et s et e aataeeeeneenasanernasanannnns 130
RT CLR ST AT US . ittt ittt e et e et e et e e et e e et e et s aaansasns st sanstansensenneaneannns 130
| I] o A o N L U T PR 130
RT SET EVENTID....ciiuiiiiiiiiiiiii e etiee e eieeete e et s eeiee s st eesansesansassnesssnnsennnsernessnns 130
Remote Terminal Operation. ..o e 130
CAN DRIVER INTERFACE (GRCAN)....uttttititiee it etiee et e eete e et e eeneesneaneaaneanesanaanees 132
LY a1 cY it Lo TSN 132
DIiver TegiStTation......oivuiiiiiii it a e 132
Driver resource configuration............ceiuiiiiiiiiiiii e 132
Custom DMA area ParamelerS. ..o it eee e e e e e e e e e aaene e aaaaes 132
OPENING the AEVICE.....uiiiiiiiiii e e e e e e e e e e e e e anas 132
ClOSING the QEVICE...ceuiiiiii i et e e e e et e et e et e et e et e et e e e e e eanaen 133
I/O Control INEETTACE.uiiiiiiii et e et e e e e e e e eane e 133
Data STIUCTUTES. ... ittt et et et e e et e et e e e ea et e eneanan 133
(OF0) T 10 =1 1 (o) s F RS 136
= T aTsd a0] L) o HO PP 140
| CT o =Y o1 (o) o HE PN 141
Gaisler Opencores CAN driver (OC CAN)....uvi ittt ettt e e e 142
INTRODUCTTION. ..cuuittiitiiieeetieeetieeeie e et e et eeeteeeetaasttanseetnsessnsersnsasnnsensseesnsenessneenes 142
CAN HaATAWATE. . ..uuiiinieiiieeiie ettt et et e et e et e e et e e et e eaanseataseasneetanseennseasnseansannns 142
SOTEWATE DIIVETttt et e et e et et s et e et e et et e et e aaeeaasasneanaen 142
R0 0] 00) a7 =To B 1 TS 142
< 100 o) L= SN 142
RV 0] 010 o PP 142
LY a1 cY it L] TP 142
[D) kvl = To 1] 1< 1 A0) o DN 143
Driver resource configuration........c.c.cviiiiiiiiiiiiii e 143
OPENING the AEVICE...c.uiiiiiiiiii et tee e e e e e e eaneen 143
ClOSING the QEVICE...ceuiiiiiiiiiiei et e e e e et e e e et e et e et e et e en e e e eanaen 143
I/O Control INtEI aCe.iivniiiii et e e e e e ees 144
Data STIUCTUTES. ... ittt et et e e e e et et e e e ea e e e eneanan 144
(0703 T 11 or= 1 (o) s PPN 147
=T aTsd a0 E] L) o HO PP 150
| 2 T=T 1=} o) o) o WSS 150
Gaisler SatCAN FPGA driver (SAtCAN).....ccu i 152
INTRODUCTION...ceuiiiitiet ettt ettt et e e e e e et e et e et e et e eaeee s e aenaaenaessneenesneaneen 152
SAtCAN HardWare WA DT eiueiieiieeiieeiiee e eieeteeteete st e et e st e et esaesanesnaesnneanns 152
R T0) AT = B ST B) T Y PN 152
R0 0] 0 0) a7 =To B 1 TR 152
€= 0011 o) (=Y SO USRS 152
RV 0] 010 o PP 152
LU= ol L e = Lo T U OO PRS 152
[D) kvl = To 1] 1 i< 1 A0) o DN 152
OPENING the AEVICE.....uiiiiiiiiie e e e e ee e e e e e e e ea e enaas 154
ClOSING the QEVICE...ccuiiiiiiiiii et e e et s et s et s et s e e e e e e anees 154

Reading from the deviCe...........oii i 154

NN
oo e

—_

O WN -

NMNNNNN R R R

CENECECECECENENEN
NSRRI

S GO NGGGa

N CEN)
oo
W

NNDNNNDNNNNNDNDNNDN

29PRNRIRIRRIDS
NNNNNDNDNNNNNNNNEFE P =

RRimoNOU R WN R

)
o

Nouukswie

NNDNDNDDN

00 00 o Co Co Co 0o ¢
NNNNNN ==
WwN - N =

WIIting t0 the AeVICE....ccuuiiiiiiii ettt e et e et e e s e e eens 155

I/O Control iNterfacCe. ... ccuniieiiieie e et e e e e e e e ees 156
Data STIUCEULES. . .iieii ittt et e e e e e e e e b et eneanas 156
(070 b T 10 or= 1 (o) s FE NS 157
Gaisler CAN MUX driver (CAN MUX) . ..ciiiuieiiieeiiieetieeeiineeiieeeenneesinesssnneennnessnssnnses 162
INTRODUCTION. ..c.utttitttitetie et et et e et e et s e et e et s eetasetaaeetansasnnsensnsesneansesneenss 162
CAN MUX HAIAWATE. ... iiuiiiiiiniiieiieti ettt e tieetieetie et setaeetnsttnsttnstansetatnstnstnsrnennennens 162
SOTEWATE DIIVET ...ttt et e e et e e et s e et e e et e eaaseaaneeesnseanneanns 162
RV o) oTo) ot =Te B @ 1S T PPNt 162
b =N 1 0] 0] =TSP PEN 162
RV 0] 010 o WP 162
LT a1 =Y o = Yo PPN 162
D) g7 o = T0] 1= L 0) D PPN 162
OPENING the AEVICE.. ...ttt et e e e et et e e e eanees 162
ClOSING the QEVICE...ceuiiiiii it e e e e e e et e et e et e et e et e en e e e eanaes 163
I/O Control INteIface. . .oivniiiii et e e e e ees 163
(070 i T 11 or= 1 (o) s SN 163
GaiSIeT ASCS (GRASCS) .ciuiiiiiiiiii ettt e e e e e et e et e e et e e et e areneeannaaannns 165
s Lm0 Yo L o] o) s VAR 165
SOTEWATE ATIVET .. .ttt e et e et e et e et et e et e e e e eaeen e e eaneaaeneenaes 165
b <= 101 0] L= SN 165
1 0 1) i PRSPPI 165
USET INEEITACE. . .uiiiiiii e e et et e et et e et et e e s et e e e e aaneannas 165
F S O T 1 167
ASCS INPUE SELECE...eituiiiei ittt e e e e e e e e e e e e e e aanas 167
ASCS BET SELECT. ettt 168
ASCS SEAT T ettt e a e eaa 168
A S S SOttt ittt ettt et et et e e e e e e 168
F N O b = Yo Y] < 1 J PSP P 168
F] O T N O Y o Lo B OO PP PR 169
ASCS TC Send DIOCK. ...ttt et et e e e 169
ASCS TC SYNC SEATT..ceuniiiiii ittt et et e e e e e e e eaeeneen 169
ASCS TC SYIIC SEOP . tuuiiuiiiiiiiiii ettt e et et et e et e eeeaae e e s e e e eananaaneanes 171
ASCS TIM TV tunititiieii ettt et ettt et e et e et s et e et e et e et e et e aaneaueaneaneesansaneanees 171
TN 02 T N\ B o= T o) Lo Yol : SN 171
|0 =N 0 0] 0] LI o o Yo 1Y PPN 172
RAW UART DRIVER INTERFACE (APBUART)....couiiiiiiiiie e 173
UL b a1 cY = Lo = T PPN 173
D) g7 o 4 = To 1] 1= 1 0) DT PT TP 173
Driver resource CoOnfiguration.......ccoouviieiiiiiiiiiiiiii et 173
OPeNINgG the AEVICE.....uiiiniii e e et e e e e e e e e e e en e anes 173
ClOSING the QEVICE...ceuiiiiiiiii ettt e et e et e et e et e et e e e e e e aanaes 174
| F{@ 70 a1 n o] BBH a1 = it Lo] =Y 174
(0703 b T 11 or= 1 (o) s PPN 174
B = T aTSd] L) o FO P 177
| =T 1=} o) o) o WSS 177
Gaisler SPICTRL SPI DRIVER (SPICTRL)......cttttiiiiiieiiineiieeeie et ei e e eanes 179
INTRODUCTTION ...ttt ettt ettt e e et e e e et e e e eta e e eeenaaeeeeanaaeaeneanneeannaes 179
S = B 3 oY 40 A< 1 TP TPUPPR 179
0= 0011 o) (=Y SO PSP 179
USET INEEITACE. ...t iitieiiii ettt e e et s e e e et e e et e s et s et et s e eaneaneaaneannns 179
I D] kv a4 =T o 1] 1= 1 0) o DRSPS 179
ACCESSING the SPI DUS....ciuiiiiiii e e e e e e eae 179
Extensions to the standard RTEMS interface........cccooevvvviiiniiiiiiiiiiiiiniiinicieeieenn 180

PERIOD _START ..ottt ettt eaai e 181

w
N
[\

WL W W W W W W WwW

W NRORPRNRNRORNNRN
CECECECECECECE SRR
OO Uk WN R
W

W w W
W w

NNNNRFR PP REPR R

W~

WWWLWWWwWW
[EY

L@ N TS 181
Sl 7N L TSP 182
PERIOD WRITE ... ittt ettt e et e et e et et e et e eae et e e e eaneennas 182
PERIOD READ... .ttt ettt e et e et e et e e ete e et e aaanseataseanneasnnsaesnsasnsansesnsansennns 183
Gaisler i2C Master DRIVER (I2CMST) ...ttt ettt eei s eeie e e e ees 184
INTRODUCTION. ..ctuittiitiiieeiieeetieeeie e et e et eeeteeeetasetansattneessnarsnsarnneensnessnernessnennes 184
T2C HaATAWAT iiiiiiiieeiieetie et e et et e et e e etn e et s etanseetnseatanseennsessnseasnseasnnsrennsarsnnns 184
= B0 o) L= SN 184
LOLSTC) a1 =Y = Yo T PPN 184
Driver TegiStTation......ciiuiiieiie et a e 184
AcCeSSING the I2C DUS.....iiiiii e e a e e e 184
(€ (O 2 1 o) = 72PN 186
INTRODUCTION. ..ctuittitiiitiiieeetieeeie e et e et e eateeeetasetaneettneeesnassnesarnnsensnessnsrnessnennnes 186
€= 00101) (=SSN 186
DIIVET INEETTACE. .. .ttt e e e e e e e et e et e e e e e e e anean 186
LTS a1 cY it Lo TSN 186
AcCCeSSING @ GPIO POTt..uiiiiiiiiii e e e e et e e e e e e e e e eae e eanaes 186
Interrupt handler registration.........ccooue i 187
Data STIUCTUTES. ... ittt ettt et et e e e e e et e e e e e eneanan 187
Function prototype desCription.......cccuoviuiiiiiiiiiiiie e 188
GPIO Library fUnCEIONS.oiii it e et e et e e e e e e e e enens 188
Gaisler GPIO DRIVER (GRGPIO)....ccuuiiiiiiiiiiiiiiiieiieeeie et et eei et e et e eni e eaa e e eens 190
INTRODUCTION.. ettt ittt ettt e e e e e e e e et e ea e aaeeeeeaeanaenaenaessnasnasneaneen 190
GPIO HATAWATE. ... iiinieiiieiiie ettt e etie et e et e et e e et e eetaseeansetteseasnseasnnseennsennnsesnsannns 190
0= 0011 o) (=Y SO PSRN 190
LOLSTC) a1 =Y = Yo TP PRPRN 190
D] vy ol 4 =T o 1] 1= 10) o DRSPS 190
Driver resource configuration............ooouiiiiiiiiiiiii e 190
ACCESSING GPIO POTES..cuuiiiiiiiiiii ettt e e e e e ete et et et et e e eanaananns 191
Gaisler ADC/DAC DRIVER (GRADCDACQC)......cittuiiiiieieieeeieeeiieeeieeenineesieaenessnennnees 193
INTRODUCTTION. ..ccutttittiie ettt tie et e et e et e ettaseetasetansettnsessneatnnsaennsensnsesnsensesneenses 193
ADC/DAC HATAWAT ... euuiiineiieiieeieeie et et e e et et et et et eetneatnsatnsetnsetnetrnseansansensrnees 193
b =N 1 0] 0] =TS PPN 193
LTS a1 cY it L] TP 193
[D) kvl = To 1] 1 i< 1 A0) o DN 193
Driver resource configuration........c.c..viuiiiiiiiiiiiii e 193
ACCESSING ADC/DAC. ... ittt et e et et e et e e e e e e e e e ae et e e anean 194
Interrupt handler registration.........cccooueiiiiiii e 194
Data STIUCEULES. ... iieiii et e et e e e e et s e s e e e et eneanes 195
Function prototype deSCription.......cccuiiuiiiiiiie e e ee e 197
General ADC/DAC fUNCEIONS. ...ttt et e e ae e e e e e e e e aaneaaneeans 197
Status interpretation help function.............cooiiiiiiii e 199
TN D TG i1 2 Lo n o) o - FS PN 200
DAC fUNCEIOMIS ettt et et et e e et et e e et e e eaeeaeresenaneas 201
GaiSler TC ATV (GRTIC) ... u ettt e et enenens 202
INTRODUCTTION. ..c.utttittiiieetie et e e et et e et e et s e et s et settasetaneatansetnnsensnsesnsansesneenses 202
B O 5 = oo A= T ol TSN 202
SOTEWATE DIIVET ...ttt ettt e e ete e et s e et e e et e eeaseeanseesneeanneanns 202
GRTC OVET SPACEWITE. .. iniiiiiiiiiieiie et et e e e et et e et et e e et e e et saeaesneaasnes 202
RV 0] 010 o PP 202
LU= ol L =) = Lo T U OO 202
[D) kvl = To 1] 1 i< 1 A0) o DN 203
OPENING the AEVICE.....uiiiiiiiiie e e e e ee e e e e e e e ea e enaas 203

ClOSING the QEVICE...ccuiiiiiiiiii it e et e s et s et s et e e e e e e e aneas 203

N =

WWWWwwww

NNNDNDDNDNDN

NERG RS RINFNNN
=

w

Wi R
_

WWWWWWWWWwWwwwww
QY SN S N N SO N N SO N O
N =

CECECECECN N O SRSy e,

LI N NI NJIVE e

r

| WL I 070} a1 m o) BN o <Y ot o7 T 203

Data STIUCTUTES. ... ittt et e e e et e e e e ea e e e aaeanan 204
(070} T 10 E =1 (o) s PSP 208
(O] 072 =1 h o o o Lo Yo LTS 213
DIivVer frame POO0IS.t a e 213
Reception in FRAME MOE.......ciiuiiiiiiiiii et e e e e e ans 214
Reception using RAW MOGAE.....c..iiiiiiiiiiiieiiei e e e ans 214
Gaisler TM driver (GRTM).. ...ttt e e e e e e e e e e e e e eaens 215
INTRODUCTION. ...uuittietiiieeiieeeteeeete ettt e et e e et e eeteesetaneestnaessnsetnnsasnnsensnessnsrnessnennnns 215
TIM HATAWATE...ceeueiiitiiieeiieeiieeetie e et e etteeetae et settnseasnseasnnsrennsersnsersnnsernnseensssnesnsees 215
SOTEWATE DIIVETttt e e et e et e et e et s et e et e et e et e e e eaeeaneasneenaen 215
GRTM OVET SPACEWITE. .. euiiiiiiiie ittt e e e e et e e e e et e aeeneeene e enaes 215
1 0 1) i PSP 215
U S) al a L cY = Lo = T PP PPN 215
D) g7 o 4 = To 1] 1= 1 0) DTN 216
OPENING the AEVICE.. ...ttt et e e e e e e ae e e e e aneen 216
ClOSING the AEVICE....cuiiiiiiieiie et e e e e e et e et e et e et e et e e e e e eaneen 217
| F{O 07030 1n o] Bhh a1 =) it Lo] - TP 217
Data STIUCTUTES. ...iniii ettt et et e e e et e et e e e ea e e e aaeanan 217
(0703 T 11 o= 1 (o) s PPN 222
B N E 000 E1] o) o W 226
GRCTM DRIVER. ...ttt et e ettt e e e e et e e st e e et e e st e eatneestaeatnaernnaraenns 227
INTRODUCTTION. ..c.utttittititetie et e et et e et e et s e et e etansettaseaaneatansasnnsensnsesnsansesnennss 227
|0 001 o) (=Y T USRS 227
LTS ol B 0 LY it o TP PPN 227
L A7 v Lo PPNt 227
AccesSING the GRCTIM COTE......ciuniiieiiieeiieeiiee e e e e e e e e e e st e et e e aaneannas 227
LB oL c) o a0l T oA T o] - S 228
Application Programming INterface.........cccoiiiiiiiiiiiiii e 228
Data STIUCEULES.ceeiie ettt e et et ea e e e e e e eaeeneenees 230
SPWCUC DRIVER. ...ttt ittt e et e e eas e et s aaa e e aaaesaaansasneansasneansarneaneanns 231
INTRODUCTTION. ..ctuttiititit et etie et e et e et e ettaseetisetanseesnsetsneatnnsesnnsensnsesnsensesneenses 231
< 100 o) L= SN 231
LT ol B 0L Y it o TP RPN 231
L0 A=) a7 Lo PP 231
AccesSing the SPWCTUC COTE......uiiuuiiiiiieieeeee e e et ee e e e tee e e e e e e e eaeeneannas 231
INEETTUDE SEIVICE. .. initiiiii et e e e e e e e e e e et e e s s s s sasaens 232
Application Programming Interface.......c.c.covviiiiiiiiiiiiniini e 232
Data STIUCTUTES. ... ittt et e e et e e et e e et e ea e e e eneanan 234
Gaisler Packetwire RX driver (GRPWRX).....cooiiiiiiiiiiiiiiiiieeeeee et 237
INTRODUCTION. ...tuiiiieiie et e et e e et e e e e e e te e et e e et e e st esstnesstneeatnestnesnasaneannns 237
SOTEWATE DIIVET ... ittt e e et e et e et s et e et e et e et e eaeeaeeaneasneanaen 237
R0 0] 01) i RSOSSN 237
LY a1 cY it L] = TP 237
I D) vy ol 4 =T o 1] 1= 1 0) o DRSPS 237
OPENINgG the AEVICE.....uiiiniii i e e et e e e e e e e e e e ea e eanaen 237
ClOSING the GEVICE....cuiiiiiiiii et e e et e et e et e et e st e st e e e e e eanaes 238
| F{@ 070 a1n o] B4 a1 =) it o] =Y 238
Data STIUCEUTES. ...eieiieii ettt et et e et e e e e et et eneaneas 238
(070 b T 11 or= 1 (o) s NS 241
Yo=Y o] (o) o HO PN 245
Gaisler AES DMA driver (GRAES) ... e 246
INTRODUCTTION. ...uutttittiiiettieeetieeeie e et e et eetteeeetasetanseetnsessnersnsasnnsensneesnsenessneennes 246
R To) T N ST B) AT =Y PPN 246

RV 0] 010 o PP 246

NNNNNDNDDNDN
N =

W LW W wWwWwWwww
© Co Q0 00 Co 0o Co
URBBRWNR

w
©

O] 01 =Y =Y o] < TN 246

D) kv ol 4 =T 0 5] 1 = 1 0) o D PPN 246
OPENING the AEVICE.....uiiiiiiiiii et ee e e e e et e e eneanaan 246
ClOSING the AEVICE...ccuiiiiiiiei e e e e et e et e e a e et e et e et e eae e e aneaneen 247
| FLO I O70) akn o] BN a1 7=) o - Lol - YN 247
Data STIUCTULES. ... e ettt e e e e e e e e eaeeneanees 247
(0703 i 10 Eor= 1 (o) s FUU PP PSPPI 250
| DICY Y e 74 01 110) O T PP PP R PPTPPPIN 254

1 Drivers documentation introduction

This document contain a compilation of documents describing most of the LEON3 and LEON?2
drivers included in the Gaisler RTEMS distribution. Each driver is described in a separate
chapter.

Most of the drivers for GRLIB cores relies on the RTEMS Driver Manager for a number of
services. The manager is responsible to unite a driver with the hardware the driver is intended
for and creating a device instance. The driver manager is documented in a separate chapter.

Gaisler RTEMS samples and a common makefile can be found under /opt/rtems-
4.10/src/examples/samples in the distribution. The examples are often composed of a
transmitting task and a receiving task communicating to one another. The tasks are either
intended to run on the same board requiring two cores, or run on different boards requiring
multiple boards with one core each, or both. The tasks use the console to print their progress and
status.

(\EROFLEX

GR-RTEMS-DRIVER 13 GAISLER

2 GRLIB AMBA Plug & Play

2.1 INTRODUCTION

The AMBA bus that GRLIB is built upon supports Plug&Play probing of device information. This
section gives an overview of the AMBA Plug&Play (AMBAPP) routines that comes with Aeroflex
Gaisler RTEMS distribution. Systems without on-chip AMBA Play&Play support (AT697 for
example) may use the library when accessing remote GRLIB systems over SpaceWire or PCI.

The AMBAPP Layer is used by the AMBAPP Bus driver used to interface the AMBAPP bus to the
driver manager. Note that the AMBAPP Bus is not documented here.

2.1.1 AMBA Plug&Play terms and names

Throughout this document some software terms and names are frequently used, below is table
that summarizes some of them.

Term Description

AMBAPP, AMBA PnP AMBA Plug&Play

AMBA AMBA bus without Plug&Play information, typically used in LEON2
designs

device AMBA AHB Master, AHB Slave or APB Slave interface. The

ambapp_dev structure describe any of the interfaces.

core A AMBA 1P core often consists of multiple AMBA interfaces but not
more than one interface of the same type. The ambapp core structure
is used to describe a AMBA core as a unit with up to three interfaces
all of different type.

bus All AMBA AHB and APB buses in a system in one ambapp bus
structure. See scanning

ambapp plb The processor local AMBA PnP bus in LEON3 BSP, RAM description of
first Plug&Play bus at 0xFFF00000.

scanning Process where the AMBA PnP bus is searched for all AMBA interfaces

and a description is created in RAM, the RAM copy makes it easier to
access the PnP information rather than accessing directly

depth Number of levels of AHB-AHB bridges from topmost AHB bus

Table 1: AMBA Layer terms and names

2.1.2 Sources

The sources of the driver manager is found according to the table below.

(\EROFLEX

GR-RTEMS-DRIVER 14 GAISLER

Path Description

ambapp.h Include path of AMBAPP layer header-file definitions

ambapp ids.h Vendor and Device IDs auto generated from GRLIB devices.vhd

libbsp/sparc/shared/amba | Path within RTEMS sources to AMBAPP sources

ambapp.c Scanning routine ambapp scan() and function to iterate over all devices
ambapp_for_each()

ambapp alloc.c Mark ownership of devices

ambapp depth.c Function to get bus depth of a device

ambapp freq.c Functions to initialize AMBAPP bus frequency and get the frequency of a
device

ambapp names.c Vendor and device ID name database

ambapp old.c Old AMBAPP interface, reimplemented on top of ambapp.c. Deprecated.

ambapp parent.c Get device parent bridge by searching the device tree

ambapp show.c Print AMBAPP bus RAM description information onto terminal, for debugging

Table 2: AMBAPP Layer Sources

2.2 OVERVIEW

The AMBAPP layer provides functions for device drivers to access the AMBA Plug&Play
information in an easy way by reading a RAM description rather than accessing the Plug&Play
ROM information directly. It is also beneficial to have a RAM description for remote systems over
SpaceWire or PCI where scanning often must be performed once at initialization.

The AMBAPP interface is defined in ambapp.h and vendor/device IDs in ambapp ids.h.

2.3 INITIALIZATION

Before accessing the AMBAPP interface one must initialize the ambapp bus RAM description by
scanning the AMBA Plug&Play information for all buses, bridges and devices. The bus is scanned
by calling ambapp scan() with prototype as listed below, the RAM description will be written to
abus. The function takes an optional access function memfunc called when the AMBA library read
the PnP information, the abus argument is passed along to memfunc which makes it possible for
the caller to have a custom argument to memfunc. If addresses found in the Plug&Play
information must be translated (as with AMBA-over-PCI for example) the mmaps array must point
to address translation information. The scanning routine starts scanning at (ioarea | 0x000£ff00),
the default Plug&Play area is located at 0xFFF0000.

i nt anmbapp_scan(
struct anmbapp_bus *abus,
unsi gned int i oarea,
anbapp_nencpy_t menfunc,
struct anbapp_nmap *rmaps

)

A bus and device tree is created in abus during initialization, cores (struct ambapp_core) are not
created by the layer. The AMBAPP layer is used from the AMBAPP Bus driver in the driver
manager, it creates AMBAPP cores by finding AMBA devices that comes from the same IP core.

(\EROFLEX

GR-RTEMS-DRIVER 15 GAISLER

The frequency of the AMBAPP bus can not be read from the Plug&Play information, however how
different AMBA AHB buses frequency relates to each can be found at respective AHB-AHB
bridge. In order for the frequency function ambapp freq get() to report a correct frequency the
user is required to register the frequency of one AMBAPP device calling the ambapp_freq init()
function, prototype listed below. The LEON3 BSP determines the frequency by assuming that the
first GPTIMER clock frequency has been initialized to 1MHz by boot loader, the BSP registers the
frequency of the GPTIMER APB device.

/* Initialize the frequency [Hz] of all AHB Buses from know ng the
* frequency of one particul ar APB/ AHB Devi ce.
*/
voi d ambapp_freq_init(
struct anbapp_bus *abus,
struct anbapp_dev *dev,
unsigned int freq);

/* Returns the frequency [Hz] of a AHB/ APB device */
unsi gned int anmbapp_freqg_get(

struct anmbapp_bus *abus,

struct anbapp_dev *dev);

2.4 FINDING AMBAPP DEVICES BY PLUG&PLAY

After the Plug&Play information has been scanned the user can search for AMBA devices in the
RAM description without accessing the Plug&Play ROM by calling ambapp for each(), see
prototype below. The user provided function is called every time the search options matches a
AMBA device in the device tree. The ambapp for each() function can search for a any
combination of [VENDOR, DEVICE] ID, device types (AHB MST, AHB SLV and/or APB SLV), free
or allocated devices. If a VENDOR/DEVICE ID of -1 is given the function will match any
vendors/devices.

(\EROFLEX

GR-RTEMS-DRIVER 16 GAISLER

EIE SR T . N T N B I . N N S N S T T N I

-~

Iterates through all AMBA devices previously found, it calls func
once for every device that match the search argunents.

SEARCH OPTI ONS

Al'l search options nust be fulfilled, type of devices searched (options)
and AVBA Pl ug&Pl ay | D [VENDOR, DEVI CE], before func() is called. The options
can be use to search only for AVBA APB or AHB Sl aves or AHB Masters for
exampl e. Note that when VENDOR=-1 or DEVICE=-1 it will match any vendor or
device I D, this neans setting both VENDOR and DEVICE to -1 will result in
calling all devices matches the options argunent.

\ par am abus AMBAPP Bus to search

\ param options Search options, see OPTIONS_* above

\ par am vendor AMBAPP VENDOR I D to search for

\ par am devi ce AVBAPP DEVICE ID to search for

\ param f unc Function called for every device matching search options
\ param arg Opti onal argunent passed on to func

func return value affects the search, returning a non-zero value wll
stop the search and anbapp_for_each will return imrediately returning the
same non-zero val ue.

Ret urn Val ues
0 - all devices was scanned
non-zero - stopped by user function returning the non-zero val ue

i nt ambapp_for_each(

2.5

struct anbapp_bus *abus,
unsi gned int options,
int vendor,

i nt device,
anbapp_func_t func,

void *arg);

ALLOCATING A DEVICE

A device can be marked allocated so that other parts of the code knows that the device has been
taken, this feature is not used by the LEON BSPs. The ambapp dev.owner field is set to a non-
zero value to mark that the device is allocated, use ambapp alloc dev() and ambapp_free dev() to
set allocation mark.

2.6

NAME DATABASE

In ambapp names.c AMBA Plug&Play vendor and device names are stored in a name database.
The names are taken from device.vhd in GRLIB distribution. Names can be requested by calling
appropriate function listed below.

(\EROFLEX

GR-RTEMS-DRIVER 17 GAISLER

/* Get Device Nane from AMBA PnP nane dat abase */
char *anbapp_device_id2str(int vendor, int id);

/* Get Vendor Nane from AMBA PnP nane dat abase */
char *anbapp_vendor _i d2str (i nt vendor);

/* Set together VENDOR_DEVI CE Nanme from AMBA PnP nane database. Return |length
* of Cstring stored in buf not including string term nation '\0'.

*/

i nt ambapp_vendev_i d2str(int vendor, int id, char *buf);

2.7 FREQUENCY OF A DEVICE

As described in the initialization section every AHB bus may have a unique bus frequency, APB
buses always have the same frequency as the AHB bus it is situated on. Since a core may consist
of a AHB master, AHB slave and a APB slave interface the frequencies of the different interfaces
may vary. The AMBAPP layer provides a function ambapp freq get() that returns the frequency
in Hz of a single device interface.

/* Returns the frequency [Hz] of a AHB/ APB device */
unsi gned int ambapp _freq_get(

struct anbapp_bus *abus,

struct anbapp_dev *dev);

(\EROFLEX

GR-RTEMS-DRIVER 18 GAISLER

3 Driver Manager

3.1 INTRODUCTION

This section describes the Driver Manager available in Aeroflex Gaisler RTEMS-4.10 SPARC
distribution. It is located in cpukit/libdrvmgr in the source release. The driver manager is used to
simplify the handling of buses, devices, bus drivers, device driver, configuration of device
instances and providing a common programming interface where possible for drivers regardless
of bus architecture.

3.1.1 Driver manager terms and names

Throughout this document some terms and names are frequently used, below is table that
summarizes some of them.

Term Description

Bus Describes a bus with child devices

Device Describes a hardware device situated on a bus, bus driver

Bridge device A device with a child bus

Bus driver Software that handles a bus, implements the bus

Device driver Software that handles hardware devices

Root device Topmost device in driver manager tree, has no parent bus

Root bus Topmost bus, the root device exports, has no parent bus

Register bus Process where the driver manager is informed about the existence of a new
bus

Register device Process where the driver manager is informed about the existence of a new
device

Register driver Before driver manager initialization, drivers are added into a internal driver
list

Unite device and driver Process where the driver manager finds a device driver for a device.

Separate device and driver | Process where a device driver is requested to never use the device any more,
for example before a device is removed

Unregister bus or device Inform driver manager about that a bus or device (and all child buses/devices)
should be removed from the device tree and related drivers be informed

Init level The device driver and bus driver initialization process is performed in
multiple stages, called initialization levels

Table 3: Driver Manager terms and names

3.1.2 Sources

The sources of the driver manager is found according to the table below.

(\EROFLEX

GR-RTEMS-DRIVER 19 GAISLER
Path Description
cpukit/libdrvmgr Path within RTEMS sources. Driver manager sources
drvmgr/drvimgr.h Include path of driver manager definitions
drvmgr/drvimmgr confdefs.h | Include patch of driver configuration

Table 4: Driver Manager Sources

3.2 OVERVIEW

The driver manager works with the concepts bus, bus driver, device, device driver and driver
resources. Since everything is tied together somehow it is quite difficult to start describing the
driver manager, instead each component is described in a separate section below and the
following text assumes that the reader has knowledge of respective component.

The driver manager manages all buses and devices in a system by using a tree structure. The
root of the tree starts with the root device created by the root bus driver. The root device creates
a bus which is called the root bus, it is an ordinary bus without a parent bus. All buses have a
linked list of devices which are situated directly on the bus, if a device is a bridge to another bus
that device registers a child bus and the bus pointer in the device is set appropriately. At the
moment of writing a bridge device can only have one child bus. During the boot process the
device/bus tree is created either dynamically by bus drivers reading plug and play or from hard
coded information.

The BSP or user must register a root bus driver in order for the driver manager to create and
initialize the root device. The function drvmgr root drv register() must be called before the
driver manager initialization process starts. Buses and devices are initialized in a four step
process called levels (1, 2, 3, 4). The driver manager guarantees that the bus is always initialized
before to the same or higher level than devices on that bus, that the devices are initialized in the
same order as they are registered in, and that child buses are initialized after all devices on the
parent bus are initialized to the level. If a bus or device fails to initialize the children (devices or
child bus) are never initialized further, instead they are put on a inactive list for later inspection.
Dependencies between buses and devices are hence easily managed by the fact that drivers are
not allowed to access certain APIs until a certain level is reached.

Drivers are registered before the driver manager initialization starts with drvmgr drv_register(),
the manager keeps a list of drivers which is accessed to find a suitable driver for a device. Every
time a new device is registered by the bus driver the driver manager searches the driver list for a
suitable driver, the bus is asked (bus.ops->unite) if the driver is compatible with the device, if so
the manager unites the driver with its device and inserts the device into the initialization
procedure. The driver's initialization routines will be called for all its devices at every level. If a
driver was not found, the device is never initialized.

The driver manager is either initialized by the BSP during startup or manually by the user from
the Init task where interrupt is enabled. The BSP initialization is enabled by passing -drvimmgr to
configure when building the RTEMS kernel, in that case RTEMS DRVMGR STARTUP is defined
in system.h. When custom initialization is selected interrupt is enabled during the driver
manager initialization and drivers initialized during RTEMS boot (system clock timer and system
console UART for example) can not rely on the driver manager.

When the driver manager is initialized during boot, the rtems initialize device drivers() function
puts the manager into level 1 before RTEMS I/O drivers are initialized, so that drivers relying on
the manager for device discovery are able to register devices to the I/O subsystem in time. At
time of initialization most of RTEMS APIs are available for drivers, for example malloc() is

(\EROFLEX

GR-RTEMS-DRIVER 20 GAISLER

available.

3.2.1 Bus and bus driver

A bus driver is responsible to make the driver manager aware of hardware devices, simply called
devices, by scanning Plug & Play information or by any other approach. It finds, creates and
registers devices in a deterministic order. The manager help bus drivers with new devices,
insertion into the device tree and device numbering for example. Each device is described in a
bus architecture independent way and with bus specific device information like register
addresses, interrupt numbers and bus frequency information. Drivers targeting devices on the
bus must know how to extract valuable information from the specific information.

All buses have a linked list of devices which are situated directly on the bus (bus.children), if a
device is a bridge to another bus that device registers another device (dev.bus), a bus does
maintain a list of child buses.

/*! Bus information. Describes a bus. */
struct drvngr_bus {

i nt obj _type; /*1< DRVMGR_OBJ_BUS */

unsi gned char bus_type; [*1< Type of bus */

unsi gned char depth; /*1< Bus | evel distance fromroot bus */
struct drvmgr_bus *next ; /*1'< Next Bus */

struct drvngr_dev *dev; /*!< Bridge device */

voi d *priv; [*!< BUS driver Private */

struct drvngr_dev *children;/*!< devices on this bus */

struct drvngr_bus_ops *ops; [*!'< Bus operations of bus driver */
struct drvmgr_func *funcs; /*! < Extra operations */

i nt dev_cnt; /[*!< Nunber of devices this bus has */

struct drvngr_bus res *reslist; /*!< Bus resources, head of a |linked
[ist of resources. */
struct drvngr_nmap_entry *maps_up; /*!< Map Transl ation, array of
address spaces upstreans to CPU */
struct drvmgr_map_entry *maps_down; /*!< Map Transl ation, array of
address spaces downstreans to Hardware */
/* Bus status */

i nt | evel ; [*I< Initialization Level of Bus */
i nt st at e; [*1< Init State of Bus, BUS _STATE * */
i nt error; [*!< Return code from bus.ops->initN() */

}s

A device driver can be configured per device instance using driver resources, the resources are
managed per bus as a linked list of bus resources (bus.reslist). A bus resource is an array of
driver resources assigned by the bus driver. The resources are described in a separate section
below.

Bus bridges often interfaces parts of an address space onto the child bus and vice versa. For
example in a LEON system one linear region of the PCI memory space may be accessed through
the PCI Host's PCI Window from the processor's AMBA memory space side. The bus.maps up and
bus.maps down fields can be used to describe the bridge address regions used to access buses in
upstreams or downstreams direction. The driver manager provides address translation functions
that is implemented using the region descriptions.

Every bus driver implements a number of functions that provide an interface to the driver
manager, device drivers or to the user. The function interface is listed below. Every bus has
number of init functions similar to device drivers where the bus is responsible for finding,
creating, low level initialization and registration of new devices. If a bus driver require some

GR-RTEMS-DRIVER 21

(\EROFLEX

GAISLER

feature from the parent bus that is available in a certain level the bus can assume that the parent
bus and all its devices has already reached a higher level or the same as the bus is requested to
enter.

/

*1 Bus operations */

struct drvngr_bus_ops {

VO

vO

}

/* Functions used internally within driver manager */

i nt (*init] DRVYMGR_LEVEL_NMAX]) (struct drvngr_bus *);
i nt (*remove) (struct drvngr_bus *);
i nt (*unite)(struct drvnmgr_drv *, struct drvngr_dev *)

/* Functions called indirectly fromdrivers */

i nt (*int_register)(struct drvngr_dev *, int index, const char *info,
drvmgr _isr isr, void *arg);

i nt (*int _unregister)(struct drvngr_dev *, int index, drvngr_isr isr,
id *arg);

i nt (*int_clear)(struct drvngr_dev *, int index);

i nt (*int_mask) (struct drvngr_dev *, int index);

i nt (*int_unmask) (struct drvngr_dev *, int index);

i nt (*get _parans) (struct drvngr_dev *, struct drvngr_bus_parans *);

i nt (*freqg_get)(struct drvngr_dev*, int, unsigned int*);

/*! Function called to request information about a device.

The bus

* driver interpret the bus-specific information about the device.

*/

voi d (*info_dev)(struct drvngr_dev *, void (*print)(void *p, char *str),

id*p);

’

If a bus supports interrupt it can hide the actual implementation in the bus driver by
implementing all or some of the int * routines listed in the table below. Device drivers are
accessing interrupts using the generic interrupt functions of the driver manager. The index
determines which interrupt number the device requests, for example 0 means the first interrupt
of the device, 1 the second interrupt of the device and so on, it is possible for the bus driver to
determine the absolute interrupt number usually by looking at the bus specific device
information. If a negative interrupt number is given it is considered to be an absolute interrupt
number and should not be translated, for example an index of -3 means IRQ3 on the AMBA bus or
INTC# of the PCI bus.

Operation Description

int register Register an interrupt service routine (ISR) and unmask(enable) appropriate interrupt
source

int unregister Unregister ISR and mask interrupt source

int_clear Manual interrupt source acknowledge at the interrupt controller

int mask Manual mask (disable) interrupt source at interrupt controller

int unmask Manual unmask (enable) interrupt source at interrupt controller

Table 5: Interrupt backend interface of driver manager

(\EROFLEX

GR-RTEMS-DRIVER 22 GAISLER

3.2.1.1 Bus specific device information

A bus provide a bus dependent way to describe devices on that bus (register address for
example). The information is created by the bus driver from plug & play or hardcoded
information. The information may for example be used by the bus driver to unite a device with a
suitable device driver and by a device driver to get information about a certain device instance.

Each bus has its own device properties, for example a PCI device have up to 6 BARs or variable
size and a GRLIB AMBA AHB device has up to four different AHB areas of variable length. This
kind of information is hidden by the bus driver into the bus specific area that device drivers
targeting the bus type can access.

3.2.2 Root driver

The driver that is responsible for initialization of the root device and root bus. The driver
manager needs to know what driver should handle the root (often CPU local) bus. The root bus
driver is registered by the BSP (--drvingr option) or by the user before the driver manager is
initialized. One can say it is the starting point of finding the system's all devices.

3.2.3 Device driver

Driver for one or multiple hardware devices, simply called devices here. It uses the driver
manager services provided. The driver holds information to identify supported hardware device,
it tells the driver manager what kind of bus is supported and bus specific information so that the
bus driver can pinpoint devices supported by driver. The bus specific information may for
example be a plug & play Vendor and Device ID used to identify certain hardware.

/*! Information about a device driver */
struct drvngr_drv {

i nt obj _type; /*1< DRVMGR_CBJ_DRV */

struct drvngr_drv *next ; /[*!'< Next Driver */

struct drvngr_dev *dev; /*!< Devices using this driver */
uint64_t drv_id; [*!< Unique Driver 1D */

char *narne; /*1< Name of Driver */

i nt bus_type; [*!< Type of Bus this driver supports */
struct drvngr_drv_ops *ops; [*!< Driver operations */

struct drvmgr_func *funcs; /*!< Extra Qperations */

unsi gned int dev_cnt; /*1< Nunber of devices in dev */

unsi gned int dev_priv_size; /*!< If non-zero DRVMGR will allocate
nmenory for dev->priv */

b

Every driver must be assigned a unique driver ID by the developer, the bus driver provides a
macro to generate the ID. The ID is used to identify driver resources to a specific driver, only the
driver knows how the resources are interpreted. The driver provides operations executed per
device in drv.ops that is called by the driver manager at certain events such as device
initialization and removal.

The driver manager manages a list of devices assigned to the driver order according to driver
minor number. The driver minor number is assigned as the lowest free number starting at 0. A
device driver can lookup a device pointer from knowing the minor number. The number of
devices currently present is counted in drv.dev_cnt.

The driver manager can optionally allocate zeroed memory for the device private data structure
and place a pointer in dev.priv, this is done by setting drv.dev priv size to a non-zero value.

(\EROFLEX

GR-RTEMS-DRIVER 23 GAISLER

The driver information above does not contain a bus specific device information needed to detect
suitable devices. Bus drivers provide extended driver structures containing this additional bus
specific information, for example the PCI bus has a pointer to an array of PCI device
identifications:

struct pci_dev_id match {

uint16 t vendor ;

uint16_t devi ce;

uint16_t subvendor;

uintl6 t subdevi ce;

uint32_t class; [/* 24 lower bits */

ui nt 32_t class_mask; /* 24 |ower bits */

b

struct pci_drv_info {

struct drvngr_drv general ; /* General bus info */
[* PCl specific bus information */
struct pci_dev_id_match *jids; /* Supported hardware */

H

3.2.4 Device

Represents a hardware device found by the bus driver, in this document called device. A device is
found, created and registered by the bus driver, once registered the driver manager will insert it
into the bus device tree, assign a bus minor number (depending on the registration order) and
tries to find driver that supports the hardware. If a suitable driver is found it will unite the device
with the driver. In the process of uniting the manager will assign insert the device into the
driver's device list, give a driver minor number to the device (lowest free number), optionally
allocate zeroed memory for driver private, queue the device for initialization.

The bus driver must have given the device a bus specific description in dev.businfo if before
registering it. The driver can use the information to get register addresses, interrupt number etc.

During the first level of initialization the device driver may register a child bus, in that case the
bus will be queued for initialization.

(\EROFLEX

GR-RTEMS-DRIVER 24 GAISLER

/*! Device information */
struct drvngr_dev {
i nt obj type; /[*!< DRVMGR OBJ_DEV */
struct drvngr_dev *next ; /*!'< Next device */
struct drvngr_dev *next _in_bus;/*!< Next device on the sane bus */
struct drvngr_dev *next _in_drv;/*!< Next device using the sane driver*/

struct drvmgr_drv *drv; /*!< The driver owning this device */

struct drvngr_bus *par ent ; [*1< Bus that this device resides on */

short m nor _drv;/*!< Device nunber within driver */

short m nor _bus;/*! < Device nunber on bus (for device
separation) */

char *nanme; /*1< Nanme of Device Hardware */

voi d *priv; [*!< Driver private device structure */

voi d *busi nf o; /*1< Host bus specific information */

struct drvngr _bus *bus; /*!'< Bus, set only if this is a bridge */

/* Device Status */

unsi gned i nt state; [*1< State of device, see DEV_STATE * */
i nt | evel ; [*1< Init Level */
i nt error; [*!< Error state returned by driver */

b

3.2.5 Driver resources

A driver resource is a read-only configuration option used by a driver for a certain device
instance. The resource may be an integer with value 65 called "numberTxDescriptors". The driver
resources are grouped together in arrays targeting one device instance, the arrays are grouped
together into a bus resource. It is up to the bus driver to install the bus resource, some bus
drivers may use a predefined bus resource or it may provide an interface for the user to provide
its own configuration. Below is the

/* Key Data Types */
#define KEY_TYPE_NONE O

#define KEY_TYPE_I NT 1
#def i ne KEY_TYPE_STRI NG 2
#def i ne KEY_TYPE_PO NTER 3

[*! Union of different values */
uni on drvngr_key val ue {

unsi gned int i; [*!< Key data type UNSI GNED | NTEGER */
char *str; /*1< Key data type STRING */
voi d *ptr; /*1< Key data type ADDRESS/ PO NTER */

}s

/* One key. One Value. Holding information relevant to the driver. */
struct drvngr_key {

char *key_name;/* Name of key */

i nt key_type; /* How to interpret key_value */

uni on drvngr_key val ue key value;/* The value or pointer to value */

b

A driver resource targets a device driver instance, not a device instance even this is in practise
the same thing since there is only one driver for a device. Instead of using a bus specific device

(\EROFLEX

GR-RTEMS-DRIVER 25 GAISLER

ID to identify a device instance a driver ID together with a instance minor number is used to
target the driver instance. Below is a typical driver resource array with two configuration
options:

[* GRSPW and GRSPWL. resources */
struct drvngr_key grlib _grspw Onl res[] =

{
{"txDesc", KEY_TYPE_INT, {(unsigned int)16}},
{"rxDesc", KEY_TYPE_INT, {(unsigned int)32}},
KEY_EMPTY

b

It is up to the driver to interpret the options, one should refer to the driver documentation for
configuration options available and their format.

A bus resource in an array of device resources (driver resource arrays), the bus resource is
assigned to the bus in a bus driver dependent way. In the below example the LEON3 BSP root
bus is configured by simply defining a bus resource named grlib drv resource, since the LEON3
root bus driver's defaults have been declared weak it can be overridden by the user project. In
the example the GRSPWO0 and GRSPW1 cores are configured with the same driver resources.

[* | f RTEMS_DRVMGR _STARTUP is defined we override the "weak defaul ts”
* that is defined by the LEON3 BSP.
*/
struct drvmgr_bus_res grlib_drv_resources = {
.hext = NULL,
.resource = {
{DRI VER_AMBAPP_GAI SLER GRSPW I D, 0, &grlib_grspw Onl_res[0]},
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 1, &grlib_grspw Onl_res[0]},
RES EMPTY /[/* Mark end of device resource array */
}
}

3.2.6 Driver interface

Device drivers mnormally request a resource by name and type. The function
drvmgr dev _key get() returns a pointer to a resource value for a specific device, see below

prototype.

extern union drvngr_key val ue *drvngr_dev_key_ get (
struct drvngr_dev *dev,
char *key_nane,
int key type);

3.3 CONFIGURATION

The driver manager is configured by selecting drivers that will be registered to the manage, by
registering a root bus driver prior to driver manager initialization and drivers may optionally be
configured by using driver resources, see previous section.

The root bus device driver is registered by calling drvmgr root drv register(), this must be done

(\EROFLEX

GR-RTEMS-DRIVER 26 GAISLER

before the driver manager is initialized. When the BSP initializes the manager during the RTEMS
boot process, nothing need to be done by user. For example calling ambapp_grlib_root register()
registers the GRLIB AMBA Plug & Play Bus as the root bus driver and also assigns the bus
resources for the root bus.

System Root driver

LEON3 ambapp_bus_grlib.c, register by calling ambapp_grlib_root register().

LEON?2 leon2 amba bus.c, register by calling leon2_root register().

GRLIB-LEON2 leon2 amba bus.c, register by calling leon2_root_register(). Add
LEON2 AMBA AMBAPP ID to the bus so that the GRLIB AMBA plug & play is found.

Table 6: Root device driver entry points for LEON systems

The drivers are selected by defining the array drvmgr drivers, it contains one function pointer
per driver that is responsible to register one or more drivers. The array is processed by
DRV Manager initialization() during startup or when calling drvmgr init() from the Init task. .
The drvigr drivers can be set up by defining CONFIGURE INIT, selecting the appropriate
drivers and including drvmgr/drvmgr confdefs.h. This approach is similar to configuring a
standard RTEMS project using rtems/confdefs.h. Below is an example how to select drivers. It is
also possible to define up to ten drivers in the project by using the predefined
CONFIGURE DRIVER CUSTOM macros.

(\EROFLEX

GR-RTEMS-DRIVER 27 GAISLER

#i ncl ude <rtens. h>
#i ncl ude <bsp. h>

#define CONFIGURE_INIT

[* Standard RTEMS set up */

#defi ne CONFI GURE_APPLI CATI ON_NEEDS CONSCLE DRI VER
#def i ne CONFI GURE_APPLI CATI ON_NEEDS_CLOCK_DRI VER
#def i ne CONFI GURE_RTEMS_| NI T_TASKS_TABLE

#defi ne CONFI GURE_MAXI MUM DRI VERS 32

#i ncl ude <rtens/confdefs. h>

/* Driver manager set up */

#i f defi ned(RTEMS_DRVMGR STARTUP)/* if --drvngr was given to configure */
/[* Add Timer and UART Driver for this exanple */
#i f def CONFI GURE_APPLI CATI ON_NEEDS CLOCK_DRI VER

#def i ne CONFI GURE_DRI VER_AVBAPP_GAI SLER GPTI MER
#endi f
#i f def CONFI GURE_APPLI CATI ON_NEEDS CONSOLE_DRI VER
#defi ne CONFI GURE_DRI VER_AMBAPP_GAIl SLER_APBUART
#endi f

#endi f

#defi ne CONFI GURE_DRI VER_AMBAPP_GAIl SLER _GRETH

#defi ne CONFI GURE_DRI VER_ANMBAPP_GAI SLER _GRSPW

#defi ne CONFI GURE_DRI VER_AMBAPP_GAIl SLER_GRCAN

#def i ne CONFI GURE_DRI VER_AVBAPP_GAl SLER OCCAN

#def i ne CONFI GURE_DRI VER_AVBAPP_GAl SLER B1553BRM

#defi ne CONFI GURE_DRI VER_AMBAPP_GAIl SLER_APBUART

#defi ne CONFI GURE_DRI VER_AMBAPP_MCTRL

#def i ne CONFI GURE_DRI VER_AMBAPP_GAl SLER PCI F

#defi ne CONFI GURE_DRI VER_ANMBAPP_GAI SLER GRPCI

#defi ne CONFI GURE_DRI VER_PCI _GR RASTA | O

#defi ne CONFI GURE_DRI VER_PClI _GR RASTA TMIC

#defi ne CONFI GURE_DRI VER_PCl _GR 701

#i ncl ude <drvngr/drvngr_confdefs. h>

3.3.1 Available LEON drivers

Below is a list of available drivers in the LEON3 BSP and the define that must be set before
including drvmgr confdefs.h to include the driver in the project. All drivers are preceded with
CONFIGURE DRIVER .

GR-RTEMS-DRIVER

28

(\EROFLEX

GAISLER

Hardware Define to include driver
GPTIMER AMBAPP GAISLER GPTIMER
APBUART AMBAPP GAISLER APBUART
GRETH AMBAPP GAISLER GRETH
GRSPW AMBAPP GAISLER GRSPW
GRCAN AMBAPP GAISLER GRCAN
OCCAN AMBAPP GAISLER OCCAN
GR1553B AMBAPP GAISLER GR1553B
GR1553B RT AMBAPP GAISLER GR1553RT
GR1553B BM AMBAPP GAISLER GR1553BM
GR1553B BC AMBAPP GAISLER GR1553BC
B1553BRM AMBAPP GAISLER B1553BRM
B1553RT AMBAPP GAISLER B1553RT
GRTM AMBAPP GAISLER GRTM
GRTC AMBAPP GAISLER GRTC

PCIF PCI Host

AMBAPP GAISLER PCIF

GRPCI PCI Host

AMBAPP GAISLER GRPCI

GRPCI2 PCI Host

AMBAPP GAISLER GRPCI2

FTMCTRL and MCTRL

AMBAPP MCTRL

SPICTRL AMBAPP GAISLER SPICTRL
12CMST AMBAPP GAISLER I2CMST
GRGPIO AMBAPP GAISLER GRGPIO
GRPWM AMBAPP GAISLER GRPWM
GRADCDAC AMBAPP GAISLER GRADCDAC
SPWCUC AMBAPP GAISLER SPWCUC
GRCTM AMBAPP GAISLER GRCTM
SPW_ROUTER AMBAPP GAISLER SPW ROUTER
AHBSTAT AMBAPP GAISLER AHBSTAT
GRAES AMBAPP GAISLER GRAES
GRPWRX AMBAPP GAISLER GRPWRX

AT697 PCI Host

LEON2 AT697PCI

GRLIB-LEON2 AMBA PnP

LEON2 AMBAPP

GR-RASTA-ADCDAC

PCI_GR _RASTA ADCDAC

GR-RASTA-IO PCI target

PCI_GR_RASTA IO

GR-RASTA-TMTC PCI target

PCI GR RASTA TMTC

GR-701 PCI target

PCI_GR 701

GR-TMTC-1553 PCI target

PCI GR TMTC 1553

GR-RASTA-SPW-ROUTER PCI
Target

PCI GR RASTA SPW ROUTER

(\EROFLEX

GR-RTEMS-DRIVER 29 GAISLER

Table 7: LEON device drivers available

3.4 INITIALIZATION

As described in the overview the driver manager the initialization of the driver manager is
determined how the RTEMS kernel has been built. When -drvmgr has been used when
configuring the kernel the manager is initialized by the BSP and RTEMS boot code, otherwise the
driver manager is optional and may be initialized by the user calling drvmgr init() after the root
bus driver has been registered.

3.4.1 LEON3 BSP

In the Aeroflex Gaisler RTEMS distribution the LEON3 BSP has been precompiled twice, once
where the BSP initialized the driver manager (-qleon3, -qleon3mp) and once for custom
initialization or no driver manager (-gleon3std). Please see RCC User's Manual for additional
information about the gcc flags. Two different driver versions for the GPTIMER, APBUART and
GRETH hardware is provided within the LEON3 BSP to support both initialization approaches.

3.5 INTERRUPT

The Driver manager provides a shared interrupt service. The device driver calls the driver
manager which in turn rely on the bus driver to satisfy the request, that way the manager can
maintain one interrupt interface regardless of bus.

For shared interrupt sources all registered interrupt handlers are called upon interrupt. The
driver must itself detect if the IRQ was actually generated by its device and then decide to handle
it or not.

The index of the interrupt functions determines which interrupt number the device requests, for
example 0 means the first interrupt of the device, 1 the second interrupt of the device and so on,
it is possible for the bus driver to determine the absolute interrupt number usually by looking at
the bus specific device information. If a negative interrupt number is given it is considered to be
an absolute interrupt number and should not be translated, for example an index of -3 means
IRQ3 on the AMBA bus or INTC# of the PCI bus.

Operation Description

drvmgr interrupt register Register an interrupt service routine (ISR) and unmask(enable) appropriate
interrupt source

drvmgr _interrupt unregister | Unregister ISR and mask interrupt source

drvmgr interrupt clear Manual interrupt source acknowledge at the interrupt controller
drvmgr interrupt mask Manual mask (disable) interrupt source at interrupt controller
drvmgr interrupt unmask Manual unmask (enable) interrupt source at interrupt controller

Table 8: Driver interrupt interface

The interrupt service route (ISR) must be of the format determined by drvimgr isr. The argument
is user defined per ISR and IRQ index.

(\EROFLEX

GR-RTEMS-DRIVER 30 GAISLER

/* Interrupt Service Routine (ISR */
typedef void (*drvngr_isr)(void *arg);

extern int drvngr_interrupt_register(
struct drvngr_dev *dev,
i nt index,
const char *info,
drvmgr _i sr isr,
void *arg);

extern int drvngr_interrupt_unregister(
struct drvngr_dev *dev,
i nt index,
drvmgr _i sr isr,
void *arg);

extern int drvngr_interrupt_clear(
struct drvngr_dev *dev,
i nt index);

extern int drvngr_interrupt_unmask(
struct drvngr_dev *dev,
i nt index);

extern int drvngr_interrupt_mask(
struct drvngr_dev *dev,
i nt index);

3.6 ADDRESS TRANSLATION

As described in the overview address regions can be translated between buses. It requires the
bridge bus driver to set up address maps in at least one direction. If a bus does not support DMA
for example, it might be that it is only the CPU that can access the bus but the bus can not access
the CPU bus, hence the address translation will be unidirectional.

The translation software can translate addresses in up to four different ways using
drvmgr translate(), as listed in the table below. The function will return O if no map matches the
translation requested, the length until the end of the matching map or Oxffffffff if no translation
was needed. If a bridge has no map, the addresses are translated 1:1 (not changed) and Oxffffffff
will be returned.

The drvmgr translate check() function can be called instead, it has the same functionality but
verifies that the address range specified by the user is accessible. If not, the function will call
printk() with an error message.

GR-RTEMS-DRIVER

31

(\EROFLEX

GAISLER

extern int drvngr_transl ate(
struct drvngr_dev *dev,

i nt options,

voi d *src_address,
void **dst_address);

Options argument

Translate direction

Example usage

CPUMEM _TO DMA

Translate a CPU RAM address
to an address that DMA unit
can access

The CPU has a buffer in RAM, it translates the
address to the PCI bus so that PCI devices can
access it through the host's PCI target BAR

CPUMEM _FROM DMA

Translate a CPU RAM address
that a DMA unit can access
into a an address that the CPU
can access

The CPU reads out the the DMA address from a
descriptor that the hardware use to access to
CPU RAY, it can then translate it into the
memory address the CPU can access since the
memory is located at the CPU bus

DMAMEM TO CPU

Translate DMA unit local
memory to an address that the
CPU can access

PCI target BAR2 value (PCI bus address) is
translated into an address which the CPU access
(CPU bus address) in order to get to BAR2

DMAMEM FROM_CPU

Translate DMA unit local
memory address that the CPU
can access, into an address
that the DMA unit can access

Table 9: Translate options to drvmgr_translate()

3.7

FUNCTION INTERFACE

The driver manager provides an interface where device drivers and bus drivers can provide
functions that can be looked up by knowing an associated function ID. The functions can be used
to provide additional bus support over the driver manager structure, or a device driver can
provide a function that the bus driver use.

For example some buses may require special access methods in order to access the hardware
registers. Depending on the bus driver (bus architecture for example) is must be performed
differently, the driver can request a function pointer to a WRITE U32 function in to implement

register accesses.

The drvmgr/drvimgr.h header file defines a number of read/write function ID numbers that
drivers can use to get access routines on buses which define such operations.

4 RMAP Stack

4.1 INTRODUCTION

This section describes the RMAP stack function interface available for RTEMS. The RMAP stack
provide a simple interface that can generate RMAP commands and transmit them over
SpaceWire by relying on the RMAP stack driver layer. Read, read-modify-write and write with
acknowledge or verification will block the caller until the transaction is completed. The features
of the RMAP stack is summarized below:

+ header and data CRC generation, if not generated by hardware

« logical addressing

« path addressing

« generate all read and write types defined by the RMAP specification.
« thread safe if requested

« driver layer to support multiple SpaceWire hardware

« driver for GRSPW driver

« zero-copy API

The two interfaces the RMAP stack implements can be found in the rmap header file (rmap.h), it
contains definitions of all necessary data structures, bit masks, procedures and functions used
when accessing the function interface.

This document describes the user interface, but not the driver interface.

4.1.1 Examples

The SpaceWire bus driver can be seen as an example, it can be found under rtems-
4.10/c/src/lib/libbsp/sparc/shared/drvmgr/spw _bus.c.

4.2 DRIVER INTERFACE

The driver interface is not described in this document.

4.3 LOGICAL AND PATH ADDRESSING

The RMAP stack is by default configured to do logical addressing, however a custom callback
function may be used to implement path addressing. The stack will call the function twice (one
for distination path and one for return path) when the RMAP header is generated, the function is
responsible to write the address path bytes directly into the header at the specified location.

4.4 ZERO-COPY IMPLEMENTATION

The RMAP stack is zero-copy meaning that the data of the transfer is not copied, this improves
performance. Note that when the RMAP driver does not support CRC generation the RMAP stack
will write the data CRC after the input data, this means that the caller is responsible to reserve
one byte of space when writing data. The RMAP stack will not write the data CRC after the data
in cases where the RMAP driver that support CRC generation.

Note that even though the RMAP stack is zero-copy the RMAP driver may not be zero-copy,
lowering the performance.

4.5 RMAP GRSPW DRIVER

A driver for the RTEMS GRSPW driver is provided with the RMAP stack, the driver automatically
check if the GRSPW hardware has support for CRC generation.

The GRSPW driver is named rmap drv_grspw.c.

4.6 THREAD-SAFE

The RMAP stack can be configured to be thread safe, when entering the stack an internal
semaphore will be obtained guaranteeing that multiple threads of execution can enter
simultaneously. It is not needed when only one task is using the RMAP stack or if the RMAP
driver itself is thread-safe.

A task may be blocked waiting for another task to complete the RMAP operation, when the RMAP
stack is configured thread-safe.

4.7 USER INTERFACE

The location of the RMAP stack is indicated in table 1. All paths are given relative the RTEMS
kernel source root.

Source description Location

Interface implementation | ¢/src/lib/libbsp/sparc/shared/spw/rmap.c

Interface declaration c/src/lib/libbsp/sparc/shared/include/rmap.h

Table 10: RMAP stack source location

4.7.1 Data structures

The rmap config data structure is used to configure the RMAP stack, as an argument to
rmap_init(). The data structure is defined in rmap.h.

typedef int (*rrmap_route_t)(
voi d *cooki e,
int dir,
int srcadr,
int dstadr,
voi d *buf,
int *len

)

struct rmap_config {

rmap_route_t rout e_func;
i nt tid_neb;

i nt spw_adr;

struct rmap_drv *drv;

i nt max_rx_|en;

i nt max_tx_|en;

i nt t hread_saf e;

}

‘ Member Description

route func

Function is a callback, called when the RMAP stack is about to generate the
addressing to the target node address. It can be used to implement path
addressing. Set the function pointer to NULL to make the stack use logical
addressing.

tid msb

Control the eight most significant bits in the TID field in the RMAP header.
Set to -1 for normal operation, the RMAP stack will use all bits in TID for
sequence counting. This option can be used when multiple RMAP stacks or
other parts of the software sends RMAP commands but not using the RMAP
stack. This requires, of course, a thread-safe RMAP driver.

spw_adr

The SpW Address of the SpW interface used.

drv

RMAP driver used for transmission.

max rx len

Maximum data length of received packets, this must match the RMAP
driver's configuration.

max tx len

Maximum data length of transmitted packets, this must match the RMAP
driver's configuration.

thread safe

Set this to non-zero to enable the RMAP stack to create a semaphore used to
protect the RMAP stack and the RMAP driver from multiple tasks entering
the transfer function(s) of the stack at the same time.

Table 11: rmap_config members

A RMAP command is described the rmap command structure, the type decide which parts of the
union data is used when generating the RMAP header. In order to simplify for the caller three
data structures avoiding the union are provided, they are named rmap command write,
rmap _command read, rmap command rmw. They can be used instead of rmap command as

argument to the function interface.

struct rmap_comrmand {
char type;
unsi gned char dst adr;
unsi gned char dst key;
unsi gned char st at us;
unsi gned short tid;
unsi gned | ong | ong addr ess;
uni on {
struct {
unsi gned int |ength;
unsi gned char *data
} wite;
struct {
unsi gned int | ength;
unsi gned i nt datal ength;
unsi gned int *data
} read;
struct {
unsi gned int |ength;
unsi gned i nt data;
unsi gned i nt nask;
unsi gned int ol dl ength;
unsi gned int ol ddat a;
} read_mwite;
} data;
}
‘ Member ‘ Description

type Type of RMAP transfer, Read/Write/Read-Modify-Write/Acked Write etc., see
RMAP CMD *.

dstadr Destination address of SpaceWire Node that the RMAP command should be
execute upon.

dstkey SpaceWire destination key of target node

status Output from stack: Error/Status response. Zero if no response is successful

tid Output from stack: TID assigned to packet header

address 40-bit address that the operation targets

data A union of different input and output arguements depending on the type of
command.

Table 12: rmap_command members

4.7.2 Function interface description

The table below sumarize all available functions in the RMAP stack.

Prototype Name

void *rmap_init(struct rmap config *config)

int rmap ioctl(void *cookie, int command, void *arg)

int rmap_send(void *cookie, struct rmap command *cmd)

int rmap write(void *cookie, void *dst, void *buf, int length, int dstadr, int dstkey)

int rmap_read(void *cookie, void *src, void *buf, int length, int dstadr, int dstkey)

unsigned char rmap_crc_calc(unsigned char *data, unsigned int len)

Table 13: RMAP stack function prototypes

4.7.2.1.1 rmap_init

The RMAP stack must be initialized before other function may be called. Calling rmap init
initializes the RMAP stack. During the initialization the RMAP stack is configured as described by

the rmap_config data structure, see the data structures section.

If successful, rmap init will return a non-zero value later used as input argument (cookie) in
other RMAP stack functions. The cookie is needed in order to support multiple RMAP stacks in

parallel, the cookie identify a certain stack.

If the RMAP stack fail to initialize zero is returned.

The rmap_config structure is described in table 2.

4.7.2.1.2 rmap_ioctl

Set run-time options such as blocking, time out, get configuration and operating the stack such

as starting and stopping the communication link.

This function is not thread-safe.

If successful zero is returned.

4.7.2.1.3 rmap_send

Execute a command by sending the command, then wait for the response if a response is
expected. This function will block until the response is received or if the timeout is expired. The
timeout functionality may not be supported by the RMAP driver.

Note that when the RMAP stack is in non-blocking mode the stack will not wait for the response,
however if the response is available the response is handled. If the response wasn't received -2 is
returned.

Note that if the RMAP driver does not support CRC generation a byte will be written after the
data provided by the user, please see zero-copy section.

If an error occurs -1 is returned. On success 0 is returned. Note that even though the RMAP
request failed the RMAP stack may return zero, the RMAP status indicates the error response of
the target, see the rmap command structure in the data structures section.

4.7.2.1.4 rmap_crc_calc

This function is a help function used by the RMAP stack to calculate the CRC of the header and
data when CRC generation is not provided by the RMAP driver.

4.7.2.1.5 rmap_write and rmap_read

The read and write functions are example functions that implement the most common read and
write operations. The function will call rmap send to execute the read and write request.

(\EROFLEX

GR-RTEMS-DRIVER 37 GAISLER

5 SpaceWire Network model

5.1 INTRODUCTION

This document describes the SpaceWire bus driver used to write device drivers for a SpaceWire
Node accessed over SpaceWire with RMAP.

5.2 OVERVIEW

In order to provide a standardized way of writing drivers for Nodes on a SpaceWire network and
to improve code reuse a Bus driver for a SpaceWire network as been written. The bus driver is
written using the concepts of the Driver Manager.

The SpaceWire Bus driver provides services to the nodes in the network, some of the services are
listed below:

- Read/Write access to target (Using the RMAP protocol)
+ Interrupt handling
+ Per node resources

The hardware topology is organized by the driver manager's bus and device trees, the SpaceWire
bus driver is attached to the SpaceWire core providing the actual SpaceWire interface in order to
maintain the hardware topology. It is important that the on-chip devices and drivers are loaded
and initialized before the SpaceWire network as the SpaceWire network depends on the on-chip
devices. The bus driver initialization is controlled and started by the user after the driver
manager has initialized the on-chip bus.

The SpaceWire driver requires the SpaceWire RMAP stack to perform read and write access to
the SpaceWire Target Nodes.

The driver support Logical SpaceWire Addressing only at this point.

5.3 REQUIREMENTS

The SpaceWire network must be Logical addressed and the SpaceWire bus driver requires the
RMAP stack for target node access.

5.4 NODE DESCRIPTION

The SpaceWire bus driver is a driver for the devices on the SpaceWire bus, in this particular case
a device is called a SpaceWire Node, a node is described by the data structure spw node. Each
node has a Node ID, a name, and a list of optional keys. A SpaceWire node has the following
configurable elements:

« Node ID (connected to driver)
+ Node Name

- SpaceWire Destination key

+ SpaceWire Node Address

IRQ setup (up to four IRQs)

(\EROFLEX

GR-RTEMS-DRIVER 38 GAISLER

5.4.1 The Node ID

The Node ID identifies a type of target, not a certain Node. The Node ID in combination with the
node index on the bus creates a Unique identifier. The Node ID is used to identify a driver that
can handle the node. The node index is taken from the index in the Node table.

The NodelDs are defined in spw _bus ids.h.

5.5 READ AND WRITE OPERATION

A SpaceWire target Node's memory and registers are accessed using RMAP commands. The
RMAP protocol is implemented by the RMAP stack in a separate module.

The driver manager provide read and write operations to registers and memory for drivers, the
SpaceWire Bus driver implements them for the SpaceWire bus. A node driver calls the standard
read and write operations which are translated into a SpaceWire bus read/write which is
implemented using the RMAP stack. All operations are blocking until data is available, the return
value indicates it the transfer was successful or not.

5.6 INTERRUPT HANDLING

The RMAP protocol does not support interrupt handling, this is instead implemented by an
separate interrupt line, the interrupt handling is an optional feature per SpaceWire node. Each
SpaceWire node may have up to four interrupts connected to interrupt capable GPIO pins.

The user must setup a Virtual Interrupt Table, the table entries provide a way for the bus driver
to translate a Virtual IRQ number to a GPIO pin. The GPIO pin is used to connect to the IRQ and
receive the interrupt. In the node description a node may for example define it's IRQ1 to be
connected to the SpaceWire bus Virtual IRQ 2, which in turn is connected to GPIO5.

Setting up and controlling interrupts for node drivers are similar to a on-chip device driver,
however the interrupt service routine must take more things in to account. The ISR is expected
to read and write to the node's registers over the SpaceWire bus, that would require that
SpaceWire bus is not busy and that the SpaceWire request is executed very fast, non of these
assumptions can be made. The ISR can thus not execute in interrupt context, instead a high
priority ISR task is managed by the SpaceWire bus driver. This way the ISR can access the node
over SpaceWire, however extra care must be taken in the node driver to avoid conflicts and races
when the ISR is executing as a task, instead of locking interrupt as in tradition drivers one may
use a semaphore to protect the critical regions.

5.7 USING THE SPACEWIRE BUS DRIVER

The SpaceWire bus is registered to the driver manager for each SpaceWire network by calling
the spw bus register() function with a configuration description. The configuration describe the
nodes on the network, IRQ setup, driver resources on the SpaceWire network and a RMAP stack
handle used to communicate with the target nodes.

The SpaceWire bus is attached to a on-chip GRSPW driver, the core that provides access to the
SpaceWire bus via the RMAP stack.

There is an example of how to configure and use the SpaceWire bus driver in config spw_bus.c.

SpaceWire Node drivers must set the bus type to DRVMGR BUS TYPE SPW RMAP and define
an array with all devices nodes that are supported by the driver. The AMBA PnP RMAP may be
considered as an example node driver.

(\EROFLEX

GR-RTEMS-DRIVER 39 GAISLER

6 AMBA over SpaceWire

6.1 INTRODUCTION

This document describes the AMBA Plug&Play bus driver used to write device drivers for AMBA
cores accessed over SpaceWire. The driver rely on the SpaceWire network bus driver.

6.2 OVERVIEW

The AMBA Plug&Play bus driver for the SpaceWire network is a generic driver for all GRLIB
systems by using the Plug&Play functionality provided by GRLIB systems. The address of the
Plug&Play area start address is configurable. The driver is a driver for a SpaceWire Node on a
SpaceWire Network.

The system is accessed using RMAP commands and interrupt handling is performed when the
IRQMP core is found.

The services provided to device drivers on the AMBA bus accessed over SpaceWire are listed
below:

+ AMBA Plug&Play scanning over SpaceWire

+ Interrupt management (driver for IRQMP)

« Read and Write registers and memory over SpaceWire

+ Memory allocating (ambapp_rmap_partition_memalign())

« Driver resources

6.3 REQUIREMENTS

The SpaceWire bus driver is required.

6.4 INTERRUPT HANDLING

See the interrupt service routine of the AMBA Plug&Play bus is executed on the SpaceWire bus
driver's ISR task. See the SpaceWire Bus driver's documentation about the constraints of the
interrupt handling.

6.5 MEMORY ALLOCATION ON TARGET

Two functions are provided by the AMBA RMAP driver to simplify memory allocation of target
memory, ambapp _rmap_partition _create() and ambapp _rmap_partition_ memalign().

A partition symbolize a memory area with certain properties. For example, partition 0 might be
SRAM and partition 1 might be on-chip RAM. A memory controller driver typically registers a
partition after it has initialized the memory controller and perhaps washed the memory, other
drivers may then request memory from a certain partition. The partition number that a driver
request memory from may be configured from driver resources making it possible for the user to
easily control which parts of the memory is used. For example a descriptor table may be required
to be located in on-chip RAM.

(\EROFLEX

GR-RTEMS-DRIVER 40 GAISLER

Drivers request memory with memory alignment requirements by calling
ambapp rmap_partition memalign(). The device structure is passed along when -creating
partitions and when allocating memory, making it possible for the AMBA RMAP bus driver to
allocate memory from the same bus.

6.6 DIFFERENCES BETWEEN ON-CHIP AMBA DRIVERS

There some differences when writing drivers for a remote target accessed over SpaceWire using
the AMBA RMAP driver, this section identifies the most common differences.

+ Read and Write access (memory and registers) must be through functions rather than
direct, functions are provided

« Error handling of failed read/write accesses, this may also be handled on a global level (by
the SpaceWire bus driver)

+ Memory allocation of target memory

« ISR may block (executed in task context)

« Lock out ISR method is different

« Drivers must set bus type to DRVMGR BUS TYPE AMBAPP RMAP

7 SPARC/LEON PCI DRIVERS

7.1 INTRODUCTION

This section describes PCI Host support in RTEMS for SPARC/LEON processors. The supported
PCI Host hardware are listed below

« GRPCI2

« GRPCI

- PCIF

« AT697 PCI

The PCI drivers require the Driver Manager and PCI Library available in the Aeroflex Gaisler
RTEMS distribution. The PCI Library documentation is available in the doc/user directory in the
Aeroflex Gaisler RTEMS source distribution. Note that the PCI Library is not available in the
official RTEMS distribution.

7.1.1 Examples

There is a simple example available that initializes the PCI Bus, lists the PCI configuration and
demonstrates how to write a PCI device driver. The example is part of the Aeroflex Gaisler
RTEMS distribution, it can be found under /opt/rtems-4.10/src/samples/rtems-pci.c. The rtems-
shell.c sample found in the same directory also demonstrates PCI with RTEMS, note that there is
a pci command which can be used to get information about the PCI set up.

7.2 SOURCES

The drivers can be found in the RTEMS SPARC BSP shared directory and in the LEON2 BSP. See
table below.

Location Description
.../libbsp/sparc/leon2/pci/at697 pci.c AT697 PCI
.../libbsp/sparc/shared/pci/grpci2.c GRPCI2
.../libbsp/sparc/shared/pci/grpci.c GRPCI

.../libbsp/sparc/shared/pci/pcif.c GRLIB PCIF, ACTEL PCI AMBA wrapper
cpukit/libpci PCI Library

cpukit/libpci/pci bus.* PCI Bus driver for driver manager
doc/user/libpci.t PCI Library documentation

Table 14: PCI driver source location

7.3 CONFIGURATION

The PCI interrupt assignment can be configured to override the Plug & Play information. The PCI
driver is configured using any combination of the driver resources in the table below, see
samples or driver manager documentation how driver resources are assigned.

Name Type | Parameter description

INTA# INT Select system IRQ for PCI interrupt pin INTA#
INTB# INT Select system IRQ for PCI interrupt pin INTB#
INTC# INT Select system IRQ for PCI interrupt pin INTC#
INTD# INT Select system IRQ for PCI interrupt pin INTD#

Table 15: PCI Host driver parameter description

7.3.1 GRPCI

GRLIB designs using the GRPCI PCI Host bridge has in addition to the INTX# configuration
options the below options.

Name Type | Parameter description
tgtbarl INT PCI target Base Address Register (BAR) 0 (defaults is 0x40000000)
byteTwisting INT Enable (1) or Disable (0=default) PCI bytes twisting

7.3.2 GRPCI2

GRLIB designs using the GRPCI2 PCI Host bridge has in addition to the INTX# configuration
options the below options.

The GRPCI2 host has up to 6 BARs, each with a configurable size. The driver uses only the first
BAR by default, it is set to start of RTEMS RAM memory and 256MBytes. The tgtBarCfg option is
an address to an array of 6 struct grpci2 pcibar cfg descriptions, each describing one BAR's size
and PCI address and AMBA address the PCI access is translated into. Thus, the programmer has
full flexibility of where DMA capable PCI targets should access. A size of 0 disables the BAR, see
grpci2.h for the structure definition.

Name Type | Parameter description
tgtBarCfg PTR PCI target Base Address Registers (BAR) configuration
byteTwisting INT Enable (1) or Disable (O=default) PCI bytes twisting

7.3.3 AT697

The AT697 PCI Host driver has additional configuration parameters to set up interrupts which is
routed through GPIO pins. The GPIO registers will be configured, and when a PCI target driver
enables/disables IRQ the system IRQ will be unmasked/masked.

Name Type | Parameter description

INTA# PIO INT Select PIO pin connected to PCI interrupt pin INTA#
INTB# PIO INT Select PIO pin connected to PCI interrupt pin INTB#
INTC# PIO INT Select PIO pin connected to PCI interrupt pin INTC#
INTD# PIO INT Select PIO pin connected to PCI interrupt pin INTD#

The two AT697 PCI target BARs are configurable from driver resources as below. A PCI target
BAR determines at which PCI address the AT697 AMBA space is accessed on, the AT697 has two
16Mbytes base address registers. The default value is set to 0x40000000 (base of SRAM) and
0x60000000 (base of SDRAM).

Name Type | Parameter description
tgtbarl INT PCI target Base Address Register (BAR) 0
tgtbar2 INT PCI target Base Address Register (BAR) 1

7.4 USER INTERFACE

The PCI drivers are not accessed directly instead the user calls the PCI Library that translates
into a call to the active PCI host driver. When the drivers are initialized they register a backend
to the PCI library, all PCI devices are initialized using the PCI configuration library, then a PCI
Bus is registered which is implemented on top of the PCI Library. That way the PCI Bus is
independent of PCI host driver. The driver manager will find all PCI devices and assign a suitable
driver for them, and so on.

Please see the PCI Library documentation.

7.4.1 PCI Address space

The PCI Library supports the following PCI address spaces:
- 16-bit I/O Space (I0)
- non-prefetchable memory space (MEMIO)
« prefetchable memory space (MEM)
- configuration space (CFG)

On LEON hardware the address spaces are accessed over dedicated AHB areas as ordinary
AMBA memory accesses and it will be transformed into appropriate PCI access type depending
on which AHB area (window) was accessed and of which AMBA access type (burst, single
access). Note that LEON hardware have only one memory window which can do both MEM and
MEMIO access types, so the PCI Library is configured with one MEMIO Window. No special
instructions are required to access I/O or configuration space. The location of the PCI Windows
are determined by looking at AMBA plug and play information for the PCI Host core. The AT697
PCI MEM Window is defined to 0xA0000000-0xF0000000.

The PCI Library is informed about the PCI windows location and size. PCI BARs are allocated
within the MEM, MEMIO and I/O windows.

7.4.2 PCI Interrupt

For every PCI target board found by the PCI Library the PCI driver is asked to provide a system
IRQ for the target's PCI Interrupt pin number. The interrupt is normally taken from AMBA Plug &
Play interrupt number assigned to the PCI Host hardware itself. However it can be overridden
using driver resources as described in section 7.3.

After the PCI Library has allocated memory for all targets BARs and assigned IRQ. The PCI bus
driver can access the IRQ number from configuration space and connect a PCI Target driver with
its system interrupt source. The PCI target drivers use the Driver Manager interrupt register
routine.

When a PCI target driver enable interrupt using the Driver Manager interrupt enable routine, the
system IRQ for the PCI target is unmasked. AT697 PCI interrupt is not routed through the PCI
core but through user selectable GPIO. Enabling IRQ will only cause the system IRQ to be
unmasked, the PCI driver will not change GPIO parameters, this is required by the user to set up.
PClI is level triggered.

PCI interrupts must be acknowledge after being handled to ensure that the interrupt handler is
not executed twice. The Driver Manager interrupt clear routine can be used to clear the pending

bit in the LEON interrupt controlled after the interrupt has been handled by the PCI target
Driver.

When the LEON takes the PCI IRQ the LEON IRQ controller is acknowledged, however the PCI
target is still driving the IRQ line causing the LEON IRQ controller being set once again. This is
because PCI is level triggered (level is still low), the other IRQs on the LEON is edge triggered.
The solution is to acknowledge the LEON IRQ controller after the PCI target has stop driving the
PCI IRQ line, only then will the driver be able to stop the last already handled IRQ to occur. This
must be done in the PCI ISR of the target device driver after the hardware causing the IRQ has
been acknowledge.

7.4.3 PCI Endianess

The PCI bus is defined little-endian whereas the SPARC and AMBA bus are defined big-endian,
this imposes a problem where the CPU has to byte-swap the data in PCI accesses. The GRPCI and
GRPCI2 host controllers has support for doing byte-swapping in hardware for us,, it is
enabled/disabled using the byteTwisting configuration option. The AT697 PCI and PCIF does not
have this option, the software defaults to the PCI bus being non-standard big-endian instead.
Please see more information about this in hardware manuals and the PCI Library documentation.

(\EROFLEX

GR-RTEMS-DRIVER 45 GAISLER

8 GR-RASTA-ADCDAC PCI TARGET

This section describes the GR-RASTA-ADCDAC PCI target driver.

The GR-RASTA-ADCDAC driver require the RTEMS Driver Manager and that the PCI bus is big
endian.

The GR-RASTA-ADCDAC driver is a bus driver providing an AMBA Plug & Play bus. The driver
first sets up the target PCI register such as PCI Master enable and the address translation
registers. Once the PCI target is set up the driver creates an ambapp bus that scans the bus and
assigns the appropriate drivers. This driver provides interrupt handling and memory address
translation on the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the GR-RASTA-ADCDAC driver can be assigned
by calling gr rasta adcdac set resource as defined by gr rasta adcdac.h.

The driver resources of the AMBA bus created by the GR-RASTA-ADCDAC driver can be assigned
by overriding the weak default bus resource array gr rasta adcdac resources[] of the driver. It
contains a array of pointers to bus resources where index=N determines the bus resources for
GR-RASTA-ADCDACIN] board. The array is declared in gr rasta adcdac.h. The driver resources
can be used to set up the memory parameters, configure locations of the DMA areas and other
parameters of GRCAN, GRADCDAC and all other supported cores. Please see respective driver
for available configuration options.

(\EROFLEX

GR-RTEMS-DRIVER 46 GAISLER

9 GR-RASTA-IO PCI TARGET

This section describes the GR-RASTA-IO PCI target driver.
The GR-RASTA-IO driver require the RTEMS Driver Manager and that the PCI bus is big endian.

The GR-RASTA-IO driver is a bus driver providing an AMBA Plug & Play bus. The driver first sets
up the target PCI register such as PCI Master enable and the address translation registers. Once
the PCI target is set up the driver creates an ambapp bus that scans the bus and assigns the
appropriate drivers. This driver provides interrupt handling and memory address translation on
the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the GR-RASTA-IO driver can be assigned by
overriding the weak default bus resource array gr rasta io resources[] of the driver. It contains a
array of pointers to bus resources where index=N determines the bus resources for GR-RASTA-
IO[N] board. The array is declared in gr rasta io.h. The driver resources can be used to set up
the memory parameters and configure locations of the DMA areas of 1553BRM, GRCAN, GRSPW
cores. Please see respective driver for available configuration options.

(\EROFLEX

GR-RTEMS-DRIVER 47 GAISLER

10 GR-RASTA-TMTC PCI TARGET

This section describes the GR-RASTA-TMTC PCI target driver.

The GR-RASTA-TMTC driver require the RTEMS Driver Manager and that the PCI bus is big
endian.

The GR-RASTA-TMTC driver is a bus driver providing an AMBA Plug & Play bus. The driver first
sets up the target PCI register such as PCI Master enable and the address translation registers.
Once the PCI target is set up the driver creates an ambapp bus that scans the bus and assigns
the appropriate drivers. This driver provides interrupt handling and memory address translation
on the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the GR-RASTA-TMTC driver can be assigned by
overriding the weak default bus resource array gr rasta tmtc resources[] of the driver. It
contains a array of pointers to bus resources where index=N determines the bus resources for
GR-RASTA-TMTC[N] board. The array is declared in gr rasta tmtc.h. The driver resources can be
used to set up the memory parameters and configure locations of the DMA areas of GRTC,
GRTM, GRSPW cores. Please see respective driver for available configuration options.

(\EROFLEX

GR-RTEMS-DRIVER 48 GAISLER

11 GR-RASTA-SPW_ROUTER PCI TARGET

This section describes the GR-RASTA-SPW ROUTER PCI target driver.

The GR-RASTA-SPW _ROUTER driver require the RTEMS Driver Manager and that the PCI bus is
big endian.

The GR-RASTA-SPW-ROUTER driver is a bus driver providing an AMBA Plug & Play bus. The
driver first sets up the target PCI register such as PCI Master enable and the address translation
registers. Once the PCI target is set up the driver creates an ambapp bus that scans the bus and
assigns the appropriate drivers. This driver provides interrupt handling and memory address
translation on the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the GR-RASTA-SPW ROUTER driver can be
assigned by overriding the weak default bus resource array gr rasta spw router resources[] of
the driver. It contains a array of pointers to bus resources where index=N determines the bus
resources for GR-RASTA-SPW ROUTERI[N] board. The driver resources can be used to set up the
memory parameters and configure locations of the DMA areas of GRSPW2 AMBA port cores.
Please see GRSPW driver documentation for available configuration options.

(\EROFLEX

GR-RTEMS-DRIVER 49 GAISLER

12 GR-CPCI-LEON4-N2X PCI Peripheral

This section describes the GR-CPCI-LEON4-N2X PCI peripheral driver.

The GR-CPCI-LEON4-N2X driver require the RTEMS Driver Manager and that the PCI bus is big
endian.

The GR-CPCI-LEON4-N2X driver is a bus driver providing an AMBA Plug & Play bus. The driver
first sets up the target PCI register such as PCI Master enable and the address translation
registers. The clock gating unit is by default set up so that all functionality is enabled. Once the
PCI target is set up the driver creates an ambapp bus that scans the bus and assigns the
appropriate drivers. This driver provides interrupt handling and memory address translation on
the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the driver can be assigned by overriding the
weak default bus resource array gr cpci leon4 n2x resources[] of the driver. It contains a array
of pointers to bus resources where index=N determines the bus resources for GR-CPCI-LEON4-
N2X[N] board. The array is declared in gr cpci leon4 n2x.h. The driver resources can be used to
set up the memory parameters and for configuring other driver options such as the base DMA
area address of the SpaceWire cores. Please see respective driver for available configuration
options.

12.1 DRIVER REGISTRATION

The driver must be registered to the driver manager by adding the
CONFIGURE DRIVER PCI GR LEON4 N2X define in the RTEMS project configuration. This
process is described in the driver manager chapter.

12.2 DRIVER RESOURCE CONFIGURATION

The driver can be configured using driver resources as described in the driver manager chapter.
Below is a description of configurable driver parameters. The driver parameters is unique per
PCI device and configured in the PCI bus driver resources array. The parameters are all optional,
the parameters only overrides the default values. However the ambaFreq paramter is typically
required.

Name Type | Parameter description
ahbmst2pci | INT PCI base address of the 1Gbyte AMBA->PCI window. Default to RAM start
address.

ambaFreq INT Frequency in Hz of the LEON4-N2X AMBA bus. Defaults to 200MHz.

cgEnMask INT Clock gating enable/disable mask. Each bit in the mask corresponds to one
bit the the clock gate unit (one clock tree), set to 1 to enable or 0 to
disable individual clock trees.

bar0 INT PCI target BARO AMBA access address. Defaults to 0x00000000 (L2-cache
main memory)

barl INT PCI target BAR1 AMBA access address. Defaults to 0xf0000000 (L2-cache
registers)

Table 16: GR-CPCI-LEON4-N2X driver parameter description

(\EROFLEX

GR-RTEMS-DRIVER 50 GAISLER

13 Gaisler SpaceWire (GRSPW)

13.1 INTRODUCTION

This document is intended as an aid in getting started developing with Gaisler GRSPW
SpaceWire core using the GRSPW driver for RTEMS. It briefly takes the reader through some of
the most important steps in using the driver such as setting up a connection, configuring the
driver, reading and writing packets. The reader is assumed to be well acquainted with SpaceWire
and RTEMS.

The cores supported are GRSPW, GRSPW2 and SpaceWire Router DMA interface.
The GRSPW driver require the RTEMS Driver Manager.
See the GRLIB IP Core User's Manual for GRSPW hardware details.

13.1.1 Software driver

The driver provides means for processes and threads to send and receive packets. Link errors
can be detected by polling or by using a dedicated task sleeping until a link error is detected.

The driver is somewhat similar to an Ethernet driver. However, an Ethernet driver is referenced
by an IP stack layer. The IP stack can detect missing or erroneous packets, since the user talks
directly with the GRSPW driver it is up to the user to handle errors. The driver aims to be fully
user space controllable in contrast to Ethernet drivers.

13.1.2 Examples

There is a example of how to use the GRSPW driver distributed together with the driver. The
example demonstrates some fundamental approaches to access and use the driver. It is made up
of two tasks communicating with each other through two SpaceWire devices. To be able to run
the example one must have two GRSPW devices connected together on the same board or two
boards with at least one GRSPW core on each board.

13.1.3 Support

For support, contact the Gaisler Research support team at support@gaisler.com

13.2 USER INTERFACE

The RTEMS GRSPW driver supports the standard access routines to file descriptors such as read,
write and ioctl. User applications should include the grspw driver's header file which contains
definitions of all necessary data structures used when accessing the driver. The RTEMS GRSPW
sample is called rtems-spwtest-2boards.c and it is provided in the Gaisler Research RTEMS
distribution.

13.2.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The RTEMS [/O driver registration is performed
automatically by the driver when GRSPW hardware is found for the first time. The driver is called
from the driver manager to handle detected GRSPW hardware. In order for the driver manager to
unite the GRSPW driver with the GRSPW hardware one must register the driver to the driver

mailto:support@gaisler.com

(\EROFLEX

GR-RTEMS-DRIVER 51 GAISLER

manager. This process is described in the driver manager chapter.

13.2.2 Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter.
Below is a description of configurable driver parameters. The driver parameters is unique per
GRSPW device. The parameters are all optional, the parameters only overrides the default
values.

Name Type | Parameter description

txBdCnt INT Number of transmit descriptors.

rxBdCnt INT Number of receive descriptors.

txDataSize INT Maximum transmit packet data size.

txHdrSize INT Maximum transmit packet header size.

rxPktSize INT Maximum packet size of received packets.

rxDmaArea INT Custom receiver DMA area address. See note below.
txDataDmaAre | INT Custom transmit Data DMA area address. See note below.
a

txHdrDmaAre | INT Custom transmit Header DMA area address. See note below.
a

Table 17: GRSPW driver parameter description

13.2.2.1 Custom DMA area parameters

The three DMA areas can be configured to be located at a custom address. The standard
configuration is to leave it up to the driver to do dynamic allocation of the areas. However in
some cases it may be required to locate the DMA area on a custom location, the driver will not
allocate memory but will assume that enough memory is available and that the alignment needs
of the core on the address given is fulfilled. The memory required can be calculated from the
other parameters.

For some systems it may be convenient to give the addresses as seen by the GRSPW core. This
can be done by setting the LSB bit in the address to one. For example a GR-RASTA-IO board with
a GRSPW core doesn't read from the same address as the CPU in order to access the same data.
This is dependent on the PCI mappings. Translation between CPU and GRPSW addresses must be
done. The GRSPW driver automatically translates addresses in the descriptors. This requires the
bus driver, in this case the GR-RASTA-IO driver, to set up translation addresses correctly.

13.2.3 Opening the device

Opening the device enables the user to access the hardware of a certain GRSPW device. Open
reset the SpaceWire core and reads reset values of certain registers. With the ioctl command
START it is possible to wait for the link to enter run state. The same driver is used for all GRSPW
devices available. The devices are separated by assigning each device a unique name, the name
is passed during the opening of the driver. Some example device names are printed out below.

(\EROFLEX

GR-RTEMS-DRIVER 52 GAISLER
Device number Filesystem name Location

0 /dev/grspw0 On-Chip Bus

1 /dev/grspwl On-Chip Bus

2 /dev/grspw?2 On-Chip Bus

Depends on system configuration | /dev/rastaioO/grspwO GR-RASTA-IO

Depends on system configuration |/dev/rastatmtcO/grspwl GR-RASTA-TMTC

Table 18: Device number to device name conversion.

An example of an RTEMS open call is shown below.
fd = open("/dev/grspwo", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 17.

Errno Description

EINVAL Illegal device name or not available
EBUSY Device already opened

EIO Error when writing to grspw registers.

Table 19: Open errno values.

13.2.4 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)
Close always returns 0 (success) for the SpaceWire driver.

13.2.5 I/O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most
operating systems support at least two arguments to ioctl, the first being an integer which
selects ioctl function and secondly a pointer to data that may be interpreted uniquely for each
function. A typical ioctl call definition:

int ioctl(int fd, int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

The commands may differ slightly between the operating systems but is mainly the same. The
unique ioctl commands are described last in this section.

All supported commands and their data structures are defined in the GRSPW driver's header file
grspw.h. In functions where only one argument in needed the pointer (void *arg) may be
converted to an integer and interpreted directly, thus simplifying the code.

(\EROFLEX

GR-RTEMS-DRIVER 53 GAISLER

13.2.5.1 Data structures

The spw ioctl packetsize data structure is used when changing the size of the driver's receive
and transmit buffers.

typedef struct {
unsi gned int rxsize;
unsi gned int txdsize;
unsi gned int txhsize;
} spw_ioctl _packetsi ze;

Member Description

rxsize Sets the size of the receiver descriptor buffers.
txdsize Sets the size of the transmitter data buffers.
txhsize Sets the size of the transmitter header buffers.

Table 20: spw_ioctl_packetsize member descriptions.

The spw ioctl pkt send struct is used for transmissions through the ioctl call. Se the
transmission section for more information. The sent variable is set by the driver when returning
from the ioctl call while the other are set by the caller.

typedef struct {
unsi gned int hlen;
char *hdr;
unsi gned int dlen;
char *dat a;
unsi gned int sent;
} spw.ioctl _pkt_ send;

Member Description

hlen Number of bytes that shall be transmitted from the header buffer
hdr Pointer to the header buffer.

dlen Number of bytes that shall be transmitted from the data buffer.
data Pointer to the data buffer.

sent Number of bytes transmitted.

Table 21: spw_ioctl_pkt_send member descriptions.

The spw_stats struct contains various statistics gathered from the GRSPW.

(\EROFLEX

GR-RTEMS-DRIVER 54 GAISLER
typedef struct {

unsigned int tx_link err;
unsigned int rx_rmap_header _crc_err;
unsigned int rx_rmap_data_crc_err;
unsigned int rx_eep_err;
unsi gned int rx_truncated;
unsigned int parity err;
unsi gned int escape_err;
unsigned int credit_err;
unsigned int wite_sync_err;
unsi gned int di sconnect _err;
unsigned int early_ep;
unsigned int invalid_address;
unsi gned i nt packets_sent;
unsi gned i nt packets_received,;

} spw stats;

Member Description

tx link err Number of link-errors detected during transmission.

rx rmap header crc err

Number of RMAP header CRC errors detected in received
packets.

rx_rmap data crc_err

Number of RMAP data CRC errors detected in received packets.

rx_eep _err

Number of EEPs detected in received packets.

rx_truncated

Number of truncated packets received.

parity err Number of parity errors detected.
escape_err Number of escape errors detected.
credit err Number of credit errors detected.

write sync_err

Number of write synchronization errors detected.

disconnect_err

Number of disconnect errors detected.

early ep

Number of packets received with an early EOP/EEP.

invalid address

Number of packets received with an invalid destination address.

packets _sent

Number of packets transmitted.

packets received

Number of packets received.

Table 22: spw_stats member descriptions.

The spw_config structure holds the current configuration of the GRSPW.

GR-RTEMS-DRIVER

55

(\EROFLEX

GAISLER

typedef struct {

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
rtems_id

unsi gned
unsi gned
unsi gned

I nt
int
int
int
int
i nt
int
int
i nt
i nt
int
int
i nt

int
int
int
int
i nt
i nt
int

nodeaddr ;
dest key;

cl kdi v;

r xmax!| en;
tinmer;

di sconnect;
prom scuous;
ti met xen
timerxen;

r mapen;

r mapbuf di s;
|'i nkdi sabl ed,;
linkstart;

check_rmap_err;
rmprot _id;

t x_bl ocki ng;
tx_block on full;
r x_bl ocki ng;

di sable_err;
link_err_irq;

event _id;

i nt
int
int

} spw_config;

is_rmap;
i s_rxunal i gned;
i s_rmapcrc;

(\EROFLEX

GR-RTEMS-DRIVER 56 GAISLER
Member Description
nodeaddr Node address.
destkey Destination key.
clkdiv Clock division factor.
rxmaxlen Receiver maximum packet length
timer Link-interface 6.4 us timer value.
disconnect Link-interface disconnection timeout value.
promiscuous Promiscuous mode.
rmapen RMAP command handler enable.
rmapbufdis RMAP multiple buffer enable.
linkdisabled Linkdisabled.
linkstart Linkstart.

check rmap error

Check for RMAP CRC errors in received packets.

rm prot id

Remove protocol ID from received packets.

tx_blocking

Select between blocking and non-blocking transmissions.

tx block on full

Block when all transmit descriptors are occupied.

rx_blocking

Select between blocking and non-blocking receptions.

disable err

Disable Link automatically when link-error interrupt occurs.

link err irq

Enable link-error interrupts.

event id

Task ID to which event is sent when link-error interrupt occurs.

is rmap

RMAP command handler available.

is rxunaligned

RX unaligned support available.

is_rmapcrc

RMAP CRC support available.

Table 23: spw_config member descriptions.

13.2.5.2 Configuration

The GRSPW core and driver are configured using ioctl calls. Table 19 below lists all supported
ioctl calls common to most operating systems. SPACEWIRE IOCTRL should be concatenated
with the call number from the table to get the actual constant used in the code. Return values for
all calls are O for success and -1 for failure. Errno is set after a failure as indicated in table 18.

An example is shown below where the node address of a device previously opened with open is
set to 254 by using an ioctl call:

result = ioctl(fd, SPACEW RE_|I OCTRL_SET_NODEADDR, OXFE);

Operating system specific calls are described last in this section.

(\EROFLEX

GR-RTEMS-DRIVER 57 GAISLER

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY Only used for SEND. Returned when no descriptors are available in non-blocking
mode.

ENOSYS Returned for SET DESTKEY if RMAP command handler is not available or if a
non-implemented call is used.

ETIMEDOUT Returned for SET PACKETSIZE and START if the link could not be brought up.

ENOMEM Returned for SET PACKETSIZE if it was unable to allocate the new buffers.

EIO Error when writing to grspw hardware registers.

Table 24: ERRNO values for ioctl calls.

GR-RTEMS-DRIVER

(\EROFLEX

58 GAISLER

Call Number

Description

START

Bring up link after open or STOP

STOP

Stops the SpaceWire receiver and transmitter, this makes the following
read and write calls fail until START is called.

SET NODEADDR

Change node address.

SET RXBLOCK

Change blocking mode of receptions.

SET DESTKEY

Change destination key.

SET CLKDIV

Change clock division factor.

SET TIMER

Change timer setting.

SET DISCONNECT

Change disconnection timeout.

SET COREFREQ

Calculates TIMER and DISCONNECT from a user provided SpaceWire
core frequency. Frequency is given in KHz.

SET PROMISCUOUS

Enable/Disable promiscuous mode.

SET RMAPEN

Enable/Disable RMAP command handler.

SET RMAPBUFDIS

Enable/Disable multiple RMAP buffer utilization.

SET CHECK _RMAP

Enable/Disable RMAP CRC error check for reception.

SET RM PROT ID

Enable/Disable protocol ID removal for reception.

SET TXBLOCK

Change blocking mode of transmissions.

SET TXBLOCK ON_FULL

Change the blocking mode when all descriptors are in use.

SET DISABLE ERR

Enable/Disable automatic link disabling when link error occurs.

SET LINK ERR IRQ

Enable/Disable link error interrupts.

SET PACKETSIZE

Change bulffer sizes.

GET LINK STATUS

Read the current link status.

SET CONFIG

Set all configuration parameters with one call.

GET _CONFIG

Read the current configuration parameters.

GET_STATISTICS

Read the current configuration parameters.

CLR STATISTICS

Clear all statistics.

SEND Send a packet with both header and data buffers.
LINKDISABLE Disable the link.
LINKSTART Start the link.

SET EVENT ID

Change the task ID to which link error events are sent.

SET TCODE_CTRL

Control timecode interrupt and timecode reception/transmission enable

SET TCODE

Optionally set timecode register and optionally generate a tick-in

GET TCODE

Read GRSPW timecode register (get last timecode received)

Table 25: ioctl calls supported by the GRSPW driver.

13.2.5.2.1 START

This call try to bring the link up. The call returns successfully when the link enters the link state
run. START is typically called after open and the ioctl commands SET DISCONNECT,

(\EROFLEX

GR-RTEMS-DRIVER 59 GAISLER

SET TIMER or SET COREFREQ. Calls to write or read will fail unless START is successfully
called first.

Argument Timeout function

-1 Default hard coded driver timeout. Can be set with a define.

less than -1 Wait for link forever, the link is checked every 10 ticks

0 No timeout is used, if link is not up when entering START the call will fail with
errno set to EINVAL.

positive The argument specifies the number of clock ticks the driver will wait before START
returns with error status. The link is checked every 10 ticks.

Table 26: START argument description

13.2.5.2.2 STOP

STOP disables the GRSPW receiver and transmitter it does not effect link state. After calling
STOP subsequent calls to read and write will fail until START has successfully returned. The call
takes no arguments. STOP never fail.

13.2.5.2.3 SET_NODEADDR

This call sets the node address of the device. It is only used to check the destination of incoming
packets. It is also possible to receive packets from all addresses, see SET PROMISCUOUS.

The argument must be an integer in the range 0 to 255. The call will fail if the argument contains
an illegal value or if the register can not be written.

13.2.5.2.4 SET_RXBLOCK

This call sets the blocking mode for receptions. Setting this flag makes calls to read blocking
when there is no available packets. If the flag is not set read will return EBUSY when there are
no incoming packets available.

The argument must be an integer in the range 0 to 1. 0 selects non blocking mode while 1 selects
blocking mode. The call will fail if the argument contains an illegal value.

13.2.5.2.5 SET_DESTKEY

This call sets the destination key. It can only be used if the RMAP command handler is available.
The argument must be an integer in the range 0 to 255. The call will fail if the argument contains
an illegal value, if the RMAP command handler is not available or if the register cannot be
written.

13.2.5.2.6 SET_CLKDIV

This call sets the clock division factor used in the run-state. The argument must be an integer in
the range 0 to 255. The call will fail if the argument contains an illegal value or if the register
cannot be written.

(\EROFLEX

GR-RTEMS-DRIVER 60 GAISLER

13.2.5.2.7 SET_TIMER

This call sets the counter used to generate the 6.4 and 12.8 us time-outs in the link-interface
FSM. The argument must be an integer in the range 0 to 4095. The call will fail if the argument
contains an illegal value or if the register cannot be written. This value can be calculated by the
driver, see SET COREFREQ.

13.2.5.2.8 SET_DISCONNECT

This call sets the counter used to generate the 850 ns disconnect interval in the link-interface
FSM. The argument must be an integer in the range 0 to 1023. The call will fail if the argument
contains an illegal value or if the register cannot be written. This value can be calculated by the
driver, see SET COREFREQ.

13.2.5.2.9 SET_COREFREQ

This call calculates timer and disconnect from the GRSPW core frequency. The call take one
unsigned 32-bit argument, see table below. This call can be used instead of the calls SET TIMER
and SET DISCONNECT.

Argument Value Function

0 The GRSPW core frequency is assumed to be equal to the system
frequency. The system frequency is detected by reading the system tick
timer or a hard coded frequency.

all other values The argument is taken as the GRSPW core frequency in KHz.

Table 27: SET_COREFREQ argument description

13.2.5.2.10 SET_PROMISCUOUS

This call sets the promiscuous mode bit. The argument must be an integer in the range 0 to 1.
The call will fail if the argument contains an illegal value or if the register cannot be written.

13.2.5.2.11 SET_RMAPEN

This call sets the RMAP enable bit. It can only be used if the RMAP command handler is
available. The argument must be an integer in the range 0 to 1. The call will fail if the argument
contains an illegal value, if the RMAP command handler is not available or if the register cannot
be written.

13.2.5.2.12 SET_RMAPBUFDIS

This call sets the RMAP buffer disable bit. It can only be used if the RMAP command handler is
available. The argument must be an integer in the range 0 to 1. The call will fail if the argument
contains an illegal value, if the RMAP command handler is not available or if the register cannot
be written.

13.2.5.2.13 SET_CHECK_RMAP

This call selects whether or not RMAP CRC should be checked for received packets. If enabled
the header CRC error and data CRC error bits are checked and if one or both are set the packet

(\EROFLEX

GR-RTEMS-DRIVER 61 GAISLER

will be discarded. The argument must be an integer in the range 0 to 1. O disables and 1 enables
the RMAP CRC check. The call will fail if the argument contains an illegal value.

13.2.5.2.14 SET_RM_PROT_ID

This call selects whether or not the protocol ID should be removed from received packets. It is
assumed that all packets contain a protocol ID so when enabled the second byte (the one after
the node address) in the packet will be removed. The argument must be an integer in the range 0
to 1. 0 disables and 1 enables the RMAP CRC check. The call will fail if the argument contains an
illegal value.

13.2.5.2.15 SET_TXBLOCK

This call sets the blocking mode for transmissions. The calling process will be blocked after each
write until the whole packet has been copied into the GRSPW send FIFO buffer.

The argument must be an integer in the range 0 to 1. 0 selects non blocking mode while 1 selects
blocking mode. The call will fail if the argument contains an illegal value.

13.2.5.2.16 SET_TXBLOCK_ON_FULL

This call sets the blocking mode for transmissions when all transmit descriptors are in use. The
argument must be an integer in the range 0 to 1. 0 selects non blocking mode while 1 selects
blocking mode. The call will fail if the argument contains an illegal value.

13.2.5.2.17 SET_DISABLE_ERR

This call sets automatic link-disabling due to link-error interrupts. Link-error interrupts must be
enabled for it to have any effect. The argument must be an integer in the range 0 to 1. 0 disables
automatic link-disabling while a 1 enables it. The call will fail if the argument contains an illegal
value.

13.2.5.2.18 SET_LINK_ERR_IRQ

This call sets the link-error interrupt bit in the control register. The interrupt-handler sends an
event to the task specified with the event id field when this interrupt occurs. The argument must
be an integer in the range 0 to 1. The call will fail if the argument contains an illegal value or if
the register write fails.

13.2.5.2.19 SET_PACKETSIZE

This call changes the size of buffers and consequently the maximum packet sizes. The this cannot
be done while the core accesses the buffers so first the receiver and the transmitter is disabled
and ongoing DMA transactions is waited upon to finish. The time taken to wait for receiving DMA
transactions to finish may vary depending on packet size and SpaceWire core frequency. The old
buffers are reallocated and the receiver and transmitter is enabled again. The configuration
before the call will be preserved (except for the packet sizes). The argument must be a pointer to
a spw_ioctl packetsize struct. The call will fail if the argument contains an illegal pointer, the
requested buffer sizes cannot be allocated or the link cannot be re-started.

(\EROFLEX

GR-RTEMS-DRIVER 62 GAISLER

13.2.5.2.20 GET_LINK_STATUS

This call returns the current link status. The argument must be a pointer to an integer. The
return value in the argument can be one of the following: 0 = Error-reset, 1 = Error-wait, 2 =
Ready, 3 = Started, 4 = Connecting, 5 = Run. The call will fail if the argument contains an illegal
pointer.

13.2.5.2.21 GET_CONFIG
This call returns all configuration parameters in a spw config struct which is defined in

spacewire.h. The argument must be a pointer to a spw_config struct. The call will fail if the
argument contains an illegal pointer.

13.2.5.2.22 GET_STATISTICS

This call returns all statistics in a spw stats struct. The argument must be a pointer to a
spw_stats struct. The call will fail if the argument contains an illegal pointer.

13.2.5.2.23 CLR_STATISTICS

This call clears all statistics. No argument is taken and the call always succeeds.

13.2.5.2.24 SEND

This call sends a packet. The difference to the normal write call is that separate data and header
buffers can be used. The argument must be a pointer to a spw_ioctl send struct. The call will fail
if the argument contains an illegal pointer, or the struct contains illegal values. See the
transmission section for more information.

13.2.5.2.25 LINKDISABLE

This call disables the link (sets the linkdisable bit to 1 and the linkstart bit to 0). No argument is
taken. The call fails if the register write fails.

13.2.5.2.26 LINKSTART

This call starts the link (sets the linkdisable bit to 0 and the linkstart bit to 1). No argument is
taken. The call fails if the register write fails.

13.2.5.2.27 SET_EVENT_ID

This call sets the task ID to which an event is sent when a link-error interrupt occurs. The
argument can be any positive integer. The call will fail if the argument contains an illegal value.

13.2.5.2.28 SET_TCODE_CTRL

This call is used to control the timecode functionality of the GRSPW core. The TR (Timecode RX
Enable), TT (Timecode TX enable) and TQ (Tick-out IRQ) bits in the control register can be set or
cleared, if tick-out IRQ is enabled global IRQ is also enabled. The argument is a 12-bit mask, the
least significant four bits determines which bits are written (mask), the upper four bits determine
the new register value of the enabled bits, please see the SPACEWIRE TCODE CTRL *

(\EROFLEX

GR-RTEMS-DRIVER 63 GAISLER

definitions.

When Tick-out interrupt is enabled the grspw timecode callback function is called for every tick-
out that is received, it is called from the interrupt service routine in interrupt context. The
function pointer must be set by the user to point to a function to handle tick-in interrupts. The
function is global for all GRSPW devices, the arguments regs and minor both identify an unique
GRSPW core and the tc argument determines the current value of the timecode register upon
interrupt.

void (*grspw_ tinmecode_cal | back)
(void *pDev, void *regs, int mnor, unsigned int tc);

13.2.5.2.29 SET_TCODE

This call sets the timecode register and/or generates a tick-in. The operation is controlled by the
argument bit-mask, setting SPACEWIRE TCODE SET will result in the lower 8-bits will be
written to the timecode register whereas setting SPACEWIRE TCODE TX will result in a tick-in
generation. If both operations are enabled the tick-in is generated after the timecode register is
written.

13.2.5.2.30 GET_TCODE

This call reads the current GRSPW timecode register (unsigned int) and stores it in the location
provided by the the user argument. Bit 8 is set if the timecode status register bit 0 (TO) is set, the
status bit (TO) is cleared if set, this is to indicate if the timecode register has been updated since
last call. Note that if interrupt is enabled and the callback function is assigned the TO bit is
cleared by the interrupt handler. The argument must be a pointer to an unsigned integer. The
call will fail if the argument contains an illegal pointer.

13.2.6 Transmission

Transmitting single packets are done with either the write call or a special ioctl call. There is
currently no support for writing multiple packets in one call. Write calls are used when data only
needs to be taken from a single contiguous buffer. An example of a write call is shown below:

result = wite(fd, tx_pkt, 10))

On success the number of transmitted bytes is returned and -1 on failure. Errno is also set in the
latter case. Tx pkt points to the beginning of the packet which includes the destination node
address. The last parameter sets the number of bytes that the user wants to transmit.

The call will fail if the user tries to send more bytes than is allocated for a single packet (this can
be changed with the SET PACKETSIZE ioctl call) or if a NULL pointer is passed. Write also fails
if the link has not been started with the ioctl command START.

The write call can be configured to block in different ways. If normal blocking is enabled the call
will only return when the packet has been transmitted. In non-blocking mode, the transmission is
only set up in the hardware and then the function returns immediately (that is before the packet
is actually sent). If there are no resources available in the non-blocking mode the call will return
with an error.

There is also a feature called Tx block on full which means that the write call blocks when all
descriptors are in use.

The ioctl call used for transmissions is SPACEWIRE IOCTRL SEND. A spw ioctl send struct is

(\EROFLEX

GR-RTEMS-DRIVER 64 GAISLER

used as argument and contains length, and pointer fields. The structure is shown in the data
structures section. This ioctl call should be used when a header is taken from one buffer and data
from another. The header part is always transmitted first. The hlen field sets the number of
header bytes to be transmitted from the hdr pointer. The dlen field sets the number of data bytes
to be transmitted from the data pointer. Afterwards the sent field contains the total number
(header + data) of bytes transmitted.

The blocking behavior is the same as for write calls. The call fails if hlen+dlen is 0, one of the
buffer pointer is zero and its corresponding length variable is nonzero.

ERRNO Description

EINVAL An invalid argument was passed or link is not started. The buffers must not be
null pointers and the length parameters must be larger that zero and less than
the maximum allowed size.

EBUSY The packet could not be transmitted because all descriptors are in use (only in
non-blocking mode).

Table 28: ERRNO values for write and ioctl send.

13.2.7 Reception

Reception is done using the read call. An example is shown below:

len = read(fd, rx_pkt, tnmp);

The requested number of bytes to be read is given in tmp. The packet will be stored in rx pkt.
The actual number of received bytes is returned by the function on success and -1 on failure. In
the latter case errno is also set.

The call will fail if a null pointer is passed.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until a
packet has been received. In non-blocking mode, the call will return immediately and if no packet
was available -1 is returned and errno set appropriately. The table below shows the different
errno values that can be returned.

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer, the length was illegal or the
link hasn't been started with the ioctl command START.

EBUSY No data could be received (no packets available) in non-blocking mode.

Table 29: ERRNO values for read calls.

(\EROFLEX

GR-RTEMS-DRIVER 65 GAISLER

13.3 RECEIVER EXAMPLE
#i ncl ude <grspw. h>

/* Open device */

fd = open("/dev/grspwi", O RDVR);

if (fd<0) {
printf("Error Opening /dev/grspw0d, errno: %\ n",errno);
return -1;

}

/* Set basic parameters */
if (ioctl(fd, SPACEW RE_| OCTRL_SET_COREFREQ 0) == -1)
printf("SPACEW RE_| OCTRL_SET_COREFREQ errno: %\ n", errno);

/* Make sure link is up */

while(ioctl(fd, SPACEW RE_| OCTRL_START,0) == -1) {
sched _yiel d();

}

/* link is up => continue */

[* Set paraneters */

/* Set bl ocking receiving node */
if (ioctl(fd, SPACEW RE_|I OCTRL_SET_RXBLOCK, 1) == -1)
printf("SPACEW RE | OCTRL_SET_RXBLOCK, errno: %\ n", errno);

/* Read/ Wite */
while(1l) {
unsi gned char buf[256];
if (read(fd,buf,256) <0) {
printf("Error during read, errno: %\ n",errno);
conti nue;

}

/* Handl e i ncom ng packet */

(\EROFLEX

GR-RTEMS-DRIVER 66 GAISLER

14 SpaceWire ROUTER

14.1 INTRODUCTION

This document describes how to use the Aeroflex Gaisler SpaceWire router device in RTEMS. The
router does not have to be located on the same bus as the processor running RTEMS. The
RTEMS driver manager abstracts the actual location of the device allowing application software
to access the router resources always using the same API. Two different drivers, the SpaceWire
router register driver and GRSPW driver, are needed to utilize the complete functionality of the
router.

For details about each driver see their respective sections.

There is one example application available called rtems-spw-router-pci which can be used as a
reference on how the router is used. In that particular case the router has 18 ports and a PCI
interface through which it is connected to the host system. The host system can consist of either
a LEON2, LEON3 or LEON4 running RTEMS and one of three PCI interfaces: PCIF, GRPCI or
GRPCI2.

14.1.1 SpaceWire Router register driver

The main functionality of the router is to transfer packets between the SpaceWire ports. This
ability is functional after reset without any configuration. To change the configuration,
enable/disable links, collect statistics, fault detection etc the router configuration port has to be
accessed. This is done through the SpaceWire router register driver.

The driver manager finds the configuration port interfaces automatically when the system is
scanned. If the user application needs to use the configuration port it has to open a file handle to
it. All the available router features can then be accessed using IOCTL calls through this file
handle.

14.1.2 AMBA port driver

There are three different port types in the router: SpW ports, FIFO ports and AMBA ports. The
data path of SpW and FIFO ports are not (directly) accessible from the processor. If the router
has AMBA ports they can be used for transferring packets. The AMBA ports have identical
interfaces to the GRSPW core so they use the same driver. To transfer packets through an AMBA
port a file handle should be opened to it and then read and write calls can be used to receive and
send packets. The driver also allows configuration and status options in the AMBA port to be
accessed.

(\EROFLEX

GR-RTEMS-DRIVER 67 GAISLER

15 SpaceWire ROUTER Register Driver

15.1 INTRODUCTION

This document is intended as an aid in getting started developing with Aeroflex Gaisler
SpaceWire Router Register driver for RTEMS. The driver provides applications with a SpaceWire
Router configuration interface. The driver allows the user to configure the router and control the
SpaceWire links through the AMBA AHB Registers.

The SpaceWire Router driver require the RTEMS 10 Manager and Driver Manager.

See the SpaceWire Router Core User's Manual for hardware details.

15.2 USER INTERFACE

The RTEMS SpaceWire Router driver supports the standard accesses to file descriptors open,
ioctl and close. User applications should include the router driver's header file which contains
definitions of all necessary data structures used when accessing the driver.

15.2.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The RTEMS [/O driver registration is performed
automatically by the driver when Router hardware is found for the first time. The driver is called
from the driver manager to handle detected Router devices. In order for the driver manager to
unite the Router driver with the Router devices one must register the driver to the driver
manager. This process is described in the driver manager chapter.

15.2.2 Driver resource configuration

This driver has no resource configuration options, it is configured using the ioctl interface.

15.2.3 Opening the device

Opening the device enables the user to access the hardware of a certain SpaceWire Router
device. The same driver is used for all Router devices available. The devices are separated by
assigning each device a unique name, the name is passed during the opening of the driver. Some
example device names are printed out below.

Device number Filesystem name Location

0 /dev/routerQ On-Chip Bus
1 /dev/routerl On-Chip Bus
2 /dev/router2 On-Chip Bus

System dependent

/dev/spwrouter0/router0

GR-RASTA-SPW _ROUTERI[O0]

System dependent

/dev/spwrouterl/router0

GR-RASTA-SPW _ROUTER([1]

Table 30: Device number to device name conversion.

An example of an RTEMS open call is shown below.

(\EROFLEX

GR-RTEMS-DRIVER 68 GAISLER

fd = open("/dev/router0", O RDVWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 30.

Errno Description
EINVAL Illegal device name or not available
EBUSY Device already opened

Table 31: Open errno values.

15.2.4 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)
Close always returns 0 (success) for the SpaceWire driver.

15.2.5 I/O Control interface

The APB register insterface of the Router can be accessed via the standard system call ioctl. The
first argument is an integer which selects ioctl function and the second a pointer to data that may
be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the SpaceWire Router driver's
header file grspw_router.h. In functions where only one argument in needed the pointer (void
*arg) may be converted to an integer and interpreted directly, thus simplifying the code.

In the table below all currently supported ioctl commands and their argument are listed. All
router commands starts with GRSPWR IOCTL which has to be added to the command name
given in the table below. The data direction below indicates in which direction data is transferred
to the kernel:

« Input: Argument is an address. The driver reads data from the given address.
« Output: Argument is an address. The driver writes data to the given address.
« Input/Output: both above cases.

- Argument: 32-bit simple Argument, no data transferred between kernel/user.

« None: Argument ignored.

GR-RTEMS-DRIVER

69

(\EROFLEX

GAISLER

Call Number

Description

HWINFO

Output

struct
router hw info *

Copy hardware configuration of the router
core, such as number of SpaceWire ports,
number DMA port, number of FIFO port,
etc.

CFG_SET

Input

struct router config
*

Configure the router by writing the
configuration bit of the Control/Status
register, setting the Instance ID, Start up
Clock Divisor, Timer prescaler and the
timer reload registers.

CFG_GET

Output

struct router config
%

Reads the current router configuration into
the user specified memory area.

ROUTES_SET

Input

struct router routes
k

Configure the 224 words long router table.

ROUTES_GET

Output

struct router routes
k

Copy the current 224 words long router
table to user provided buffer.

PS SET

Input

struct router ps *

Configure the port setup registers
according to user buffer.

PS GET

Output

struct router ps *

Copy the current port setup registers to
user buffer.

WE_SET

Argument

int

If the argument's bit zero is one then the
WE bit in the configuration write enable
register is set, otherwise it is cleared. This
enabled the user to write protect the
current configuration.

PORT

Input/Output

struct router port *

Write and/or Read (in that order) the port
control and port status registers of one
port of the SpaceWire router. The flag
field determines which operations should
be performed. See ROUTER PORTFLG *.
The port field selects which port is to be
written/read.

CFGSTS SET

Argument

unsigned int *

Writes the Config/Status register.

CFGSTS GET

Output

unsigned int *

Copies the current value of the
Config/Status register to the user provided
buffer.

TC GET

Output

unsigned int *

Copies the current value of the Time-code
register to the user provided buffer.

Table 32: ioctl calls supported by the SpaceWire Router driver.

Note that no detailed descriptions of the hardware register fields are given here. They are found
in the GRSPWROUTER IP core user manual or the Router FPGA/ASIC user manual. The
information is not duplicated here to avoid potential inconsistencies. The driver provides no real
intelligence with respect to the router functionality. It merely abstracts the access to the router
resources so that the user does not need to know on which bus /network the router is located or
the address and register bit locations in the router.

(\EROFLEX

GR-RTEMS-DRIVER 70 GAISLER

15.2.5.1 HWINFO

struct router_hw info {
unsi gned char nports_spw;
unsi gned char nports_anba;
unsi gned char nports_fifo;
char tinmers_avail;
char pnp_avail;
unsi gned char ver_ngjor;
unsi gned char ver_ninor;
unsi gned char ver_patch;

unsi gned char iid;

b
Member Description
nports_spw Number of SpaceWire ports in the router
nports amba Number of AMBA ports in the router
nports_fifo Number of FIFO ports in the router
timers_avail 1 if the router has timers O otherwise
pnp avail 1 if the router has support for SpaceWire Plug and Play 0

otherwise

ver major Major version number of the router
ver minor Minor version number of the router
ver patch Patch number of the router
iid Instance ID of the router

Table 33: router_hw_info member descriptions.

The router hardware information struct contains fields for static hardware parameters. This call
reads the actual value for each field from hardware and stores them in the struct.

(\EROFLEX

GR-RTEMS-DRIVER 71 GAISLER
15.2.5.2 CFG_SET
struct router_config {
unsi gned int flags;
unsi gned int config;
unsi gned char iid;
unsi gned char idiv;
unsigned int tiner_prescaler;
unsigned int tiner_rel oad[32];
b
Member Descriptiion
flags Flags that determine which of the configuration parameters should
be written
config Value written to configuration and status register. Bit 4 is always
masked to 0
iid Value written to instance ID field
idiv Value written to initialization divisor field
timer prescaler Value written to timer prescaler field
timer reload[32] Value written to timer reload field of the port corresponding with
the number corresponding to the field index

Table 34: router_config member descriptions

Flag

Descriptiion

ROUTER FLG_IID

Write iid field

ROUTER _FLG_IDIV

Write Idiv field

ROUTER FLG CFG

Write config field

ROUTER FLG TPRES

Write timer prescaler field

ROUTER FLG TRLD

Write all timer reload fields (one per port)

Table 35: router_config flag s descriptions

This call writes various configuration parameters in the router. A set of flags determine which of
the parameters are written in each call. The flags should be set in the flags field of the struct.

For example setting “flags = ROUTER FLG IID“ will cause the instance ID field in the router to
be written with the value from iid in the struct.

The flags can be or:ed so “flags

ROUTER FLG IID | ROUTER FLG CFG” will cause both the

(\EROFLEX

GR-RTEMS-DRIVER 72 GAISLER

instance ID field and the config register to be written with iid and config respectively.

15.2.5.3 CFG_GET

Reads all the parameters in the router config struct from hardware registers and stores them in
the struct. The flags field is unused and all the registers are read in each call.

15.2.5.4 ROUTES_SET

struct router_routes {

unsi gned int route[224];

b
Member Descriptiion
route[224] Routing table entry for all logical addresses. Route[0] corresponds
to address 32, route[1] to 33 etc.

Table 36: router_routes member descriptions

This call sets up the complete routing table with the values in the router routes struct. The value
from each entry is written directly to the corresponding routing table location.

15.2.5.5 ROUTES_GET

Reads the complete routing table and stores the values in the router routes struct. Single entries
cannot be read on their own.

15.2.5.6 PS_SET

struct router_ps {
unsi gned int ps[31];

unsi gned int ps_|ogical[224];

b
Member Descriptiion
ps[31] Port setup for physical addresses
ps _logical[224] Port setup for logical addresses

Table 37: router_ps member descriptions

The port setup determines which ports a packet with a certain destination address should be

(\EROFLEX

GR-RTEMS-DRIVER 73 GAISLER

transmitted on. One or more ports can be specified for a single address. Physical addresses
should correspond to the port with the same number but the standard does allow group adaptive
routing or packet distribution as well. Normally they should only be used with logical addresses
though. The ps fields correspond to physical addresses 1 to 31 and ps logical corresponds to
logical addresses 32-255. Single addresses cannot be written individually.

Note that a port setup field corresponding to a logical address should not be nonzero if the
routing table entry for the same address is not enabled or vice versa.

15.2.5.7 PS_GET

Reads the port setup entries for all physical and logical address and stores them in a router ps
struct. Single addresses cannot be read individually.

15.2.5.8 WE_SET

This call takes an integer value which should be either 0 or 1 and writes it to the configuration
write enable bit (WE).

15.2.5.9 PORT

struct router_port {
unsi gned int flag;
int port;
unsigned int ctrl;

unsi gned int sts;

H
Member Descriptiion
flag Flags that select the operation(s) that should be performed
port Selects the port number that the operation(s) are performed on
ctrl Value to be read/written from/to port control register
sts Value to be read/written from/to port status register

Table 38: router_port member descriptions

GR-RTEMS-DRIVER

(\EROFLEX

74 GAISLER

Flag

Descriptiion

ROUTER PORTFLG_GET CTRL

Reads the port control register and stores the value in the ctrl
field.

ROUTER PORTFLG GET STS

Reads the port status register and stores the value in the sts field.

ROUTER PORTFLG SET CTRL

Writes the port control register and stores the value in the ctrl
field. If both a read and a write have been enabled the read is
performed first and this value is returned in the ctrl field. After the
read is finished the write is performed with the original value in
the ctrl field.

ROUTER PORTFLG SET STS

Writes the port status register and stores the value in the sts
field. If both a read and a write have been enabled the read is
performed first and this value is returned in the sts field. After the
read is finished the write is performed with the original value in
the sts field.

Table 39: router_port flag descriptions

15.2.5.10 CFGSTS_SET

Takes an integer as input argument and writes it to the router configuration and status register.

15.2.5.11 CFGSTS_GET

Reads the router configuration and status register and stores the value in the argument which

should be an integer.

15.2.5.12 TC_GET

Reads the time-code register and returns the value in the argument which should be an integer.

16 GR1553B DRIVER

16.1 INTRODUCTION

This section gives an brief introduction to the GRLIB GR1553B device allocation driver used
internally by the BC, BM and RT device drivers.

This driver controls the GR1553B device regardless of interfaces supported (BC, RT and/or BM).
The device can be located at an on-chip AMBA or an AMBA-over-PCI bus. The driver provides an
interface for the BC, RT and BM drivers.

Since the different interfaces (BC, BM and RT) are accessed from the same register interface on
one core, the APB device must be shared among the BC, BM and RT drivers. The GR1553B driver
provides an easy function interface that allows the APB device to be shared safely between the
BC, BM and RT device drivers.

Any combination of interface functionality is supported, but the RT and BC functionality cannot
be used simultaneously (limited by hardware).

The interface up to the BC, BM and RT drivers is used internally by the device drivers and is not
documented here. See respective driver for an interface description.

The GR1553B driver require the Driver Manager.

16.1.1 GR1553B Hardware

The GRLIB GR1553B core may support up to three modes depending on configuration, Bus
Controller (BC), Remote Terminal (RT) or Bus Monitor (BM). The BC and RT functionality may
not be used simultaneously, but the BM may be used together with BC or RT or separately. All
three modes are supported by the driver.

Interrupts generated from BC, BM and RT result in the same system interrupt, interrupts are
shared.

16.1.2 Software Driver

The driver provides an interface used internally by the BC, BM and RT device drivers, see
respective driver for an interface declaration. The driver sources and definitions are listed in the
table below, the path is given relative to the SPARC BSP sources c/src/lib/libbsp/sparc.

Filname Description
shared/1553/gr1553b.c GR1553B Driver source
shared/include/gr1553b.h | GR1553B Driver interface declaration

Table 40: Source location

16.1.3 Driver Registration

The driver must be registered to the driver manager. The registration is performed by calling the
gr1553 register() function. The driver is automatically registered from the BC, BM and the RT
device drivers registration procedure. This means that including the BC, BM and/or the RT driver
will automatically include the GR1553B (this) driver.

17 GR1553B REMOTE TERMINAL DRIVER

17.1 INTRODUCTION

This section describes the GRLIB GR1553B Remote Terminal (RT) device driver interface. The
driver relies on the GR1553B driver and the driver manager. The reader is assumed to be well
acquainted with MIL-STD-1553 and the GR1553B core.

The GR1553B RT driver require the Driver Manager.

17.1.1 GR1553B Remote Terminal Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and
Remote Terminal (RT) functionality. This driver supports the RT functionality of the hardware, it
can be used simultaneously with the Bus Monitor (BM) functionality. When the BM is used
together with the RT interrupts are shared between the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through
separate registers. In order to shared hardware resources between the three GR1553B drivers,
the three depends on a lower level GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

17.1.2 Examples

There is an example available that illustrates how the RT driver interface can be used to respond
to 1553 BC commands. The example includes code for Interrupt handling, Event Logging,
Synchronize and Synchronize With Data mode codes, RX/TX data transfers and various driver
configuration options. The RT will respond on sub address 1,2 and 3, see comments in application
and BC application. The RT example comes with a matching BC example that generates BC
transfers that is understood by the RT. The RT application use the Eventlog to monitor certain
transfers, the transfers are written to standard out.

The RT example includes a BM logger which can be used for debugging the 1553 bus. All 1553
transfers can be logged and sent to a Linux PC over a TCP/IP socket and saved to a raw text file
for post processing. The default is however just to enable BM logging, for debugging one can
quite easily read the raw BM log by looking at the BM registers and memory from GRMON.

In order to run all parts of the example a board with GR1553B core with BC and BM support, and
a board with a GR1553B core with RT support is required.

The example is part of the Aeroflex Gaisler RTEMS distribution, it can be found under /opt/rtems-
4.10/src/samples/1553/rtems-gr1553rt.c.

The example can be built by running:

$ cd /opt/rtens-4. 10/ src/sanpl es/ 1553
$ make rtens-gri553rt

17.2 USER INTERFACE

17.2.1 Overview

The RT software driver provides access to the RT core and help with creating memory structures
accessed by the RT core. The driver provides the services list below,

« Basic RT functionality (RT address, Bus and RT Status, Enabling core, etc.)

+ Event logging support

« Interrupt support (Global Errors, Data Transfers, Mode Code Transfer)

- DMA-Memory configuration

+ Sub Address configuration

+ Support for Mode Codes

« Transfer Descriptor List Management per RT sub address and transfer type (RX/TX)

The driver sources and interface definitions are listed in the table below, the path is given
relative to the SPARC BSP sources c¢/src/lib/libbsp/sparc.

Filname Description
shared/1553/gr1553rt.c GR1553B RT Driver source
shared/include/gr1553rt.h GR1553B RT Driver interface declaration

Table 41: RT driver Source location

17.2.1.1 Accessing an RT device

In order to access an RT core, a specific core must be identified (the driver support multiple
devices). The core is opened by calling gr1553rt open(), the open function allocates an RT device
by calling the lower level GR1553B driver and initializes the RT by stopping all activity and
disabling interrupts. After an RT has been opened it can be configured gri553rt config(), SA-
table configured, descriptor lists assigned to SA, interrupt callbacks registered, and finally
communication started by calling gr1553rt start(). Once the RT is started interrupts may be
generated, data may be transferred and the event log filled. The communication can be stopped
by calling gr1553rt_stop().

When the application no longer needs to access the RT core, the RT is closed by calling
gr1553rt_close().

17.2.1.2 Introduction to the RT Memory areas

For the RT there are four different types of memory areas. The access to the areas is much
different and involve different latency requirements. The areas are:

« Sub Address (SA) Table

- Buffer Descriptors (BD)

- Data buffers referenced from descriptors (read or written)
- Event (EV) logging buffer

The memory types are described in separate sections below. Generally three of the areas
(controlled by the driver) can be dynamically allocated by the driver or assigned to a custom
location by the user. Assigning a custom address is typically useful when for example a low-
latency memory is required, or the GR1553B core is located on an AMBA-over-PCI bus where
memory accesses over the PCI bus will not satisfy the latency requirements by the 1553 bus,
instead a memory local to the RT core can be used to shorten the access time. Note that when
providing custom addresses the alignment requirement of the GR1553B core must be obeyed,
which is different for different areas and sizes. The memory areas are configured using the
grl553rt_config() function.

17.2.1.3 Sub Address Table

The RT core provides the user to program different responses per sub address and transfer type
through the sub address table (SA-table) located in memory. The RT core consult the SA-table for
every 1553 data transfer command on the 1553 bus. The table includes options per sub address
and transfer type and a pointer to the next descriptor that let the user control the location of the
data buffer used in the transaction. See hardware manual for a complete description.

The SA-table is fixed size to 512 bytes.

Since the RT is required to respond to BC request within a certain time, it is vital that the RT has
enough time to lookup user configuration of a transfer, i.e. read SA-table and descriptor and
possibly the data buffer as well. The driver provides a way to let the user give a custom address
to the sub address table or dynamically allocate it for the user. The default action is to let the
driver dynamically allocate the SA-table, the SA-table will then be located in the main memory of
the CPU. For RT core's located on an AMBA-over-PCI bus, the default action is not acceptable
due to the latency requirement mentioned above.

The SA-table can be configured per SA by calling the gri1553rt sa setopts() function. The mask
argument makes it possible to change individual bit in the SA configuration. This function must
be called to enable transfers from/to a sub address. See hardware manual for SA configuration
options. Descriptor Lists are assigned to a SA by calling gr1553rt list sa().

The indication service can be used to determine the descriptor used in the next transfer, see
section 17.2.1.8.

17.2.1.4 Descriptors

A GR1553B RT descriptor is located in memory and pointed to by the SA-table. The SA-table
points out the next descriptor used for a specific sub address and transfer type. The descriptor
contains three input fields: Control/Status Word determines options for a specific transfer ans
status of a completed transfer; Data buffer pointer, 16-bit aligned; Pointer to next descriptor
within sub address and transfer type, or end-of-list marker.

All descriptors are located in the same range of memory, which the driver refers to as the BD
memory. The BD memory can by dynamically allocated (located in CPU main memory) by the
driver or assigned to a custom location by the user. From the BD memory descriptors for all sub
addresses are allocated by the driver. The driver works internally with 16-bit descriptor
identifiers allowing 65k descriptor in total. A descriptor is allocated for a specific descriptor List.
Each descriptor takes 32 bytes of memory.

The user can build and initialize descriptors using the API function gr1553rt bd init() and update
the descriptor and/or view the status and time of a completed transfer.

Descriptors are managed by a data structure named gri1553rt list. A List is the software
representation of a chain of descriptors for a specific sub address and transfer type. Thus, 60
lists in total (two lists per SA, SAO and SA31 are for mode codes) per RT. The List simplifies the
descriptor handling for the user by introducing descriptor numbers (entry no) used when
referring to descriptors rather than the descriptor address. Up to 65k descriptors are supported
per List by the driver. A descriptor list is assigned to a SA and transfer type by calling
gr1553rt_list sa().

When a List is created and configured a maximal number of descriptors are given, giving the API
a possibility to allocate the descriptors from the descriptor memory area configured.

Circular buffers can be created by a chain of descriptors where each descriptor's data buffer is
one element in the circular buffer.

17.2.1.5 Data Buffers

Data buffers are not accessed by the driver at all, the address is only written to descriptor upon
user request. It is up to the user to provide the driver with valid addresses to data buffers of the
required length.

Note that addresses given must be accessible by the hardware. If the RT core is located on a
AMBA-over-PCI bus for example, the address of a data buffer from the RT core's point of view is
most probably not the same as the address used by the CPU to access the buffer.

17.2.1.6 Event Logging

Transfer events (Transmission, Reception and Mode Codes) may be logged by the RT core into a
memory area for (later) processing. The events logged can be controlled by the user at a SA
transfer type level and per mode code through the Mode Code Control Register.

The driver API access the eventlog on two occasions, either when the user reads the eventlog
buffer using the gr1553rt evlog read() function or from the interrupt handler, see the interrupt
section for more information. The gri553rt evlog read() function is called by the user to read
the eventlog, it simply copies the current logged entries to a user buffer. The user must empty
the driver eventlog in time to avoid entries to be overwritten. A certain descriptor or SA may be
logged to help the application implement communication protocols.

The eventlog is typically sized depending the frequency of the log input (logged transfers) and
the frequency of the log output (task reading the log). Every logged transfer is described with a
32-bit word, making it quite compact.

The memory of the eventlog does not require as tight latency requirement as the SA-table and
descriptors. However the user still is provided the ability to put the eventlog at a custom address,
or letting the driver dynamically allocate it. When providing a custom address the start address is
given, the area must have room for the configured number of entries and have the hardware
required alignment.

Note that the alignment requirement of the eventlog varies depending on the eventlog length.
17.2.1.7 Interrupt service

The RT core can be programmed to interrupt the CPU on certain events, transfers and errors
(SA-table and DMA). The driver divides transfers into two different types of events, mode codes
and data transfers. The three types of events can be assigned custom callbacks called from the
driver's interrupt service routine (ISR), and custom argument can be given. The callbacks are
registered per RT device using the functions gri553rt irq err(), gri553rt irq mc(),
grl553rt irq sa(). Note that the three different callbacks have different arguments.

Error interrupts are discovered in the ISR by looking at the IRQ event register, they are handled
first. After the error interrupt has been handled by the user (user interaction is optional) the RT
core is stopped by the driver.

Data transfers and Mode Code transfers are logged in the eventlog. When a transfer-triggered
interrupt occurs the ISR starts processing the event log from the first event that caused the IRQ
(determined by hardware register) calling the mode code or data transfer callback for each event
in the log which has generated an IRQ (determined by the IRQSR bit). Even though both the ISR
and the eventlog read function r1553rt_eviog read() processes the eventlog, they are completely
separate processes - one does not affect the other. It is up to the user to make sure that events
that generated interrupt are not double processed. The callback functions are called in the same
order as the event was generated.

Is is possible to configure different callback routines and/or arguments for different sub
addresses (1..30) and transfer types (RX/TX). Thus, 60 different callback handlers may be

registered for data transfers.

17.2.1.8 Indication service

The indication service is typically used by the user to determine how many descriptors have been
processed by the hardware for a certain SA and transfer type. The gr1553rt indication() function
returns the next descriptor number which will be used next transfer by the RT core. The
indication function takes a sub address and an RT device as input, By remembering which
descriptor was processed last the caller can determine how many and which descriptors have
been accessed by the BC.

17.2.1.9 Mode Code support

The RT core a number of registers to control and interact with mode code commands. See
hardware manual which mode codes are available. Each mode code can be disabled or enabled.
Enabled mode codes can be logged and interrupt can be generated upon transmission events.
The gr1553rt config() function is used to configure the aforementioned mode code options.
Interrupt caused by mode code transmissions can be programmed to call the user through an
callback function, see the interrupt section 17.2.1.7.

The mode codes “Synchronization with data”, “Transmit Bit word” and “Transmit Vector word”
can be interacted with through a register interface. The register interface can be read with the
gr1553rt_status() function and selected (or all) bits of the bit word and vector word can be
written using gr1553rt set vecword() function.

Other mode codes can interacted with using the Bus Status Register of the RT core. The register
can be read using the gr1553rt _status() function and written selectable bit can be written using
gr1553rt_set bussts().

17.2.1.10 RT Time

The RT core has an internal time counter with a configurable time resolution. The finest time
resolution of the timer counter is one microsecond. The resolution is configured using the
gr1553rt_config() function. The current time is read by calling the gr1553rt _status() function.

17.2.2 Application Programming Interface

The RT driver API consists of the functions in the table below.

Prototype

Description

void *gr1553rt_open(int minor)

Open an RT device by instance number. Returns a
handle identifying the specific RT device. The handle
is given as input in most functions of the API

void gr1553rt_close(void *rt)

Close a previously opened RT device

int gr1553rt_config(
void *rt,
struct gr1553rt_cfg *cfg)

Configure the RT device driver and allocate device
memory

int gr1553rt_start(void *rt)

Start RT communication, enables Interrupts

void gr1553rt_stop(void *rt)

Stop RT communication, disables interrupts

void gr1553rt_status(
void *rt,
struct gr1553rt_status *status)

Get Time, Bus/RT Status and mode code status

int gr1553rt_indication(
void *rt,
int subadr,
int *txeno,
int *rxeno)

Get the next descriptor that will processed of an RT
sub-address and transfer type

int gr1553rt_evlog read(
void *rt,
unsigned int *dst,
int max)

Copy contents of event log to a user provided data
buffer

void gr1553rt_set vecword(
void *rt,
unsigned int mask,
unsigned int words

)

Set all or a selection of bits in the Vector word and Bit
word used by the “Transmit Bit word” and “Transmit
Vector word” mode codes

void gr1553rt_set bussts(
void *rt,
unsigned int mask,
unsigned int sts)

Modify a selection of bits in the RT Bus Status
register

void gr1553rt_sa_setopts(
void *rt,
int subadr,
unsigned int mask,
unsigned int options)

Configures a sub address control word located in the
SA-table.

void gr1553rt list sa(
struct gr1553rt_list *list,
int *subadr,
int *tx)

Get the Sub address and transfer type of a scheduled
list

void gr1553rt_sa_schedule(
void *rt,
int subadr,
int tx,
struct gr1553rt _list *list)

Schedule a RX or TX descriptor list on a sub address
of a certain transfer type

int gr1553rt _irq err(
void *rt,
grl553rt irgerr t func,
void *data)

Assign an Error Interrupt handler callback routine
and custom argument

int gr1553rt _irq mc(
void *rt,
grl553rt irgmc t func,
void *data)

Assign a Mode Code Interrupt handler callback
routine and custom argument

int gr1553rt_irg sa(Assign a Data Transfer Interrupt handler callback

void *rt, routine and custom argument to a certain sub address
int subadr, and transfer type
int tx,

grl553rt irq t func,
void *data)

int gr1553rt list init(Initialize and allocate a descriptor List according to
void *rt, configuration. The List can be used for RX/TX on any
struct gr1553rt_list **plist, sub address.
struct gr1553rt_list cfg *cfg)

int gr1553rt bd _init(Initialize a Descriptor in a List identified by number.

struct gr1553rt list *list,
unsigned short entry no,
unsigned int flags,

uint16 _t *dptr,

unsigned short next)

int gr1553rt bd update(Update the status and/or the data buffer pointer of a
struct gr1553rt list *list, descriptor.
int entry no,
unsigned int *status,
uintl6 _t **dptr)

Table 42: function prototypes

17.2.2.1 Data structures

The gri553rt cfg data structure is used to configure an RT device. The configuration paramters
are described in the table below.

struct gr1553rt_cfg {
unsi gned char rtaddress;
unsi gned i nt nodecode;
unsi gned short tinme_res;
void *satab_buffer;
voi d *evl og_buffer;
int evlog_size;
int bd_count;
void *bd_buffer;

}s

Member Description
rtaddress RT Address on 1553 bus [0..30]

modecode Mode codes enable/disable/IRQ/EV-Log. Each mode
code has a 2-bit configuration field. Mode Code Control
Register in hardware manual

time res Time tag resolution in microseconds

satab_buffer Sub Address Table (SA-table) allocation setting. Can be
dynamically allocated (zero) or custom location (non-
Z€ero).

If custom location of SA-table is given, the address must
be aligned to 10-bit (1kB) boundary and at least 16*32
bytes.

evlog buffer Eventlog DMA buffer allocation setting. Can be
dynamically allocated (zero) or custom location (non-
Zero).

If custom location of eventlog is given, the address must
be of eviog size and aligned to evlog size. See hardware
manual.

evlog size Length in bytes of Eventlog, must be a multiple of 2.
If set to zero event log is disabled, note that enabling
logging in SA-table or descriptors will cause failure
when eventlog is disabled.

bd count Number of descriptors for RT device. All descriptor lists
share the descriptors. Maximum is 65K descriptors.

bd buffer Descriptor memory area allocation setting. Can be
dynamically allocated (zero) or custom location (non-
Z€ero).

If custom location of descriptors is given, the address
must be aligned to 32 bytes and of (32 * bd_count) bytes
size.

Table 43: gr1553rt_cfg member descriptions.

The gri553rt list cfg data structure hold the configuration parameters of a descriptor List.

struct gr1553rt_list_cfg {
unsigned int bd_cnt;
b

Member Description

bd cnt Number of descriptors in List

Table 44: gr1553rt_list cfg member descriptions.

The current status of the RT core is stored in the gri553rt status data structure by the function
gr1553rt_status(). The fields are described below.

struct gr1553rt_status {
unsi gned int status;
unsi gned int bus_status;
unsi gned short syncti ne;
unsi gned short syncword;
unsi gned short tinme_res;
unsi gned short tine;

H
Member Description
status Current value of RT Status Register
bus status Current value of RT Bus Status Register
synctime Time Tag when last synchronize with data was received
syncword Data of last mode code synchronize with data
time res Time resolution in microseconds (set by config)
time Current Time Tag. (time res * time) gives the number of
microseconds since last time overflow.

Table 45: gr1553rt_status member descriptions.

17.2.2.2 gr1553rt_open

Opens a GR1553B RT device identified by instance number, minor. The instance number is
determined by the order in which GR1553B cores with RT functionality are found, the order of
the Plug & Play.

A handle is returned identifying the opened RT device, the handle is used internally by the RT
driver, it is used as an input parameter rt to all other functions that manipulate the hardware.

This function initializes the RT hardware to a stopped/disable level.
17.2.2.3 gr1553rt_close

Close and Stop an RT device identified by input argument rt previously returned by
grl553rt _open().

17.2.2.4 gr1553rt_config

Configure and allocate memory for an RT device. The configuration parameters are stored in the
location pointed to by cfg. The layout of the parameters must follow the gri1553rt cfg data
structure, described in table 43.

If memory allocation fails (in case of dynamic memory allocation) the function return a negative
result, on success zero is returned.

17.2.2.5 gr1553rt_start

Starts RT communication by enabling the core and enabling interrupts. The user must have
configured the driver (RT address, Mode Code, SA-table, lists, descriptors, etc.) before calling
this function.

After the RT has been started the configuration function can not be called.

On success this function returns zero, on failure a negative result is returned.
17.2.2.6 gr1553rt_stop

Stops RT communication by disabling the core and disabling interrupts. Further 1553 commands
to the RT will be ignored.

17.2.2.7 gr1553rt_status

Read current status of the RT core. The status is written to the location pointed to by status in
the format determined by the gr1553rt status structure described in table 42.

17.2.2.8 gr1553rt_indication

Get the next descriptor that will be processed for a specific sub address. The descriptor number
is looked up from the descriptor address found the SA-table for the sub address specified by
subadr argument.

The descriptor number of respective transfer type (RX/TX) will be written to the address given by
txeno and/or rxeno. If end-of-list has been reached, -1 is stored into txeno or rxeno.

If the request is successful zero is returned, otherwise a negative number is returned (bad sub
address or descriptor).

17.2.2.9 gr1553rt_evlog read

Copy up to max number of entries from eventlog into the address specified by dst. The actual
number of entries read is returned. It is important to read out the eventlog entries in time to
avoid data loss, the eventlog can be sized so that data loss can be avoided.

Zero is returned when entries are available in the log, negative on failure.

17.2.2.10 gr1553rt_set_vecword

Set a selection of bits in the RT Vector and/or Bit word. The words are used when,

+ Vector Word is used in response to "Transmit vector word" BC commands

- Bit Word is used in response to "Transmit bit word" BC commands
The argument mask determines which bits are written, and words determines the value of the
bits written. The lower 16-bits are the Vector Word, the higher 16-bits are the Bit Word.
17.2.2.11 gr1553rt_set_bussts

Set a selection of bits of the Bus Status Register. The bits written is determined by the mask bit-
mask and the values written is determined by sts. Operation:

bus status reg = (bus_status reg & ~nask) | (sts & nmask)

17.2.2.12 gr1553rt_sa_setopts

Configure individual bits of the SA Control Word in the SA-table. One may for example Enable or
Disable a SA RX and/or TX. See hardware manual for SA-Table configuration options.

The mask argument is a bit-mask, it determines which bits are written and options determines

the value written.
The subadr argument selects which sub address is configured.

Note that SA-table is all zero after configuration, every SA used must be configured using this
function.

17.2.2.13 gr1553rt_list_sa

This function looks up the SA and the transfer type of the descriptor list given by list. The SA is
stored into subadr, the transfer type is written into tx (TX=1, RX=0).

17.2.2.14 gr1553rt_sa_schedule

This function associates a descriptor list with a sub address (given by subadr) and a transfer type
(given by tx). The first descriptor in the descriptor list is written to the SA-table entry of the SA.

17.2.2.15 gr1l553rt_irq_err

This function registers an interrupt callback handler of the Error Interrupt. The handler func is
called with the argument data when a DMA error or SA-table access error occurs. The callback
must follow the prototype of gri553rt_irqerr t:

typedef void (*gr1553rt_irqerr_t)(int err, void *data);

Where err is the value of the GR1553B IRQ register at the time the error was detected, it can be
used to determine what kind of error occurred.

17.2.2.16 gr1553rt_irq_ mc

This function registers an interrupt callback handler for Logged Mode Code transmission
Interrupts. The handler func is called with the argument data when a Mode Code transmission
event occurs, note that interrupts must be enabled per Mode Code using gr1553rt config(). The
callback must follow the prototype of gr1553rt_irqgmc t:

typedef void (*gri1553rt_irqnc_t)(
i nt ntode,
unsigned int entry,
voi d *data

)
Where mcode is the mode code causing the interrupt, entry is the raw event log entry.
17.2.2.17 gr1553rt_irq_sa

Register an interrupt callback handler for data transfer triggered Interrupts, it is possible to
assign a unique function and/or data for every SA (given by subadr) and transfer type (given by
tx). The handler func is called with the argument data when a data transfer interrupt event
occurs. Interrupts is configured on a descriptor or SA basis. The callback routine must follow the
prototype of gri553rt irq t:

typedef void (*gr1553rt_irqg_t)(
struct gr1553rt_list *list,
unsigned int entry,
int bd _next,
voi d *data

)

Where list indicates which descriptor list (Sub Address, transfer type) caused the interrupt event,
entry is the raw event log entry, bd next is the next descriptor that will be processed by the RT
for the next transfer of the same sub address and transfer type.

17.2.2.18 gr1553rt_list_init

Allocate and configure a list structure according to configuration given in cfg, see the
grl553rt list cfg data structure in table 41. Assign the list to an RT device, however not to a sub
address yet. The rt handle is stored within list.

The resulting descriptor list is written to the location indicated by the plist argument.

Note that descriptor are allocated from the RT device, so the RT device itself must be configured
using gr1553rt config() before calling this function.

A negative number is returned on failure, on success zero is returned.

17.2.2.19 gr1553rt_bd_init

Initialize a descriptor entry in a list. This is typically done prior to scheduling the list. The
descriptor and the next descriptor is given by descriptor indexes relative to the list (entry no and
next), see table below for options on next. Set bit 30 of the argument flags in order to set the
IRQEN bit of the descriptor's Control/Status Word. The argument dptr is written to the
descriptor's Data Buffer Pointer Word.

Note that the data pointer is accessed by the GR1553B core and must therefore be a valid
address for the core. This is only an issue if the GR1553B core is located on a AMBA-over-PCI
bus, the address may need to be translated from CPU accessible address to hardware accessible
address.

Values of next | Description

Oxffff Indicate to hardware that this is the last entry in the
list, the next descriptor is set to end-of-list mark (0x3).

Oxfffe Next descriptor (entry no+1) or O is last descriptor in
list.
other The index of the next descriptor

Table 46: gr1553rt_bd_init next argument description

A negative number is returned on failure, on success a zero is returned.

17.2.2.20 gr1553rt_bd_update

Manipulate and read the Control/Status and Data Pointer words of a descriptor.
If status is non-zero, the Control/Status word is swapped with the content pointed to by status.
If dptr is non-zero, the Data Pointer word is swapped with the content pointed to by dptr.

A negative number is returned on failure, on success a zero is returned.

18 GR1553B BUS MONITOR DRIVER

18.1 INTRODUCTION

This section describes the GRLIB GR1553B Bus Monitor (BM) device driver interface. The driver
relies on the GR1553B driver and the driver manager. The reader is assumed to be well
acquainted with MIL-STD-1553 and the GR1553B core.

The GR1553B RT driver require the Driver Manager.

18.1.1 GR1553B Remote Terminal Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and
Remote Terminal (RT) functionality. This driver supports the BM functionality of the hardware, it
can be used simultaneously with the RT or BC functionality, but not both simultaneously. When
the BM is used together with the RT or BC interrupts are shared between the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through
separate registers. In order to shared hardware resources between the three GR1553B drivers,
the three depends on a lower level GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

18.1.2 Examples

There is an example available that illustrates how the BM driver interface can be used to log
transfers seen on the 1553 bus. All 1553 transfers is be logged, by configuring the config bm.h
file the logger application can “compress” the log and send it to a Linux PC over a TCP/IP socket.
The Linux application save the log to a raw text file for post processing.

The default BM example behaviour is however just to enable BM logging, for debugging one can
quite easily read the raw BM log by looking at the BM registers and memory from GRMON.

The BM logger application can be run separately or together with the BC or RT examples.

In order to run all parts of the example a board with GR1553B core with BC and BM support, and
a board with a GR1553B core with RT support is required.

The example is part of the Aeroflex Gaisler RTEMS distribution, it can be found under /opt/rtems-
4.10/src/samples/1553 named rtems-gri553bm.c, rtems-gr1553bcbm.c or rtems-gri553rtbm.c.

The example can be built by running:

$ cd /opt/rtens-4. 10/ src/sanpl es/ 1553
$ make rtens-gr1553bm

18.2 USER INTERFACE

18.2.1 Overview

The BM software driver provides access to the BM core and help with accessing the BM log
memory buffer. The driver provides the services list below,

- Basic BM functionality (Enabling/Disabling, etc.)
- Filtering options

- Interrupt support (DMA Error, Timer Overflow)

« 1553 Timer handling
« Read BM log

The driver sources and interface definitions are listed in the table below, the path is given
relative to the SPARC BSP sources c¢/src/lib/libbsp/sparc.

Filname Description
shared/1553/gr1553bm.c GR1553B BM Driver source
shared/include/gr1553bm.h GR1553B BM Driver interface declaration

« Table 47: BM driver Source location

18.2.1.1 Accessing a BM device

In order to access a BM core a specific core must be identified (the driver support multiple
devices). The core is opened by calling gri553bm open(), the open function allocates a BM
device by calling the lower level GR1553B driver and initializes the BM by stopping all activity
and disabling interrupts. After a BM has been opened it can be configured gr1553bm_config()
and then started by calling gr1553bm_start(). Once the BM is started the log is filled by hardware
and interrupts may be generated. The logging can be stopped by calling gr1553bm_stop().

When the application no longer needs to access the BM driver services, the BM is closed by
calling gr1553bm_close().

18.2.1.2 BM Log memory

The BM log memory is written by the BM hardware when transfers matching the filters are
detected. Each command, Status and Data 16-bit word takes 64-bits of space in the log, into the
first 32-bits the current 24-bit 1553 timer is written and to the second 32-bit word status, word
type, Bus and the 16-bit data is written. See hardware manual.

The BM log DMA-area can be dynamically allocated by the driver or assigned to a custom
location by the user. Assigning a custom address is typically useful when the GR1553B core is
located on an AMBA-over-PCI bus where memory accesses over the PCI bus will not satisfy the
latency requirements by the 1553 bus, instead a memory local to the BM core can be used to
shorten the access time. Note that when providing custom addresses the 8-byte alignment
requirement of the GR1553B BM core must be obeyed. The memory areas are configured using
the gr1553bm_config() function.

18.2.1.3 Accessing the BM Log memory

The BM Log is filled as transfers are detected on the 1553 bus, if the log is not emptied in time
the log may overflow and data loss will occur. The BM log can be accessed with the functions
listed below.

« gr1553bm_available()
- gri553bm read()

A custom handler responsible for copying the BM log can be assigned in the configuration of the
driver. The custom routine can be used to optimize the BM log read, for example one may not
perhaps not want to copy all entries, search the log for a specific event or compress the log
before storing to another location.

18.2.1.4 Time

Th BM core has a 24-bit time counter with a programmable resolution through the
gr1553bm_config() function. The finest resolution is a microsecond. The BM driver maintains a
64-bit 1553 time. The time can be used by an application that needs to be able to log for a long
time. The driver must detect every overflow in order maintain the correct 64-bit time, the driver
gives users two different approaches. Either the timer overflow interrupt is used or the user
must guarantee to call the gri1553bm time() function at least once before the second time
overflow happens. The timer overflow interrupt can be enabled from the gri553bm config()
function.

The current 64-bit time can be read by calling gr1553bm_time().
The application can determine the 64-bit time of every log entry by emptying the complete log at
least once per timer overflow.

18.2.1.5 Filtering

The BM core has support for filtering 1553 transfers. The filter options can be controlled by
fields in the configuration structure given to gr1553bm_config().

18.2.1.6 Interrupt service

The BM core can interrupt the CPU on DMA errors and on Timer overflow. The DMA error is
unmasked by the driver and the Timer overflow interrupt is configurable. For the DMA error
interrupt a custom handler may be installed through the gri1553bm config() function. On DMA
error the BM logging will automatically be stopped by a call to gr1553bm_stop() from within the
ISR of the driver.

18.2.2 Application Programming Interface

The BM driver API consists of the functions in the table below.

Prototype Description

void *gr1553bm_open(int minor) Open a BM device by instance number. Returns a
handle identifying the specific BM device opened. The
handle is given as input parameter bm in all other
functions of the API

void gr1553bm close(void *bm) Close a previously opened BM device

int gr1553bm_config(Configure the BM device driver and allocate BM log
void *bm, DMA-memory
struct gr1553bm _cfg *cfg)

int gr1553bm_start(void *bm) Start BM logging, enables Interrupts

void gr1553bm_stop(void *bm) Stop BM logging, disables interrupts

void gr1553bm_time(Get 1553 64-bit Time maintained by the driver. The
void *bm, lowest 24-bits are taken directly from the BM timer
uint64 t *time) register, the most significant 40-bits are taken from a

software counter.

int gr1553bm available(The current number of entries in the log is stored into
void *bm, nentries.
int *nentries)

int gr1553bm read(Copy contents a maximum number (max) of entries
void *bm, from the BM log to a user provided data buffer (dst).
struct gr1553bm_entry *dst, The actual number of entries copied is stored into
int *max) max.

Table 48: function prototypes

18.2.2.1 Data structures

The gr1553bm cfg data structure is used to configure the BM device and driver. The
configuration parameters are described in the table below.

struct gr1553bm config {
uint8 t tine_resol ution
int time_ovf_irq;

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

int
int
i nt
int
i nt

voi d *buffer
brntopy_func_t copy_func;
void *copy_func_arg;

brmi sr_func_t dma_error_isr;
void *dnma_error_arg

filt_error_options;
filt _rtadr;

filt _subadr;

filt _nc;

buf fer_si ze;
_custom

Member Description

time resolution | 8-bit time resolution, the BM will update the time
according to this setting. 0 will make the time tag be of
highest resolution (no division), 1 will make the BM
increment the time tag once for two time ticks (div with
2), etc.

time ovf irq Enable Time Overflow IRQ handling. Setting this to 1
makes the driver to update the 64-bit time by it self, it
will use time overflow IRQ to detect when the 64-bit
time counter must be incremented.

If set to zero, the driver expect the user to call
gr1553bm_time() regularly, it must be called more often
than the time overflows to avoid an incorrect time.

filt error option | Bus error log options:
s
bit0,4-31 = reserved, set to zero

Bitl = Enables logging of Invalid mode code errors
Bit2 = Enables logging of Unexpected Data errors
Bit3 = Enables logging of Manchester/parity errors

filt rtadr RT Address filtering bit mask. Each bit enables (if set)
logging of a certain RT sub address. Bit 31 enables
logging of broadcast messages.

filt subadr RT Subaddress filtering bit mask, bit definition:

31: Enables logging of mode commands on subadr 31
1..30: BitN enables/disables logging of RT subadr N

0: Enables logging of mode commands on subadr 0

filt mc Mode code Filter, is written into "BM RT Mode code
filter" register, please see hardware manual for bit
declarations.

buffer size Size of buffer in bytes, must be aligned to 8-byte
boundary.

buffer custom Custom BM log buffer location, must be aligned to 8-

byte and be of buffer size length. If NULL dynamic
memory allocation is used.

copy_func Custom Copy function, may be used to implement a
more effective/custom way of copying the DMA buffer.
For example the DMA log may need to processed at the
same time when copying.

copy_func arg Optional Custom Data passed onto copy func()

dma_error isr Custom DMA error function, note that this function is
called from Interrupt Context. Set to NULL to disable
this callback.

dma error arg Optional Custom Data passed on to dma_error _isr()

Table 49: gr1553bm_config member descriptions.

The gr1553bm_entry data structure represent one entry in the BM log.

struct grl1553bmentry {
uint32_t tine;
uint32_t data;

}

Member Description

time Time of word transfer entry. Bit31=1, bit 30..24=0, bit
23..0=time

data Transfer status and data word
Bits Description
31 Zero
30..20 Zero
19 0=BusA, 1=BusB
18..17 Word Status: 00=0k, 01=Manchester error,

10=Parity error

16 Word type: 0=Data, 1=Command/Status
15..0 16-bit Data on detected on bus

Table 50: gr1553bm_entry member descriptions.

18.2.2.2 gr1553bm_open

Opens a GR1553B BM device identified by instance number, minor. The instance number is
determined by the order in which GR1553B cores with BM functionality are found, the order of
the Plug & Play.

A handle is returned identifying the opened BM device, the handle is used internally by the
driver, it is used as an input parameter bm to all other functions that manipulate the hardware.

This function initializes the BM hardware to a stopped/disable level.

18.2.2.3 gr1553bm_close

Close and Stop a BM device identified by input argument bm previously returned by
gr1553bm_open().

18.2.2.4 gr1553bm_config

Configure and allocate the log DMA-memory for a BM device. The configuration parameters are
stored in the location pointed to by cfg. The layout of the parameters must follow the
gr1553bm_config data structure, described in table 47.

If BM device is started or memory allocation fails (in case of dynamic memory allocation) the
function return a negative result, on success zero is returned.

18.2.2.5 gr1553bm_start

Starts 1553 logging by enabling the core and enabling interrupts. The user must have configured
the driver (log buffer, timer, filtering, etc.) before calling this function.

After the BM has been started the configuration function can not be called.

On success this function returns zero, on failure a negative result is returned.

18.2.2.6 gr1553bm_stop

Stops 1553 logging by disabling the core and disabling interrupts. Further 1553 transfers will be
ignored.

18.2.2.7 gr1553bm_time

This function reads the driver's internal 64-bit 1553 Time. The low 24-bit time is acquired from
BM hardware, the MSB is taken from a software counter internal to the driver. The counter is
incremented every time the Time overflows by:

« using "Time overflow" IRQ if enabled in user configuration

« by checking “Time overflow” IRQ flag (IRQ is disabled), it is required that user calls this
function before the next timer overflow. The software can not distinguish between one or
two timer overflows. This function will check the overflow flag and increment the driver
internal time if overflow has occurred since last call.

This function update software time counters and store the current time into the address indicated
by the argument time.

18.2.2.8 gr1553bm_available

This function stores the current number of entries stored in the BM Log into the address pointed
to by nentries.

This function cannot be called in stopped mode, it will fail trying to do so.

A negative number is returned on failure, on success zero is returned.
18.2.2.9 gr1553bm_read

Copy up to max number of entries from BM log into the address specified by dst. The actual
number of entries read is returned in the location of max (zero when no entries available). The
max argument is thus in/out. It is important to read out the log entries in time to avoid data loss,
the log can be sized so that data loss can be avoided.

Zero is returned on success, on failure a negative number is returned.

19 GR1553B Bus Controller DRIVER

19.1 INTRODUCTION

This section describes the GRLIB GR1553B Bus Controller (BC) device driver interface. The
driver relies on the GR1553B driver and the driver manager. The reader is assumed to be well
acquainted with MIL-STD-1553 and the GR1553B core.

The GR1553B BC driver require the Driver Manager.

19.1.1 GR1553B Bus Controller Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and
Remote Terminal (RT) functionality. This driver supports the BC functionality of the hardware, it
can be used simultaneously with the Bus Monitor (BM) functionality. When the BM is used
together with the BC interrupts are shared between the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through
separate registers. In order to shared hardware resources between the three GR1553B drivers,
the three depends on a lower level GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

19.1.2 Software Driver

The BC driver is split in two parts, one where the driver access the hardware device and one part
where the descriptors are managed. The two parts are described in two separate sections below.

Transfer and conditional descriptors are collected into a descriptor list. A descriptor list consists
of a set of Major Frames, which consist of a set of Minor Frames which in turn consists of up to
32 descriptors (also called Slots). The composition of Major/Minor Frames and slots is configured
by the user, and is highly dependent of application.

The Major/Minor/Slot construction can be seen as a tree, the tree does not have to be
symmetrically, i.e. Major frames may contain different numbers of Minor Frames and Minor
Frames may contain different numbers of Slot.

GR1553B BC descriptor lists are generated by the list API available in gr1553bc list.h.

The driver provides the following services:

Start, Stop, Pause and Resume descriptor list execution
Synchronous and asynchronous descriptor list management
Interrupt handling

BC status

Major/Minor Frame and Slot (descriptor) model of communication
Current Descriptor (Major/Minor/Slot) Execution Indication
Software External Trigger generation, used mainly for debugging or custom time
synchronization

Major/Minor Frame and Slot/Message ID

* Minor Frame time slot management

The driver sources and definitions are listed in the table below, the path is given relative to the
SPARC BSP sources c¢/src/lib/libbsp/sparc.

Filname Description

shared/1553/gr1553bc.c GR1553B BC Driver source
shared/1553/gr1553bc list.c GR1553B BC List handling source
shared/include/gr1553bc.h GR1553B BC Driver interface declaration

shared/include/gr1553bc list.h | GR1553B BC List handling interface declaration

Table 51: BC driver Source location

19.1.3 Examples

There is an example available that illustrates how the BC driver interface can be used to
communicate with one or more RTs. The descriptor list includes both transfer and conditional
descriptors, time slot allocation, interrupt demonstration, read BC hardware currently executing
descriptor by the indication service. The BC example does not require an RT to respond on the
1553 transfers, however it will be stuck in initialization mode of the 1553 bus. The BC example
comes with a matching RT example that responds to the BC transfers.

The BC example includes a BM logger which can be used for debugging the 1553 bus. All 1553
transfers can be logged and sent to a Linux PC over a TCP/IP socket and saved to a raw text file
for post processing.

In order to run all parts of the example a board with GR1553B core with BC and BM support, and
a board with a GR1553B core with RT support is required.

The example is part of the Aeroflex Gaisler RTEMS distribution, it can be found under /opt/rtems-
4.10/src/samples/1553/rtems-gr1553bcbm.c.

The example can be built by running:

$ cd /opt/rtens-4.10/src/sanpl es/ 1553
$ nmake rtens-gri1553bcbm

19.2 BC DEVICE HANDLING
The BC device driver's main purpose is to start, stop, pause and resume the execution of
descriptor lists. Lists are described in the Descriptor List section 19.3. In this section services

related to direct access of BC hardware registers and Interrupt are described. The function API is
declared in gr1553bc.h.

19.2.1 Device API

The device API consists of the functions in the table below.

Prototype Description

void *gr1553bc_open(int minor) Open a BC device by minor number. Private
handle returned used in all other device API
functions.

void gr1553bc_close(void *bc) Close a previous opened BC device.

int gr1553bc_start(void *bc, struct | Schedule a synchronous and/or a asynchronous

gr1553bc_list *list, struct gr1553bc list BC descriptor Lists for execution.

*list_async) This will unmask BC interrupts and start

executing the first descriptor in respective List.
This function can be called multiple times.

int gr1553bc pause(void *bc) Pause the synchronous List execution.

int gr1553bc_restart(void *bc) Restart the synchronous List execution.

int gr1553bc_stop(void *bc, int options) Stop Synchronous and/or asynchronous list

int gr1553bc_indication(void *bc, int Get the current BC hardware execution position
async, int *mid) (MID) of the synchronous or asynchronous list.
void gr1553bc_status(void *bc, struct Get the BC hardware status and time.

grl553bc status *status)

void gr1553bc_ext trig(void *bc, int trig) Trigger an external trigger by writing to the BC
action register.

int gr1553bc irqg setup(void *bc, Generic interrupt handler configuration. Handler
bcirq func t func, void *data) will be called in interrupt context on errors and
interrupts generated by transfer descriptors.

Table 52: Device API function prototypes

19.2.1.1 Data Structures

The gri553bc status data structure contains the BC hardware status sampled by the function
gr1553bc_status().

struct gr1553bc_status {

unsi gned int st at us;
unsi gned i nt time;
H
Member Description
status BC status register
time BC Timer register

Table 53: gr1553bc_status member descriptions.

19.2.1.2 gr1553bc_open

Opens a GR1553B BC device by device instance index. The minor number relates to the order in which a GR1553B BC
device is found in the Plug&Play information. A GR1553B core which lacks BC functionality does not affect the minor
number.

If a BC device is successfully opened a pointer is returned. The pointer is used internally by the GR1553B BC driver, it is
used as the input parameter bc to all other device API functions.

If the driver failed to open the device, NULL is returned.

19.2.1.3 gr1553bc_close

Closes a previously opened BC device. This action will stop the BC hardware from processing descriptors/lists, disable BC
interrupts, and free dynamically memory allocated by the driver.

19.2.1.4 gr1553bc_start

Calling this function starts the BC execution of the synchronous list and/or the asynchronous list. At least one list pointer
must be non-zero to affect BC operation. The BC communication is enabled depends on list, and Interrupts are enabled.

This function can be called multiple times. If a list (of the same type) is already executing it will be replaced with the new
list.

19.2.1.5 gr1553bc_pause

Pause the synchronous list. It may be resumed by gri553bc_resume(). See hardware documentation.

19.2.1.6 gr1553bc_resume

Resume the synchronous list, must have been previously paused by gr/553bc_pause(). See hardware documentation.

19.2.1.7 gr1553bc_stop

Stop synchronous and/or asynchronous list execution. The second argument is a 2-bit bit-mask which determines the lists to
stop, see table below for a description.

Member Description

Bit 0 Set to one to stop the synchronous list.
Bit 1 Set to one to stop the asynchronous
list.

Table 54: gr1553bc_stop second argument

19.2.1.8 gr1553bc_indication

Retrieves the current Major/Minor/Slot (MID) position executing into the location indicated by mid. The async argument
determines which type of list is queried, the Synchronous (async=0) list or the Asynchronous (async=1).

Note that since the List API internally adds descriptors the indication may seem to be out of bounds.

19.2.1.9 gr1553bc_status

This function retrieves the current BC hardware status. Second argument determine where the hardware status is stored, the
layout of the data stored follows the gri553bc_status data structure. The data structure is described in table 53.

19.2.1.10 gr1553bc_ext_trig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the external
trigger is normally generated by some kind of Time Master. A message slot may be programmed to wait for an external
trigger before being executed, this feature allows the user to accurate send time synchronize messages to RTs. However,
during debugging or when software needs to control the time synchronization behaviour the external trigger pulse can be
generated from the BC core itself by writing the BC Action register.

This function sets the external trigger memory to one by writing the BC action register.

19.2.1.11 gr1553bc_irq_setup

Install a generic handler for BC device interrupts. The handler will be called on Errors (DMA errors etc.) resulting in
interrupts or transfer descriptors resulting in interrupts. The handler is not called when an IRQ is generated by a condition
descriptor. Condition descriptors have their own custom handler.

Condition descriptors are inserted into the list by user, each condition may have a custom function and data assigned to it,
see grl553bc_slot_irq_prepare(). Interrupts generated by condition descriptors are not handled by this function.

The third argument is custom data which will be given to the handler on interrupt.

19.3 DESCRIPTOR LIST HANDLING

The BC device driver can schedule synchronous and asynchronous lists of descriptors. The list
contains a descriptor table and a software description to make certain operations possible, for
example translate descriptor address into descriptor number (MID).

The BC stops execution of a list when a END-OF-LIST (EOL) marker is found. Lists may be
configured to jump to the start of the list (the first descriptor) by inserting an unconditional jump
descriptor. Once a descriptor list is setup the hardware may process the list without the need of
software intervention. Time distribution may also be handled completely in hardware, by setting
the “Wait for External Trigger” flag in a transfer descriptor the BC will wait until the external
trigger is received or proceed directly if already received. See hardware manual.

19.3.1 Overview

This section describes the Descriptor List Application Programming Interface (API). It provides
functionality to create and manage BC descriptor lists.

A list is built up by the following building blocks:

* Major Frame (Consists of N Minor Frames)

* Minor Frame (Consists of up to 32 1553 Slots)

* Slot (Transfer/Condition BC descriptor), also called Message Slot

The user can configure lists with different number of Major Frames, Minor Frames and slots
within a Minor Frame. The List manages a strait descriptor table and a Major/Minor/Slot tree in
order to easily find it's way through all descriptor created.

Each Minor frame consist of up to 32 slot and two extra slots for time management and
descriptor find operations, see figure below. In the figure there are three Minor frames with
three different number of slots 32, 8 and 4. The List manage time slot allocation per Minor frame,
for example a minor frame may be programmed to take 8ms and when the user allocate a
message slot within that Minor frame the time specified will be subtracted from the 8ms, and
when the message slot is freed the time will be returned to the Minor frame again.

Major 2
Minor 7

Major 3
Minor O

Major 3
Minor 1

TECo

31, | 31, MID 3.1, E
Illustration 1: Three consecutive Minor Frames

A specific Slot [Major, Minor, Slot] is identified using a MID (Message-ID). The MID consist of
three numbers Major Frame number, Minor Frame number and Slot Number. The MID is a way
for the user to avoid using descriptor pointers to talk with the list API. For example a condition
Slot that should jump to a message Slot can be created by knowing "MID and Jump-To-MID".
When allocating a Slot (with or without time) in a List the user may specify a certain Slot or a
Minor frame, when a Minor frame is given then the API will find the first free Slot as early in the
Minor Frame as possible and return it to the user.

A MID can also be used to identify a certain Major Frame by setting the Minor Frame and Slot
number to Oxff. A Minor Frame can be identified by setting Slot Number to Oxff.

A MID can be created using the macros in the table below.

MACRO Name Description
GR1553BC_ID(major,minor,slot) ID of a SLOT

GR1553BC_MINOR ID(major,minor) | ID of a MINOR (Slot=0xff)
GR1553BC_MAJOR ID(major) ID of a Major (Minor=0xff, Slot=0xff)

Table 55: Macros for creating MID

19.3.2 Example: steps for creating a list

The typical approach when creating lists and executing it:
* grl553bc list alloc(&list, MAJOR _CNT)
e gr1553bc_list config(list, &listcfg)
* Create all Major Frames and Minor frame, for each major frame:
+ gr1553bc_major_alloc_skel(&major, &major _minor cfg)
- grl553bc list set major(list, &major, MAJOR NUM)
+ Link last and first Major Frames together:
- grl553bc list set major(&major7, &major0)
» grl553bc list table alloc() (Allocate Descriptor Table)
» grl1553bc list table build() (Build Descriptor Table from Majors/Minors)
« Allocate and initialize Descriptors pre defined before starting:
« grl553bc slot alloc(list, &MID, TIME REQUIRED, ..)

« grl1553bc slot transfer(MID, ...)
+ START BC HARDWARE BY SHCDULING ABOVE LIST
» Application operate on executing List

19.3.3 Major Frame

Consists of multiple Minor frames. A Major frame may be connected/linked with another Major
frame, this will result in a Jump Slot from last Minor frame in the first Major to the first Minor in
the second Major.

19.3.4 Minor Frame

Consists of up to 32 Message Slots. The services available for Minor Frames are Time-
Management and Slot allocation.

Time-Management is optional and can be enabled per Minor frame. A Minor frame can be
assigned a time in microseconds. The BC will not continue to the next Minor frame until the time
specified has passed, the time includes the 1553 bus transfers. See the BC hardware
documentation. Time is managed by adding an extra Dummy Message Slot with the time
assigned to the Minor Frame. Every time a message Slot is allocated (with a certain time: Slot-
Time) the Slot-Time will be subtracted from the assigned time of the Minor Frame's Dummy
Message Slot. Thus, the sum of the Message Slots will always sum up to the assigned time of the
Minor Frame, as configured by the user. When a Message Slot is freed, the Dummy Message
Slot's Slot-Time is incremented with the freed Slot-Time. See figure below for an example where
6 Message Slots has been allocated Slot-Time in a 1 ms Time-Managed Minor Frame. Note that in
the example the Slot-Time for Slot 2 is set to zero in order for Slot 3 to execute directly after Slot
2.

Major 3 O 112|345 |6 |7, TIME
Minor O

200 60 0 220 120 free 120 free DUMMY
us us us us us Ous us Ous 280us

T Cco

Ilustration 2: Time-Managed Minor Frame of 1ms

The total time of all Minor Frames in a Major Frame determines how long time the Major Frame
is to be executed.

Slot allocation can be performed in two ways. A Message Slot can be allocated by identifying a
specific free Slot (MID identifies a Slot) or by letting the API allocate the first free Slot in the
Minor Frame (MID identifies a Minor Frame by setting Slot-ID to 0xff).

19.3.5 Slot (Descriptor)

The GR1553B BC core supports two Slot (Descriptor) Types:
* Transfer descriptor (also called Message Slot)
* Condition descriptor (Jump, unconditional-IRQ)

See the hardware manual for a detail description of a descriptor (Slot).

The BC Core is unaware of lists, it steps through executing each descriptor as the encountered,
in a sequential order. Conditions resulting in jumps gives the user the ability to create more
complex arrangements of buffer descriptors (BD) which is called lists here.

Transfer Descriptors (TBD) may have a time slot assigned, the BC core will wait until the time
has expired before executing the next descriptor. Time slots are managed by Minor frames in the

list. See Minor Frame section. A Message Slot generating a data transmission on the 1553 bus
must have a valid data pointer, pointing to a location from which the BC will read or write data.

A Slot is allocated using the gr1553bc slot _alloc() function, and configured by calling one of the
function described in the table below. A Slot may be reconfigured later. Note that a conditional
descriptor does not have a time slot, allocating a time for a conditional times slot will lead to an
incorrect total time of the Minor Frame.

Function Name Description

grl553bc slot irq prepare Unconditional IRQ slot

grl553bc slot jump Unconditional jump

grl1553bc_slot_exttrig Dummy transfer, wait for EXTERNAL-TRIGGER
grl553bc _slot transfer Transfer descriptor

grl553bc_slot empty Create Dummy Transfer descriptor
grl553bc_slot raw Custom Descriptor handling

Table 56: Slot configuration

Existing configured Slots can be manipulated with the following functions.

Function Name Description

gr1553bc_slot dummy Set existing Transfer descriptor to Dummy. No
1553 bus transfer will be performed.

gr1553bc_slot update Update Data Pointer and/or Status of a TBD

Table 57: Slot manipulation

19.3.6 Changing a scheduled BC list (during BC-runtime)

Changing a descriptor that is being executed by the BC may result in a race between hardware
and software. One of the problems is that a descriptor contains multiple words, which can not be
written simultaneously by the CPU. To avoid the problem one can use the INDICATION service to
avoid modifying a descriptor currently in use by the BC core. The indication service tells the user
which Major/Minor/Slot is currently being executed by hardware, from that information an
knowing the list layout and time slots the user may safely select which slot to modify or wait until
hardware is finished.

In most cases one can do descriptor initialization in several steps to avoid race conditions. By
initializing (allocating and configuring) a Slot before starting the execution of the list, one may
change parts of the descriptor which are ignored by the hardware. Below is an example approach
that will avoid potential races between software and hardware:

1. Initialize Descriptor as Dummy and allocated time (often done before starting/scheduling
list)

2. The list is started, as a result descriptors in the list are executed by the BC
Modify transfer options and data-pointers, but maintain the Dummy bit.

4. Clear the Dummy bit in one atomic data store.

19.3.7 Custom Memory Setup

For designs where dynamically memory is not an option, or the driver is used on an AMBA-over-
PCI bus (where malloc() does not work), the API allows the user to provide custom addresses for

the descriptor table and object descriptions (lists, major frames, minor frames).

Being able to configure a custom descriptor table may for example be used to save space or put
the descriptor table in on-chip memory. The descriptor table is setup using the function
gr1553bc list_table alloc(list, CUSTOM ADDRESS).

Object descriptions are normally allocated during initialization procedure by providing the API
with an object configuration, for example a Major Frame configuration enables the API to
dynamically allocate the software description of the Major Frame and with all it's Minor frames.
Custom object allocation requires internal understanding of the List management parts of the
driver, it is not described in this document.

19.3.8 Interrupt handling

There are different types of interrupts, Error IRQs, transfer IRQs and conditional IRQs. Error and
transfer Interrupts are handled by the general callback function of the device driver. Conditional
descriptors that cause Interrupts may be associated with a custom interrupt routine and
argument.

Transfer Descriptors can be programmed to generate interrupt, and condition descriptors can be
programmed to generate interrupt unconditionally (there exists other conditional types as well).
When a Transfer descriptor causes interrupt the general ISR callback of the BC driver is called to
let the user handle the interrupt. Transfers descriptor IRQ is enabled by configuring the
descriptor.

When a condition descriptor causes an interrupt a custom IRQ handler is called (if assigned) with
a custom argument and the descriptor address. The descriptor address my be used to lookup the
MID of the descriptor. The API provides functions for placing unconditional IRQ points anywhere
in the list. Below is an pseudo example of adding an unconditional IRQ point to a list:

voi d funcSet up()

{
int MD;
/* Allocate Slot for IRQ Point */
gr 1553bc_sl ot _alloc(&M D, TI ME=0, ..);
/* Prepare unconditional IRQ at allocated SLOT */
gr 1553bc_sl ot _irq_prepare(M D, funcl SR, data);
/* Enabling the | RQ nmay be done later during |ist
* execution */
gr 1553bc_sl ot _irq_enabl e(M D) ;
}

voi d funcl SR(*bd, *data)
{
/* HANDLE ONE OR MULTI PLE DESCRI PTORS
*(MJULTI PLE IN THI S EXAMPLE) : */
int MD;

/* Lookup M D from descriptor address */
gr 1553bc_mi d_from bd(bd, &M D, NULL) ;

[* Print M D which caused the Interrupt */
printk("lRQ ON %®6x\n", MD);

19.3.9 List API

The List API consists of the functions in the table below.

Prototype

Description

int gr1553bc list_alloc(
struct gr1553bc list **list,
int max major)

Allocate a List description structure. First step in
creating a descriptor list.

void gr1553bc _list free(
struct gr1553bc _list *list)

Free a List previously allocated using
gr1553bc list_alloc().

int gr1553bc list config(
struct gr1553bc list *list,
struct gr1553bc list cfg *cfg,
void *bc)

Configure List parameters and associate it with a BC
device that will execute the list later on. List
parameters are used when generating descriptors.

void gr1553bc_list link major(
struct gr1553bc_major *major,
struct gr1553bc_major *next)

Links two Major frames together, the Major frame
indicated by next will be executed after the Major
frame indicated by major. A unconditional jump is
inserted to implement the linking.

int gr1553bc_list set major(
struct gr1553bc list *list,
struct gr1553bc_major *major,
int no)

Assign a Major Frame a Major Frame number in a list.
This will link Major (no-1) and Major (no+1) with the
Major frame, the linking can be changed by calling
gr1553bc list_link_major() after all major frames have
been assigned a number.

int gr1553bc_minor table size(
struct gr1553bc_minor *minor)

Calculate the size required in the descriptor table by
one minor frame.

int gr1553bc list table size(
struct gr1553bc _list *list)

Calculate the size required for the complete
descriptor list.

int gr1553bc _list table alloc(
struct gr1553bc list *list,
void *bdtab custom)

Allocate and initialize a descriptor list. The
bdtab custom argument can be used to assign a
custom address of the descriptor list.

void gr1553bc list table free(
struct gr1553bc _list *list)

Free descriptor list memory previously allocated by
gr1553bc list_table alloc().

int gr1553bc_list table build(
struct gr1553bc _list *list)

Build all descriptors in a descriptor list. Unused
descriptors will be initialized as empty dummy
descriptors. After this call descriptors can be
initialized by user.

int gr1553bc_major alloc skel(
struct gr1553bc_major **major,
struct gr1553bc_major cfg
*cfg)

Allocate and initialize a software description skeleton
of a Major Frame and it's Minor Frames.

int gr1553bc list freetime(
struct gr1553bc list *list,
int mid)

Get total unused slot time of a Minor Frame. Only
available if time management has been enabled for the
Minor Frame.

int gr1553bc_slot_alloc(
struct gr1553bc list *list,
int *mid,
int timeslot,
union gr1553bc_bd **bd)

Allocate a Slot from a Minor Frame. The Slot location
is identified by MID. If the MID identifies a Minor
frame the first free slot is allocated within the minor
frame.

int gr1553bc_slot_free(
struct gr1553bc list *list,
int mid)

Return a previously allocated Slot to a Minor Frame.
The slot-time is also returned.

int gr1553bc_mid from bd(
union gr1553bc_bd *bd,
int *mid,
int *async)

Get Slot/Message ID from descriptor address.

union gr1553bc_bd *gr1553bc slot bd(
struct gr1553bc list *list,
int mid)

Get descriptor address from MID.

int gr1553bc_slot irqg prepare(
struct gr1553bc list *list,
int mid,
bcirq func t func,
void *data)

Prepare a condition Slot for generating interrupt.
Interrupt is disabled. A custom callback function and
data is assigned to Slot.

int gr1553bc_slot _irq enable(
struct gr1553bc list *list,
int mid)

Enable interrupt of a previously interrupt-prepared
Slot.

int gr1553bc_slot irqg disable(
struct gr1553bc list *list,
int mid)

Disable interrupt of a previously interrupt-prepared
Slot.

int gr1553bc_slot_jump(
struct gr1553bc list *list,
int mid,
uint32_t condition,
int to_mid)

Initialize an allocated Slot, the descriptor is initialized
as a conditional Jump Slot. The conditional is
controlled by the third argument. The Slot jumped to
is determined by the fourth argument.

int gr1553bc_slot_exttrig(
struct gr1553bc list *list,
int mid)

Create a dummy transfer with the “Wait for external
trigger” bit set.

int gr1553bc_slot_transfer(
struct gr1553bc list *list,
int mid,
int options,
int tt,
uint16 t *dptr)

Create a transfer descriptor.

int gr1553bc_slot dummy/(
struct gr1553bc list *list,
int mid,
unsigned int *dummy)

Manipulate the DUMMY bit of a transfer descriptor.
Can be used to enable or disable a transfer descriptor.

int gr1553bc_slot empty(
struct gr1553bc list *list,
int mid)

Create an empty transfer descriptor, with the
DUMMY bit set. The time-slot previously allocated is
preserved.

int gr1553bc_slot update(
struct gr1553bc list *list,
int mid,
uintl16 t *dptr,
unsigned int *stat)

Update a transfer descriptors data pointer and/or
status field.

int gr1553bc_slot raw(
struct gr1553bc list *list,
int mid,
unsigned int flags,
uint32 t wordO,
uint32 t wordl,
uint32 t word2,
uint32 t word3)

Custom descriptor initialization. Note that a bad
initialization may break the BC driver.

void gr1553bc_show list(
struct gr1553bc list *list,
int options)

Print information about a descriptor list to standard
out. Used for debugging.

Table 58: List API function prototypes

19.3.9.1 Data structures

The gri553bc_major cfg data structure hold the configuration parameters of a Major frame and
all it's Minor frames. The grl1553bc _minor cfg data structure contain the configuration
parameters of one Minor Frame.

struct gr1553bc_minor_cfg {
i nt slot_cnt;
i nt timeslot;

b

struct gr1553bc_mmjor_cfg {
i nt m nor_cnt;
struct gr1553bc_ni nor_cfg m nor_cfgs[1];

b
Member Description
slot_cnt Number of Slots in Minor Frame
timeslot Total time-slot of Minor Frame [us]

Table 59: gr1553bc_minor_cfg member descriptions.

Member Description

minor cnt Number of Minor Frames in Major Frame.

minor cfgs Array of Minor Frame configurations. The length of the array is
determined by minor cnt.

Table 60: gr1553bc_major_cfg member descriptions.

The gr1553bc list cfg data structure hold the configuration parameters of a descriptor List. The
Major and Minor Frames are configured separately. The configuration parameters are used when

generating descriptor.

struct gr1553bc_list_cfg {
unsi gned char rt _tinmeout[31];
unsi gned char bc_tinmeout;
int tropt_irqg_on_err;
int tropt_pause_on_err;
int async_list;

b

Member Description

rt timeout Number of us timeout tolerance per RT address.
The BC has a resolution of 4us.

bc_timeout Number of us timeout tolerance of broadcast
transfers

tropt irq on err Determines if transfer descriptors should generate
IRQ on transfer errors

tropt pause on err | Determines if the list should be paused on transfer
error

async list Set to non-zero if asynchronous list

Table 61: gr1553bc_list_cfg member descriptions.

19.3.9.2 gr1553bc_list_alloc

Dynamically allocates a List structure (no descriptors) with a maximum number of Major frames supported. The first

argument is a pointer to where the newly allocated list pointer will be stored. The second argument determines the
maximum number of major frames the List will be able to support.

The list is initialized according to the default configuration.

If the list allocation fails, a negative result will be returned.

19.3.9.3 gr1553bc_list_free

Free a List that has been previously allocated with gr/553bc_list_alloc().
19.3.9.4 gr1553bc_list_config

This function configures List parameters and associate the list with a BC device. The BC device
may be used to translate addresses from CPU address to addresses the GR1553B core
understand, therefore the list must not be scheduled on another BC device.

Some of the List parameters are used when generating descriptors, as global descriptor
parameters. For example all transfer descriptors to a specific RT result in the same time out
settings.

The first argument points to a list that is configure. The second argument points to the
configuration description, the third argument identifies the BC device that the list will be
scheduled on. The layout of the list configuration is described in table 52.

19.3.9.5 gr1553bc_list link _major

At the end of a Major Frame a unconditional jump to the next Major Frame is inserted by the List API. The List API
assumes that a Major Frame should jump to the following Major Frame, however for the last Major Frame the user must tell
the API which frame to jump to. The user may also connect Major frames in a more complex way, for example Major
Frame 0 and 1 is executed only once so the last Major frame jumps to Major Frame 2.

The Major frame indicated by next will be executed after the Major frame indicated by major. A unconditional jump is
inserted to implement the linking.

19.3.9.6 gr1553bc_list set major

Major Frames are associated with a number, a Major Frame Number. This function creates an association between a Frame
and a Number, all Major Frames must be assigned a number within a List.

The function will link Major[no-1] and Major[no+1] with the Major frame, the linking can be changed by calling
gri553bc_list link major() after all major frames have been assigned a number.

19.3.9.7 gr1553bc_minor_table_size

This function is used internally by the List API, however it can also be used in an application to calculate the space required
by descriptors of a Minor Frame.

The total size of all descriptors in one Minor Frame (in number of bytes) is returned. Descriptors added internally by the
List API are also counted.

19.3.9.8 gr1553bc_list_table_size

This function is used internally by the List API, however it can also be used in an application to calculate the total space
required by all descriptors of a List.

The total descriptor size of all Major/Minor Frames of the list (in number of bytes) is returned.

19.3.9.9 gri1553bc_list_table_alloc

This function allocates all descriptors needed by a List, either dynamically or by a user provided address. The List is
initialized with the new descriptor table, i.e. the software's internal representation is initialized. The descriptors themselves
are not initialized.

The second argument bdtab custom determines the allocation method. If NULL the API will allocate memory using
malloc(), if non-zero the value will be taken as the base descriptor address. If bit zero is set the address is assumed to be
readable by the GR1553B core, if bit zero is cleared the address is assumed to be readable by the CPU and translated for the
GR1553B core. Bit zero makes sense to use on a GR1553B core located on a AMBA-over-PCI bus.

19.3.9.10 gr1553bc_list_table_free
Free previously allocated descriptor table memory.

19.3.9.11 gr1553bc_list_table_build

This function builds all descriptors in a descriptor list. Unused descriptors will be initialized as empty dummy descriptors.
Jumps between Minor and Major Frames will be created according to user configuration.

After this call descriptors can be initialized by user.
19.3.9.12 gr1553bc_major_alloc_skel

Allocate a Major Frame and it's Minor Frames according to the configuration pointed to by the second argument.
The pointer to the allocated Major Frame is stored into the location pointed to by the major argument.
The configuration of the Major Frame is determined by the gr1553bc_major_cfg structure, described in table 51.

On success zero is returned, on failure a negative value is returned.
19.3.9.13 gr1553bc_list_freetime

Minor Frames can be configured to handle time slot allocation. This function returns the number of microseconds that is
left/unused. The second argument mid determines which Minor Frame.

19.3.9.14 gr1553bc_slot_alloc

Allocate a Slot from a Minor Frame. The Slot location is identified by mid. If the MID identifies a Minor frame the first free
slot is allocated within the minor frame.

The resulting MID of the Slot is stored back to mid, the MID can be used in other function call when setting up the Slot. The
mid argument is thus of in and out type.

The third argument, timeslot, determines the time slot that should be allocated to the Slot. If time management is not
configured for the Minor Frame a time can still be assigned to the Slot. If the Slot should step to the next Slot directly when
finished (no assigned time-slot), the argument must be set to zero. If time management is enabled for the Minor Frame and
the requested time-slot is longer than the free time, the call will result in an error (negative result).

The fourth and last argument can optionally be used to get the address of the descriptor used.
19.3.9.15 gr1553bc_slot_free

Return Slot and timeslot allocated from the Minor Frame.

19.3.9.16 gr1553bc_mid_from_bd

Looks up the Slot/Message ID (MID) from a descriptor address. This function may be useful in the interrupt handler, where
the address of the descriptor is given.

19.3.9.17 gr1553bc_slot_bd

Looks up descriptor address from MID.

19.3.9.18 gr1553bc_slot_irq_prepare

Prepares a condition descriptor to generate interrupt. Interrupt will not be enabled until gri553bc slot_irq enable() is
called. The descriptor will be initialized as an unconditional jump to the next descriptor. The Slot can be associated with a
custom callback function and an argument. The callback function and argument is stored in the unused fields of the
descriptor.

Once enabled and interrupt is generated by the Slot, the callback routine will be called from interrupt context.

The function returns a negative result if failure, otherwise zero is returned.

19.3.9.19 gr1553bc_slot_irq_enable

Enables interrupt of a previously prepared unconditional jump Slot. The Slot is expected to be initialized with
gri553bc_slot_irq_prepare(). The descriptor is changed to do a unconditional jump with interrupt.

The function returns a negative result if failure, otherwise zero is returned.

19.3.9.20 gr1553bc_slot_irq_disable

Disable unconditional IRQ point, the descriptor is changed to unconditional JUMP to the following descriptor, without
generating interrupt. After disabling the Slot it can be enabled again, or freed.

The function returns a negative result if failure, otherwise zero is returned.

19.3.9.21 gr1553bc_slot_jump

Initialize a Slot with a custom jump condition. The arguments are declared in the table below.

Argument Description

list List that the Slot is located at.

mid Slot Identification.

condition Custom condition written to descriptor. See hardware documentation
for options.

to mid Slot Identification of the Slot that the descriptor will be jumping to.

Table 62: gr1553bc_slot_jump argument descriptions.

Returns zero on success.

19.3.9.22 gr1553bc_slot_exttrig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the external
trigger is normally generated by some kind of Time Master. A message slot may be programmed to wait for an external
trigger before being executed, this feature allows the user to accurate send time synchronize messages to RTs.

This function initializes a Slot to a dummy transfer with the “Wait for external trigger” bit set.

Returns zero on success.

19.3.9.23 gr1553bc_slot_transfer

Initializes a descriptor to a transfer descriptor. The descriptor is initialized according to the function arguments an the global

List configuration parameters. The settings that are controlled on a global level (and not by this function):
» IRQ after transfer error
« IRQ after transfer (not supported, insert separate IRQ slot after this)
» Pause schedule after transfer error
« Pause schedule after transfer (not supported)
+ Slot time optional (set when MID allocated), otherwise 0
+ (OPTIONAL) Dummy Bit, set using slot empty() or ... TT DUMMY
+ RT time out tolerance (managed per RT)

The arguments are declared in the table below.

Argument Description

list List that the Slot is located at
mid Slot Identification

options Options:

* Retry Mode

* Number of retires

* Bus selection (A or B)
* Dummy bit

tt Transfer options, see BC transfer type macros in header file:
* transfer type

RT src/dst address

RT subaddress

word count

mode code

dptr Descriptor Data Pointer. Used by Hardware to read or write data to
the 1553 bus. If bit zero is set the address is translated by the driver
into an address which the hardware can access(may be the case if BC
device is located on an AMBA-over-PCI bus), if cleared it is assumed
that no translation is required(typical case)

Table 63: gr1553bc_slot_transfer argument descriptions.

Returns zero on success.

19.3.9.24 gr1553bc_slot_ dummy

Manipulate the DUMMY bit of a transfer descriptor. Can be used to enable or disable a transfer descriptor.

The dummy argument points to an area used as input and output, as input bit 31 is written to the dummy bit of the
descriptor, as output the old value of the descriptor's dummy bit is written.

Returns zero on success.
19.3.9.25 gr1553bc_slot_empty

Create an empty transfer descriptor, with the DUMMY bit set. The time-slot previously allocated is preserved.

Returns zero on success.

19.3.9.26 gr1553bc_slot_update

This function will update a transfer descriptor's status and/or update the data pointer.

If the dptr pointer is non-zero the Data Pointer word of the descriptor will be updated with the value of dptr. If bit zero is set
the driver will translate the data pointer address into an address accessible by the BC hardware. Translation is an option only
for AMBA-over-PCI.

If the stat pointer is non-zero the Status word of the descriptor will be updated according to the content of stat. The old
Status will be stored into stat. The lower 24-bits of the current Status word may be cleared, and the dummy bit may be set:

bd->status = *stat & (bd->status Oxffffff) | (*stat & 0x80000000),

Note that the status word is not written (only read) when value pointed to by stat is zero.

Returns zero on success.
19.3.9.27 gr1553bc_slot_raw

Custom descriptor initialization. Note that a bad initialization may break the BC driver.

The arguments are declared in the table below.

Argument Description

list List that the Slot is located at

mid Slot Identification

flags Determine which words are updated. If bit N is set wordN is written into descriptor
wordN, if bit N is zero the descriptor wordN is not modified.

wordO 32-bit Word written to descriptor address 0x00

word1 32-bit Word written to descriptor address 0x04

word?2 32-bit Word written to descriptor address 0x08

word3 32-bit Word written to descriptor address 0x0C

Table 64: gr1553bc_slot_transfer argument descriptions.

Returns zero on success.
19.3.9.28 gr1553bc_show _list

Print information about a List to standard out. Each Major Frame's first descriptor for example is printed. This function is
used for debugging only.

20 Gaisler B1553BRM DRIVER (BRM)

20.1 INTRODUCTION

This document is intended as an aid in getting started developing with Gaisler GRLIB B1553BRM
core using the driver described in this document. It briefly takes the reader through some of the
most important steps in using the driver such as setting up a connection, configuring the driver,
reading and writing messages between Bus Controllers (BC), Remote Terminals (RT) and Bus
Monitors (BM). The reader is assumed to be well acquainted with MIL-STD-1553 and RTEMS.

The B1553BRM driver require the RTEMS Driver Manager.

20.1.1 BRM Hardware

The BRM hardware can operate in one of three modes, Bus Controller (BC), Remote Terminal
(RT) or Bus Monitor (BM). All three modes are supported by the driver.

20.1.2 Software Driver

The driver provides means for processes and threads to send, receive and monitor messages.

The driver supports three different operating modes:
* Bus Controller

* Remote Terminal

* Bus monitor

20.1.3 Supported OS

Currently the driver is available for RTEMS.

20.1.4 Examples

There is a simple example available it illustrates how to set up a connection between a BC and a
RT monitored by a BM. The BC sends the RT receive and transmit messages for a number of
different sub addresses. The BM is set up to print messages from the BC and the RT. To be able
to run the example one must have at least two boards connected together via the B1553BRM
interfaces. To fully run the example three BRM boards is needed.

The example is part of the Gaisler RTEMS distribution, it can be found under /opt/rtems-
4.10/src/samples/rtems-brm.c, brm lib.c and brm lib.h.

The example can be built by running:

cd /opt/rtenms-4.10/src/sanpl es
make clean rtens-brmrt rtems-brmbc rtens-brmbm

20.2 USER INTERFACE

The RTEMS MIL-STD-1553 B BRM driver supports standard accesses to file descriptors such as
read, write and ioctl. User applications include the brm driver's header file which contains
definitions of all necessary data structures and bit masks used when accessing the driver. An
example application using the driver is provided in the examples directory.

The driver for the MIL-STD-1553 B BRM has three different operating modes, Remote Terminal,
Bus Controller or Bus Monitor. It defaults to Remote Terminal (RT) with address 1, MIL-STD-
1553 B standard, both buses enabled, and broadcasts enabled. The operating mode and settings
can be changed with ioctl calls as described later.

20.2.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The RTEMS I/O driver registration is performed
automatically by the driver when B1553BRM hardware is found for the first time. The driver is
called from the driver manager to handle detected B1553BRM hardware. In order for the driver
manager to unite the B1553BRM driver with the B1553BRM hardware one must register the
driver to the driver manager. This process is described in the driver manager chapter.

20.2.2 Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter.
Below is a description of configurable driver parameters. The driver parameters is unique per
B1553BRM device. The parameters are all optional, the parameters only overrides the default
values.

Name Type | Parameter description

clkSel INT Selects clock source (input value to the clock MUX)

clkDiv INT Selects clock prescaler, may not be available for all clock sources

coreFreq INT The input clock frequency to the BRM core. 0 = 12MHz, 1 = 16MHz, 2=
20MHz, 3 = 24MHz.

dmaArea INT Custom DMA area address. See note below.

Table 65: B1553BRM driver parameter description

20.2.2.1 Custom DMA area parameter

The DMA area can be configured to be located at a custom address. The standard configuration
is to leave it up to the driver to do dynamic allocation of the areas. However in some cases it may
be required to locate the DMA area on a custom location, the driver will not allocate memory but
will assume that enough memory is available and that the alignment needs of the core on the
address given is fulfilled. The memory required is either 16K or 128K bytes depending on how
the driver has been compiled.

For some systems it may be convenient to give the addresses as seen by the B1553BRM core.
This can be done by setting the LSB bit in the address to one. For example a GR-RASTA-IO board
with a B1553BRM core doesn't read from the same address as the CPU in order to access the
same data. This is dependent on the PCI mappings. Translation between CPU and B1553BRM
addresses must be done. The B1553BRM driver automatically translates the DMA base address.
This requires the bus driver, in this case the GR-RASTA-IO driver, to set up translation addresses
correctly.

20.2.3 Opening the device

Opening the device enables the user to access the hardware of a certain BRM device. The driver
is used for all BRM devices available. The devices is separated by assigning each device a unique
name and a number called minor. The name is passed during the opening of the driver. Some
example device names are printed out below.

Device number Filesystem name Location

0 /dev/b1553brm0 On-Chip Bus
1 /dev/b1553brm1 On-Chip Bus
2 /dev/b1553brm?2 On-Chip Bus
Depends on system /dev/rastaio0/b1553brm0 GR-RASTA-IO
configuration

Table 66: Device number to device name conversion.

An example of an RTEMS open call is shown below.
fd = open("/dev/bl553brmd", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 65.

Errno Description
ENODEV
EBUSY

Illegal device name or not available

Device already opened

Table 67: Open errno values.

20.2.4 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)
Close always returns 0 (success) for the brm driver.

20.2.5 I/0 Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most
operating systems support at least two arguments to ioctl, the first being an integer which
selects ioctl function and secondly a pointer to data that may be interpreted uniquely for each
function. A typical ioctl call definition:

int ioctl(int fd, int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the BRM driver's header file
brm.h. In functions where only one argument is needed the pointer (...,void *arg) may be
converted to an integer and interpreted directly, thus simplifying the code.

20.2.5.1 Data structures

20.2.5.1.1 Remote Terminal operating mode

The structure below is used for RT operating mode for all received events as well as to put data
in the transmit buffer.

struct rt_msg {
unsi gned short mw,
unsi gned short tine;
unsi gned short datal 32];
unsi gned short desc;

b
Member Description
miw Message Information Word.
Bit(s) Description
15-11 Word count / mode code - For subaddresses this is the number of
received words. For mode codes it is the receive/transmit mode
code.
10 -
9 A/B - 1 if message receive on bus A, 0 if received on bus B.
RTRT - 1 if message is part of an RT to RT transfer
7 ME - 1 if an error was encountered during message processing. Bit
4-0 gives the details of the error.
6-5 -
4 ILL - 1 if received command is illegalized.
3 TO - If set, the number of received words was less than the amount
specified by the word count.
2 OVR - If set, the number of received words was more than amount
specified by the word count.
1 PRTY - 1 if the RT detected a parity error in the received data.
0 MAN - 1 if a Manchester decoding error was detected during data
reception.
time Time Tag - Contains the value of the internal timer register when the message
was received.
data An array of 32 16 bit words. The word count specifies how many data words
that are valid. For receive
mode codes with data the first data word is valid.
desc Bit 6-0 is the descriptor used.

Table 68: rt_msg member descriptions.

The last variable in the struct rt_msg shows which descriptor (i.e rx subaddress, tx subaddress, rx
mode code or tx mode code) that the message was for. They are defined as shown in the table
below:

Descriptor Description

0 Reserved for RX mode codes
1-30 Receive subaddress 1-30

31 Reserved for RX mode codes
32 Reserved for TX mode codes
33-62 Transmit subaddress 1-30
63 Reserved for TX mode codes
64-95 Receive mode code

96-127 Transmit mode code

Table 69: Descriptor table

If there has occurred an event queue overrun bit 15 of this variable will be set in the first event
read out. All events received when the queue is full are lost.

20.2.5.1.2 Bus Controller operating mode

When operating as BC the command list that the BC is to process is described in an array of BC
messages as defined by the struct bc_msg.

struct bc_msg {
unsi gned char rtaddr[2];
unsi gned char subaddr[2];
unsi gned short wc;
unsi gned short ctrl;
unsi gned short tsw 2];
unsi gned short datal 32];

}
Member Description
rtaddr Remote terminal address - For non RT to RT message only rtaddr[0] is used. It specifies
the address of the remote terminal to which the message should be sent.
For RT to RT messages rtaddr[0] specifies the receive address and rtaddr[1] the transmit
address.
subaddr The subaddr array works in the same manner as rtaddr but for the subaddresses.
wcC Word Count - Specifies the word count, or mode code if subaddress is 0 or 31.
ctrl Bit(s) Description
15 Message Error. Set by BRM while traversing list if protocol error is
detected.
14-6 -
5 END. Indicates end of list
4-3 Retry, Number of retries, 0=4, 1=1, 2=2, 3=3. BC will alternate buses
during retries.
2 AB,1-BusB,0-BusA
1 RT to RT
0 normal
0 0 RT Transmit
1 RT receive (ignored for RT to RT)
tsw Status words
data Data in message, not used for RT receive (ctrl.0 = 1).

Table 70: struct bc_msg member description

20.2.5.1.3 Bus Monitor operating mode

The structure below is used for BM operating mode for all received events as well as to put data
in the transmit buffer.

struct bmmsg {

unsi gned short mw,
unsi gned short cwi;
unsi gned short cw2;
unsi gned short swi;
unsi gned short sw2;
unsi gned short tine;
unsi gned short datal32];
b
Member Description
miw Bit(s) Description
15 Overrun- Indicates that the monitor message queue has been overrun.
14-10 -
9 Channel A/B -1 if message captured on bus A, 0 if captured on bus B.
8 RT to RT transfer - 1 if message is part of an RT to RT transfer
7 Message Error - 1 if an error was encountered during message processing.
Bit 4-0 gives the details of the error.
6 Mode code without data - 1 if a mode code without data word was captured.
5 Broadcast - 1 if a broadcast message was captured.
4 -
3 Time out - If set, the number of captured data words was less than the
amount specified by the word count.
2 Overrun -If set, the number of captured data words was more than amount
specified by the word count.
1 Parity- 1 if the BM detected a parity error in the received data.
0 Manchester error - 1 if a Manchester decoding error was detected during
data reception.
cwl 1553 Command word 1
cw2 1553 Command word 2, only used for RT to RT transfers and then holds the transmit
command.
swl 1553 Status word 1
sw2 1553 Status word 2, is only used for RT to RT transfers and then holds the status word
from the transmitting RT.
time Time tag (time) Contains the value of the internal timer register when the message was
captured.
data An array of 32 16 bit words. The command word specifies how many data words that are

valid. For receive mode codes with data the first data word is valid.

Table 71: struct bm_msg member description

20.2.6 Configuration

The BRM core and driver are configured using ioctl calls. The table 68 below lists all supported
ioctl calls. BRM_ should be concatenated with the call number from the table to get the actual
constant used in the code. Return values for all calls are 0 for success and -1 on failure. Errno is
set after a failure as indicated in table 67.

An example is shown below where the operating mode is set to Bus Controller (BC) by using an
ioctl call:

unsi gned i nt node = BRM MODE_BC;
result = ioctl(fd, BRM SET_MODE, &node);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The BRM hardware is not in the correct state to accept this command. Errno is
set to EBUSY when issuing a BRM DO _LIST before the last BRM DO LIST
command has finished its execution.

ENOMEM Not enough memory for driver to complete request.

Table 72: ERRNO values for ioctl calls.

Call Number Description ERRNO
SET MODE Set operating mode (0=BC, 1=RT, 2=BM) EINVAL, ENOMEM
SET BUS Enable/disable buses
SET MSGTO Set message timeout
SET RT ADDR Get Remote Terminal address
SET STD Get bus standard
SET BCE Enable/disable broadcasts
TX BLOCK Set blocking/non-blocking mode for RT write calls and BC
DO LIST commands.
RX BLOCK Set blocking/non-blocking mode for RT and BM read calls
CLR STATUS Clear status flag
GET STATUS Read status flag EINVAL
SET EVENTID Set event id
DO LIST Execute list (BC mode) EINVAL, EBUSY
LIST DONE Wait for list to finish execution (BC mode) EINVAL, EBUSY

Table 73: ioctl calls supported by the BRM driver.

All ioctl requests takes as parameter the address to an unsigned int where data will be read from
or written to depending on the request.

There are two more ioctl requests but they are not for configuration and are described later in
Bus Controller Operation.

20.2.6.1 SET_MODE

Sets the operating mode of the BRM. Data should be 0 for BC, 1 for RT and 2 for BM.

20.2.6.2 SET_BUS

For RT mode only. Sets which buses that are enabled.

0-none, 1-busB, 2-

bus A and 3 both bus A and B.

20.2.6.3 SET_MSGTO

For BC and BM mode. Sets the RT no response time out. If in MIL-STD-1553 B mode it is either

14 us or 30 us. In MIL-STD-1553 A mode either 9 us or 21 us.

20.2.6.4 SET_RT _ADDR

Sets the remote address for the RT. O - 30 if broadcasts enabled, O - 31 otherwise.
20.2.6.5 BRM_SET_STD

Sets the bus standard. 0 for MIL-STD-1553 B, 1 for MIL-STD-1553 A.

20.2.6.6 BRM_SET _BCE

Enable/disable broadcasts. 1 enables them, 0 disables.

20.2.6.7 BRM_TX_BLOCK

Set blocking/non blocking mode for RT write calls and BC ioctls. Blocking is default.
20.2.6.8 BRM_RX BLOCK

Set blocking/non blocking mode for RT read calls. Blocking is default.

20.2.6.9 BRM_CLR_STATUS

Clears status bit mask. No input is needed it always succeeds.

20.2.6.10 BRM_GET_STATUS

Reads the status bit mask. The status bit mask is modified when an error interrupt is received.
This ioctl command can be used to poll the error status by setting the argument to an unsigned
int pointer.

Bit(s) Description Modes
31-16 The last descriptor that caused an error. Is not set for hardware | BC, RT
errors.
BRM DMAF IRQ DMA Fail all
BRM WRAPF IRQ Wrap Fail BC, RT
BRM TAPF IRQ Terminal Address Parity Fail RT
BRM MERR IRQ Message Error all
BRM RT ILLCMD IRQ Illegal Command RT
BRM BC ILLCMD IRQ Illogical Command BC
BRM ILLOP IRQ Ilogical Opcode BC

Table 74: Status bit mask

20.2.6.11 BRM_SET_EVENTID

Sets the event id to an event id external to the driver. It is possible to stop the event signalling by
setting the event id to zero.

When the driver notifies the user (using the event id) the bit mask that caused the interrupt is

sent along as an argument. Note that it may be different from the status mask read with
BRM GET STATUS since previous error interrupts may have changed the status mask. Thus
there is no need to clear the status mask after an event notification if only the notification
argument is read.

See table 66 for the description of the notification argument.

20.2.7 Remote Terminal operation

When operating as Remote Terminal (RT) the driver maintains a receive event queue. All events
such as receive commands, transmit commands, broadcasts, and mode codes are put into the
event queue. Each event is described using a struct rt msg as defined earlier in the data
structure subsection.

The events are read of the queue using the read() call. The buffer should point to the beginning
of one or several struct rt msg. The number of events that can be received is specified with the
length argument. E.g:

struct rt_nsg nsg[2];
n = read(brmfd, msg, 2);

The above call will return the number of events actually placed in msg. If in non-blocking mode -1
will be returned if the receive queue is empty and errno set to EBUSY. Note that it is possible
also in blocking mode that not all events specified will be received by one call since the read call
will seize to block as soon as there is one event available.

What kind of event that was received can be determined by looking at the desc member of a
rt msg. It should be interpreted according to table 8. How the rest of the fields should be
interpreted depends on what kind of event it was, e.g if the event was a reception to subaddress
1 to 30 the word count field in the message information word gives the number of received words
and the data array contains the received data words.

To place data in the transmit buffers the write() call is used. The buffer should point to the
beginning of one or several struct rt msg. The number of messages is specified with the length
argument. E.qg:

struct rt_nsg nsg;

neg. desc = 33; /* transmt for subaddress 1 */
msg.mw = (16 << 11) | (1 << 9) /* 16 words on bus A */
nmeg. data[0] = 0x1234;

msg. dat a[15] = OXAABB:
n=wite(brmfd, nsg, 1);

The number of messages actually placed in the transmit queue is returned. If the device is in
blocking mode it will block until there is room for at least one message. When the buffer is full
and the device is in non-blocking mode -1 will be returned and errno set to EBUSY. Note that it is
possible also in blocking mode that not all messages specified will be transmitted by one call
since the write call will seize to block as soon as there is room for one message.

The transmit buffer is implemented as a circular buffer with room for 8 messages with 32 data
words each. Each write() call appends a message to the buffer.

20.2.8 Bus Controller operation

To use the BRM as Bus Controller one first has to use an ioctl() call to set BC mode. Command
lists that the BC should process are then built using arrays of struct bc msg described earlier in
the data structure subsection. To start the list processing the ioctl() request BRM DO LIST is
used. The ioctl() request BRM LIST DONE is used to check when the list processing is done. It
returns 1 in the supplied argument if operation has finished. Note that BRM LIST DONE must be

called before traversing the list to check results since this operation also copies the results into
the array. Errno is set to EBUSY when issuing a BRM DO _LIST before the last BRM DO LIST
command has finished its execution.

Example use:

struct bc_nsg nsg[2];
int done, data, k;

data = 0O;
ioctl (brmfd, BRM SET_MODE, &data); /* set BC node */

bc _nmsg[0].rtaddr[0] = 1;

bc_nsg[0].subaddr[0] = 1;

bc_msg[0].wc = 32;

bc_nmsg[0].ctrl = BC BUSA; /* rt receive on bus a */

for (k = 0; k < 32; k++)
bc_nsg[0] .data[k] = k;

bc nmsg[1].ctrl |= BC ECQL; /* end of list */
ioctl(brmfd, BRM DO LIST, bc_nsg);
ioctl (brmfd, BRM LIST_DONE, &done);

If in blocking mode the BRM LIST DONE ioctl will block until the BC has processed the list.
When the BC is finished and BRM LIST DONE has returned 1 in the argument the status words
and received data can be interpreted by the application. During blocking mode BRM LIST DONE
may set errno to EINVAL if an illogical opcode or an illogical command is detected by the
hardware during the list execution.

20.2.9 Bus monitor operation

When operating as Bus Monitor (BM) the driver maintains a capture event queue. All events such
as receive commands, transmit commands, broadcasts, and mode codes are put into the event
queue. Each event is described using a struct bm msg as defined in the data structure
subsection.

The events are read of the queue using the read() call. The buffer should point to the beginning
of one or several struct bm_msg. The number of events that can be received is specified with the
length argument. E.g:

struct bmnsg msg[2];
n = read(brmfd, nsg, 2);

The above call will return the number of events actually placed in msg. If in non-blocking mode -1
will be returned if the receive queue is empty and errno set to EBUSY. Note that it is possible
also in blocking mode that not all events specified will be received by one call since the read call
will seize to block as soon as there is one event available.

21 Gaisler B1553RT DRIVER (RT)

21.1 INTRODUCTION

This section describes the B1553RT Remote Terminal driver available for RTEMS. The reader is
assumed to be well acquainted with MIL-STD-1553 and RTEMS.

The B1553RT driver require the RTEMS Driver Manager.

21.1.1 RT Hardware

The B1553RT core operate at the same frequency as the bus, it must be 12, 16, 20 or 24MHz. It
requires a 4KByte DMA buffer area that must be aligned properly.

21.1.2 Examples

There is a simple example available, it illustrates how to set up RT for reception and transmission
of messages sent by a BC. Received messages are handled by updating the transmission DMA
Area for respective sub address. The example collects statistics for received mode codes that the
BC can read at sub address 30.

The example is part of the Gaisler RTEMS distribution, it can be found under /opt/rtems-
4.10/src/samples/rtems-b1553rt.c.

21.2 USER INTERFACE

The RTEMS MIL-STD-1553B RT driver supports standard accesses to file descriptors such as
read, write and ioctl. User applications include the rt driver's header file which contains
definitions of all necessary data structures and bit masks used when accessing the driver. An
example application using the driver is provided in the examples directory.

21.2.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The RTEMS [/O driver registration is performed
automatically by the driver when B1553RT hardware is found for the first time. The driver is
called from the driver manager to handle detected B1553RT hardware. In order for the driver
manager to unite the B1553RT driver with the B1553RT hardware one must register the driver to
the driver manager. This process is described in the driver manager chapter.

21.2.2 Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter.
Below is a description of configurable driver parameters. The driver parameters is unique per
B1553RT device. The parameters are all optional, the parameters only overrides the default
values.

Name Type | Parameter description

coreFreq INT The input clock frequency to the RT core. 0 = 12MHz, 1 = 16MHz, 2=
20MHz, 3 = 24MHz. The default is 24MHz. The driver auto detect the
bus frequency and override the default if the bus frequency is 20MHz,
16MHz or 12MHz. This parameter override the default and the auto
detected value.

dmaBaseAdr INT Custom DMA area address. See note below.

Table 75: B1553RT driver parameter description

21.2.2.1 Custom DMA area parameter

The DMA area can be configured to be located at a custom address. The standard configuration
is to leave it up to the driver to do dynamic allocation of the areas. However in some cases it may
be required to locate the DMA area on a custom location, the driver will not allocate memory but
will assume that enough memory is available and that the alignment needs of the core on the
address given is fulfilled. The memory required is either 4K bytes.

For some systems it may be convenient to give the addresses as seen by the B1553RT core. This
can be done by setting the LSB bit in the address to one. For example a PCI Target board with a
AMBA bus with a B1553RT core doesn't read from the same address as the CPU in order to
access the same data. This is dependent on the PCI mappings. Translation between CPU and
B1553RT addresses must be done. The B1553RT driver automatically translates the DMA base
address. This requires the bus driver, in this case the PCI Target driver, to set up translation
addresses correctly.

21.2.3 Opening the device

Opening the device enables the user to access the hardware of a certain RT device. The driver is
used for all RT devices available. The devices is separated by assigning each device a unique
name and a number called minor. The name is passed during the opening of the driver. Some
example device names are printed out below.

Device number Filesystem name Location

0 /dev/b1553rt0 On-Chip Bus
1 /dev/b1553rtl On-Chip Bus
2 /dev/b1553rt2 On-Chip Bus

Table 76: Device number to device name conversion.

An example of an RTEMS open call is shown below.
fd = open("/dev/bl553rt0", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 75.

Errno Description
ENODEV Illegal device name or not available
EBUSY Device already opened

Table 77: Open errno values.

21.2.4 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)
Close always returns 0 (success) for the rt driver.

21.2.5 I/O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most
operating systems support at least two arguments to ioctl, the first being an integer which
selects ioctl function and secondly a pointer to data that may be interpreted uniquely for each
function. A typical ioctl call definition:

int ioctl(int fd, int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.
All supported commands and their data structures are defined in the RT driver's header file
b1553rt.h.

21.2.5.1 Data structures

21.2.5.1.1 Remote Terminal operating mode

The structure below is used for all received events as well as to put data in the transmit buffer.

struct rt_nsg {
unsi gned short mw,
unsi gned short tine;
unsi gned short datal32];
unsi gned short desc;

Member Description

miw Message Information Word.
Bit(s) Description
15-11 Word count / mode code - For sub addresses this is the number of
received words. For mode codes it is the receive/transmit mode
code.
10 -
A/B -1 if message receive on bus A, 0 if received on bus B.
reserved
7 ME - 1 if an error was encountered during message processing. Bit
4-0 gives the details of the error.
6-5 -
4 ILL - 1 if received command is illegalized.
3 reserved
2 reserved
1 PRTY - 1 if the RT detected a parity error in the received data.
0 MAN - 1 if a Manchester decoding error was detected during data
reception.
time Time Tag - Contains the value of the internal timer register when the message

was received.

data An array of 32 16 bit words. The word count specifies how many data words
that are valid. For receive
mode codes with data the first data word is valid.

desc Bit 6-0 is the descriptor used. Bit 15 indicates software buffer overrun when set,
the messages was not read out in time which lead to the driver needed to skip at
least one received message.

Table 78: rt_msg member descriptions.

The last variable in the struct rt_msg shows which descriptor (i.e rx subaddress, tx subaddress, rx
mode code or tx mode code) that the message was for. They are defined as shown in the table
below:

Descriptor Description

0 Reserved for RX mode codes
1-30 Receive subaddress 1-30

31 Reserved for RX mode codes
32 Reserved for TX mode codes
33-62 Transmit subaddress 1-30
63 Reserved for TX mode codes
64-95 Receive mode code

96-127 Transmit mode code

Table 79: Descriptor table

If there has occurred an event queue overrun bit 15 of this variable will be set in the first event
read out. All events received when the queue is full are lost.

21.2.6 Configuration

The RT core and driver are configured using ioctl calls. The table 78 below lists all supported
ioctl calls. RT_should be concatenated with the call number from the table to get the actual
constant used in the code. Return values for all calls are 0 for success and -1 on failure. Errno is
set after a failure as indicated in table 77.

An example is shown below where the Remote Terminal Address is set to one by using an ioctl
call:

unsi gned int nmode = 1;

result = ioctl(fd, RT_SET ADDR, &node);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.
ENOSYS Invalid request, now such ioctl command.

Table 80: ERRNO values for ioctl calls.

Call Number Description ERRNO
SET ADDR Set Remote Terminal address

SET BCE Enable/disable broadcast

SET VECTORW Set VECTOR WORD register in RT core

SET EXTMDATA Set/Clear EXTMDATA bit in RT core

RX BLOCK Set blocking/non-blocking mode for read calls

CLR STATUS Reset status flag

GET STATUS Read status flag EINVAL
SET EVENTID Set event id used to signal detected errors with

Table 81: ioctl calls supported by the RT driver.

All ioctl requests takes as parameter the address to an unsigned int where data will be read from
or written to depending on the request.

21.2.6.1 RT_SET_ADDR

Sets the remote address for the RT. 0 - 30 if broadcasts enabled, O - 31 otherwise.
21.2.6.2 RT_SET_BCE

Enable/disable broadcasts. 1 enables them, 0 disables.

21.2.6.3 RT_SET_VECTORW

Set the vector word register in the RT core. This might not have an effect depending on how the
RT core register have been set up.

21.2.6.4 RT_RX BILOCK
Set blocking/non blocking mode for RT read calls. Blocking is default.
21.2.6.5 RT_SET_EXTMDATA

Set or clear the EXTMDATA bit of the RT core. The input is a pointer to a integer which
determines the EXTMDATA bit.

21.2.6.6 RT_CLR _STATUS
Clears status bit mask. No input is needed it always succeeds.
21.2.6.7 RT_GET_STATUS

Reads the status bit mask. The status bit mask is modified when an error interrupt is received.
This ioctl command can be used to poll the error status by setting the argument to an unsigned
int pointer.

Bit(s) Description

31-16 The last descriptor that caused an error. Is not set for hardware errors.

RT DMAF IRQ DMA Fail, AHB error from AMBA wrapper or Memory failure indicated by the
RT Core.

RT MERR IRQ Message Error

RT ILLCMD IRQ Illegal Command

Table 82: Status bit mask

21.2.6.8 RT_SET_EVENTID

Sets the event id to an event id external to the driver. It is possible to stop the event signalling by
setting the event id to zero.

When the driver notifies the user (using the event id) the bit mask that caused the interrupt is
sent along as an argument. Note that it may be different from the status mask read with
RT GET STATUS since previous error interrupts may have changed the status mask. Thus there
is no need to clear the status mask after an event notification if only the notification argument is
read.

See table 76 for the description of the notification argument.

21.2.7 Remote Terminal operation

The Remote Terminal (RT) driver maintains a receive event queue. All events such as receive
commands, transmit commands, broadcasts, and mode codes are put into the event queue. Each
event is described using a struct rt msg as defined earlier in the data structure subsection.

The events are read of the queue using the read() call. The buffer should point to the beginning
of one or several struct rt msg. The number of events that can be received is specified with the
length argument. E.g:

struct rt_msg nsg[2];
n = read(rt_fd, msg, 2);

The above call will return the number of events actually placed in msg. If in non-blocking mode -1

will be returned if the receive queue is empty and errno set to EBUSY. Note that it is possible
also in blocking mode that not all events specified will be received by one call since the read call
will seize to block as soon as there is one event available.

What kind of event that was received can be determined by looking at the desc member of a
rt msg. It should be interpreted according to table 8. How the rest of the fields should be
interpreted depends on what kind of event it was, e.g if the event was a reception to subaddress
1 to 30 the word count field in the message information word gives the number of received words
and the data array contains the received data words.

To place data in the transmit sub addresses the write() call is used. The buffer should point to the
beginning of one struct rt_ msg. The number of messages is specified with the length argument, it
must be specified to one. E.g:

struct rt_nsg nsg;

nmeg. desc = 33; /* transmt for subaddress 1 */
mg.mw = (16 << 11); /* 16 words */

nmeg. data[0] = 0x1234;

nsg. dat a[15] = OXAABB;
n=wite(rt_fd, msg, 1);

Regardless of the blocking mode the message will be copied directly into the RT DMA area and
the write call will return directly.

22 CAN DRIVER INTERFACE (GRCAN)

22.1 USER INTERFACE

The RTEMS CAN driver supports the standard accesses to file descriptors such as read, write
and ioctl. User applications include the grcan driver's header file (grcan.h) which contains
definitions of all necessary data structures and bit masks used when accessing the driver.

The GRCAN driver require the RTEMS Driver Manager.

22.1.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The RTEMS [/O driver registration is performed
automatically by the driver when CAN hardware is found for the first time. The driver is called
from the driver manager to handle detected CAN hardware. In order for the driver manager to
unite the CAN driver with the CAN hardware one must register the driver to the driver manager.
This process is described in the driver manager chapter.

22.1.2 Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter.
Below is a description of configurable driver parameters. The driver parameters is unique per
CAN device. The parameters are all optional, the parameters only overrides the default values.

Name Type | Parameter description
txBufSize INT Length of TX DMA area. Must be a multiple of 64 bytes, four messages.

rxBufSize INT Length of RX DMA area. Must be a multiple of 64 bytes, four messages.
txBufAdr INT Custom TX DMA area address. See note below.
rxBufAdr INT Custom RX DMA area address. See note below.

Table 83: GRCAN driver parameter description

22.1.2.1 Custom DMA area parameters

The DMA area can be configured to be located at a custom address. The standard configuration
is to leave it up to the driver to do dynamic allocation of the areas. However in some cases it may
be required to locate the DMA area on a custom location, the driver will not allocate memory but
will assume that enough memory is available and that the alignment needs of the core on the
address given is fulfilled.

For some systems it may be convenient to give the addresses as seen by the CAN core. This can
be done by setting the LSB bit in the address to one. For example a GR-RASTA-IO board with a
CAN core doesn't read from the same address as the CPU in order to access the same data. This
is dependent on the PCI mappings. Translation between CPU and CAN addresses must be done.
The CAN driver automatically translates the required addresses. This requires the bus driver, in
this case the GR-RASTA-IO driver, to set up translation addresses correctly.

22.1.3 Opening the device

Opening the device enables the user to access the hardware of a certain CAN core. The driver is
used for all GRCAN cores available. The cores are separated by assigning each device a unique
name and a number called minor. The name is passed during the opening of the driver. Some
example device names are printed out below.

Device number Filesystem name Location

0 /dev/grcan0 On-Chip Bus
1 /dev/grcanl On-Chip Bus
2 /dev/grcan2 On-Chip Bus
Depends on system configuration /dev/rastaio0/grcan0 GR-RASTA-IO

Table 84: Core number to device name conversion.

An example of an RTEMS open call is shown below.
fd = open("/dev/grcan0", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 83.

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary
memory.

Table 85: Open errno values.

22.1.4 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)
Close always returns 0 (success) for the grcan driver.

22.1.5 1I/0 Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Two
arguments must be provided to ioctl, the first being an integer which selects ioctl function and
secondly a pointer to data that may be interpreted uniquely for each function. A typical ioctl call
definition:

int ioctl(int fd, int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the CAN driver's header file
grcan.h. In functions where only one argument is needed the pointer (void *arg) may be
converted to an integer and interpreted directly, thus simplifying the code.

22.1.5.1 Data structures

The grcan filter structure is used when changing acceptance filter of the CAN receiver and the
SYNC Rx/Tx Filter.

Note that the two different ioctl commands use this data structure differently.

struct grcan_filter {
unsi gned i nt mask;
unsi gned int code;

}

Member Description

code Specifies the pattern to match, only the unmasked bits are used in the
filter.

mask Selects what bits in code will be used or not. A set bit is interpreted as
don't care.

Table 86: grcan_filter member description

The CANMsg struct is used when reading and writing messages. The structure describes the
drivers view of a CAN message. The structure is used for writing and reading. See the
transmission and reception section for more information.

typedef struct {
char extended;
char rtr
char unused,;
unsi gned char |en;
unsi gned char dataf 8];
unsigned int id;

} CANMsg;

Member Description

extended Indicates whether message has 29 or 11 bits ID tag. Extended or Standard frame.

rtr Remote Transmission Request bit.

len Length of data.

data Message data, data[0] is the most significant byte - the first byte.

Id The ID field of the message. An extended frame has 29 bits whereas a standard
frame has only 11-bits. The most significant bits are not used.

Table 87: CANMsg member description

The grcan_stats data structure contains various statistics gathered by the CAN hardware.

typedef struct {
[* tx/rx stats */
unsi gned int passive_cnt;
unsi gned int overrun_cnt;
unsi gned int rxsync_cnt;
unsi gned int txsync_cnt;
unsigned int ints;
} grcan_stats;

Member Description

passive cnt Number of error passive mode detected.

overrun cnt Number of reception over runs.

rxsync_cnt Number of received SYNC messages (matching SYNC filter)
txsync _cnt Number of transmitted SYNC messages (matching SYNC filter)
ints Number of times the interrupt handler has been invoked.

Table 88: grcan_stats member description

The grcan timing data structure is used when setting the configuration register manually of the
CAN core. The timing parameters are used when hardware generates the baud rate and sampling
points.

struct grcan_timng {
unsi gned char scal er;
unsi gned char ps1;
unsi gned char ps2;
unsigned int rsj;
unsi gned char bpr;

H

Member Description

scaler Prescaler

psl Phase segment 1

ps2 Phase segment 2

TSj Resynchronization jumps, 1..4

bpr Value Baud rate
0 system clock / (scaler+1) / 1
1 system clock / (scaler+1) / 2
2 system clock / (scaler+1) / 4
3 system clock / (scaler+1) / 8

Table 89: grcan_timing member description

The grcan selection data structure is used to select active channel. Each channel has one
transceiver that can be inactivated or activated using this data structure. The hardware can
however be configured active low or active high making it impossible for the driver to know how
to set the configuration register in order to select a predefined channel.

struct grcan_sel ection {
unsi gned char sel ecti on;
unsi gned char enabl e0;
unsi gned char enabl el;

b

Member Description

selection Select receiver input and transmitter output.
enable0 Set value of output 1 enable

enablel Set value of output 1 enable

Table 90: grcan_selection member description

22.1.5.2 Configuration

The CAN core and driver are configured using ioctl calls. The table 86 below lists all supported
ioctl calls. GRCAN IOC must be concatenated with the call number from the table to get the
actual constant used in the code. Return values for all calls are 0 for success and -1 on failure.
Errno is set after a failure as indicated in table 85.

An example is shown below where the driver's read call changes behaviour. After this call the
driver will block the calling thread until free space in the receiver's circular buffer are available:

result = ioctl(fd, GRCAN | OC_SET RXBLOCK, 1);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The CAN hardware is not in the correct state. Many ioctl calls need the CAN
device to be in reset mode. One can switch state by calling START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands
to fail.

ENODEV The call has been aborted by another call or due to a state change. Is returned

when the driver has blocked the calling thread but needs to wake it in order to
avoid a dead lock. This may be due to another thread closing the driver or a
detected hardware error.

Table 91: ERRNO values for ioctl calls

Call Number Call Mode Description

START Stopped Exit paused mode, brings up the link. Enables read and write.
Called after bus-off or open.

STOP Running Exit operating mode, enter reset mode. Most of the settings can
only be set when in reset mode.

ISSTARTED Don't Care Return error status when not running and success when driver is
in running mode.

FLUSH Running Wait until all messages are transmitted.

SET SILENT Stopped Enable/disable silent mode, it is possible to read messages but not
write messages to the CAN bus.

SET ABORT Don't Care Stop or continue on AMBA AHB transaction error.

SET SELECTION Stopped Redundant channel selection. Pass a pointer to a grcan_selection
data structure when calling this command.

SET SPEED Stopped Not implemented. (Set baud rate from frequency)

SET BTRS Stopped Sets timing parameters which control the baud rate using the
grcan_timing data structure.

SET RXBLOCK Don't Care Set read blocking/non-blocking mode

SET TXBLOCK Don't Care Set write blocking/non-blocking mode

SET TXCOMPLETE Don't Care Set option to complete the write request, making write returning
after all data has been written to buffer.
Note: Has an effect only in blocking mode.

SET RXCOMPLETE Don't Care Set option to complete the read request, making read returning
after requested data has been read to buffer.
Note: Has an effect only in blocking mode.

GET STATS Don't care Get current statistics collected by driver.

CLR STATS Don't Care Clear statistics collected by driver.

SET AFILTER Don't Care Set acceptance filter. Let the second argument to the ioctl
command point to a grcan filter data structure.

SET SFILTER Don't Care Set Rx/Tx SYNC filter. Let the second argument to the ioctl
command point to a grcan_filter data structure.

GET STATUS Don't care Get the status register. Bus off among others can be read out.

Table 92: ioctl calls supported by the CAN driver.

22.1.5.2.1 START

This ioctl command places the CAN core in running mode. Settings previously set by other ioctl
commands are written to hardware just before leaving reset mode. It is necessary to enter
running mode to be able to read or write messages on the CAN bus.

The command will fail if receive or transmit buffers are not correctly allocated or if the CAN core
already is in running mode.

22.1.5.2.2 STOP

This call makes the CAN core leave operating mode and enter reset mode. After calling STOP
further calls to read and write will result in errors.

It is necessary to enter reset mode to change operating parameters of the CAN core such as the
baud rate and for the driver to safely change configuration such as FIFO buffer lengths.

The command will fail if the CAN core already is in reset mode.

22.1.5.2.3 ISSTARTED

Is used to determine the driver state. Returns the error state EBUSY when the driver is in
stopped mode. It returns 0 and errno is not set when the driver is started.

22.1.5.2.4 FLUSH

This call blocks the calling thread until all messages in the driver's buffers has been processed
by the CAN hardware.

The flush command may fail if the state is changed, the driver is closed, or an error is detected
by hardware. Errno is set to ENODEYV to identify such a case.

22.1.5.2.5 SET_SILENT

This command set the SILENT bit in the configuration register of the CAN hardware. If the
SILENT bit is set the CAN core operates in listen only mode. Write calls fails and read calls
proceed.

This call fail if the driver is in running mode. Errno is set to EBUSY when in running mode.

22.1.5.2.6 SET_ABORT

This command set the ABORT bit in the configuration register of the CAN hardware. The ABORT
bit is used to cause the hardware to stop the receiver and transmitter when an AMBA AHB error
is detected by hardware.

This call never fail.

22.1.5.2.7 SET_SELECTION

This command selects active channel used during communication. The SET SELECTION
command takes a second argument, a pointer to a grcan selection data structure described in
the data structures section.

This call will fail if the driver is in running mode. The errno variable will be set to EBUSY and -1
is returned from ioctl.

22.1.5.2.8 SET_BTRS

This call sets the timing registers manually. See the CAN hardware documentation for a detailed
description of the timing parameters. The SET BTRS call takes a pointer to a grcan timing data
structure containing all available timing parameters. The grcan timing data structure is
described in the data structure section.

This call fail if the CAN core is in running mode, in that case errno will be set to EBUSY and ioctl
will return -1.

22.1.5.2.9 SET_RXBLOCK

This call changes the behaviour of read calls to blocking or non-blocking mode. When in blocking
mode the calling thread will be blocked until there is data available to read. It may return after
any number of bytes has been read. Use the RXCOMPLETE for controlling the driver's blocking
mode behaviour further.

For non-blocking mode the calling thread will never be blocked returning a zero length of data.

The RXCOMPLETE has no effect during non-blocking mode.

This call never fails, it is valid to call this command in any mode.

22.1.5.2.10 SET_TXBLOCK

This call changes the behaviour of write calls to blocking or non-blocking mode. When in blocking
mode the calling thread will be blocked until at least one message can be written to the driver's
circular buffer. It may return after any number of messages has been written. Use the
TXCOMPLETE for controlling the driver's blocking mode behaviour further.

For non-blocking mode the calling thread will never be blocked which may result in write
returning a zero length when the driver's internal buffers are full. The TXCOMPLETE has no
effect during non-blocking mode.

This call never fails, it is valid to call this command in any mode.

22.1.5.2.11 SET_TXCOMPLETE

This command disables or enables the write command to block until all messages specified by the
caller are copied to driver's internal buffers before returning.

Note: This option is only relevant in TX blocking mode.

This call never fail.

22.1.5.2.12 SET_RXCOMPLETE

This command disables or enables the read command to block until all messages specified by the
caller are read into the user specified buffer.

Note: This option is only relevant in RX blocking mode.

This call never fail.

22.1.5.2.13 GET _STATS
This call copies the driver's internal counters to a user provided data area. The format of the data
written is described in the data structure subsection. See the grcan stats data structure.

The call will fail if the pointer to the data is invalid.

22.1.5.2.14 CLR_STATS
Clears the driver's collected statistics.

This call never fail.

22.1.5.2.15 SET_AFILTER

Set Acceptance filter matched by receiver for every message that is received. Let the second
argument point to a grcan filter data structure or NULL to disable filtering to let all messages
pass the filter. Messages matching the below function are passed and possible to read from user
space:

(Id XOR Code) AND Mask = 0

This command never fail.

22.1.5.2.16 SET_SFILTER

Set Rx/Tx SYNC filter matched by receiver for every message that is received. Let the second
argument point to a grcan filter data structure or NULL to disable filtering to let all messages
pass the filter. Messages matching the below function are treated as SYNC messages:

(Id XOR Code) AND Mask = 0

This command never fail.

22.1.5.2.17 GET_STATUS

This call stores the current status of the CAN core to the address pointed to by the argument
given to ioctl. This call is typically used to determine the error state of the CAN core. The 4 byte
status bit mask can be interpreted as in table above.

Mask Description

GRCAN STAT PASS Error-passive condition

GRCAN STAT OFF Bus-off condition

GRCAN _STAT OR Overrun during reception

GRCAN STAT AHBERR AMBA AHB error

GRCAN STAT ACTIVE Transmission ongoing

GRCAN _STAT RXERRCNT Reception error counter value, 8-bit
GRCAN STAT TXERRCNT Transmission error counter value, 8-bit

Table 93: Status bit mask

This call never fail.

22.1.6 Transmission

Transmitting messages are done with the write call. It is possible to write multiple packets in one
call. An example of a write call is shown below:

result = wite(fd, & x _nsgs[0], sizeof (CANMsQ)*nBgcnt));

On success the number of transmitted bytes is returned and -1 on failure. Errno is also set in the
latter case. Tx msgs points to the beginning of the CANMsg structure which includes id, type of
message, data and data length. The last parameter sets the number of CAN messages that will be
transmitted it must be a multiple of CANMsg structure size.

The write call can be configured to block when the software fifo is full. In non-blocking mode
write will immediately return either return -1 indicating that no messages were written or the
total number of bytes written (always a multiple of CANMsg structure size). Note that 3 message
write request may end up in only 2 written, the caller is responsible to check the number of
messages actually written in non-blocking mode.

If no resources are available in non-blocking mode the call will return with an error. The errno
variable is set according to the table given below.

ERRNO Description

EINVAL An invalid argument was passed. The buffer length was less than a single
CANMsg structure size.

EBUSY The link is not in operating mode, but in reset mode. Nothing done.
ETIMEDOUT In non-blocking mode
ENODEV Calling task was woken up from blocking mode by a bus off error. The CAN core

has entered reset mode. Further calls to read or write will fail until the ioctl
command START is issued again.

Table 94: ERRNO values for write

Each Message has an individual set of options controlled in the CANMsg structure. See the data
structure subsection for structure member descriptions.

22.1.7 Reception
Reception of CAN messages from the CAN bus can be done using the read call. An example is
shown below:

CANMBg rx_nsgs[5] ;
len = read(fd, rx_mnsgs, sizeof(rx_nsgs));

The requested number of bytes to be read is given in the third argument. The messages will be
stored in rx msgs. The actual number of received bytes (a multiple of sizeof(CANMsgqg)) is
returned by the function on success and -1 on failure. In the latter case errno is also set.

The CANMsg data structure is described in the data structure subsection.

The call will fail if a null pointer is passed, invalid buffer length, the CAN core is in stopped mode
or due to a bus off error in blocking mode.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until at
least one message has been received. In non-blocking mode, the call will return immediately and
if no message was available -1 is returned and errno set appropriately. The table below shows the
different errno values returned.

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer or the length was illegal.

EBUSY CAN core is in reset mode. Switch to operating mode by issuing a START ioctl
command.

ETIMEDOUT In non-blocking mode no messages were available in the software receive
FIFO.

EIO A blocking read was interrupted by a bus off error. The CAN core has entered
reset mode. Further calls to read or write will fail until the ioctl command
START is issued again.

Table 95: ERRNO values for read calls.

23 Gaisler Opencores CAN driver (OC_CAN)

23.1 INTRODUCTION

This document is intended as an aid in getting started developing with Gaisler GRLIB wrapper for
Opencores CAN core using the driver described in this document. It briefly takes the reader
through some of the most important steps in using the driver such as setting up a connection,
configuring the driver, reading and writing CAN messages. The reader is assumed to be well
acquainted with CAN and RTEMS.

The OC_CAN driver require the RTEMS Driver Manager.

23.1.1 CAN Hardware

The OC_CAN core can operate in different modes providing the same register interfaces as other
well known CAN cores. The OC_CAN driver supports PeliCAN mode only.

23.1.2 Software Driver

The driver provides means for processes and threads to send and receive messages. Errors can
be detected by polling the status flags of the driver. Bus off errors cancels the ongoing transfers
to let the caller handle the error.

The driver supports filtering received messages id fields by means of acceptance filters, runtime
timing register calculation given a baud rate. However not all baud rates may be available for a
given system frequency. The system frequency is hard coded and must be set in the driver.

23.1.3 Supported OS

Currently the driver is available for RTEMS.

23.1.4 Examples

There is a simple example available, it illustrates how to set up a connection, reading and writing
messages using the OC CAN driver. It is made up of two tasks communicating with each other
through two OC_CAN devices. To be able to run the example one must have two OC_CAN devices
externally connected together on the different or the same board.

The example is part of the Gaisler RTEMS distribution, it can be found under /opt/rtems-
4.10/src/examples/samples/rtems-occan.c, occan lib.c and occan lib.h.

The example can be built by running:

cd /opt/rtens-4. 10/ src/ exanpl es/ sanpl es
nmake cl ean rtens-occan rtens-occan_tx rtens-occan_rx

Where rtems-occan is intended for boards with two OC _CAN cores and rtems-occan * is for set
ups including two boards with one OC CAN core each.

23.1.5 Support
For support, contact the Gaisler Research support team at support@gaisler.com
23.2 USER INTERFACE

The RTEMS OC_CAN driver supports the standard accesses to file descriptors such as read,
write and ioctl. User applications include the occan driver's header file which contains definitions

mailto:support@gaisler.com

of all necessary data structures and bit masks used when accessing the driver. An example
application using the driver is provided in the examples directory.

23.2.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The RTEMS I/O driver registration is performed
automatically by the driver when CAN hardware is found for the first time. The driver is called
from the driver manager to handle detected CAN hardware. In order for the driver manager to
unite the CAN driver with the CAN hardware one must register the driver to the driver manager.
This process is described in the driver manager chapter.

23.2.2 Driver resource configuration

This driver does not have any configurable resources. All configuration can be made though the
ioctl interface.

23.2.3 Opening the device

Opening the device enables the user to access the hardware of a certain OC_CAN device. The
driver is used for all OC CAN devices available. The devices is separated by assigning each
device a unique name and a number called minor. The name is passed during the opening of the
driver. The first 3 names are printed out:

Device number Filesystem name
0 /dev/occan0
1 /dev/occanl
2 /dev/occan2

Table 96: Device number to device name conversion.

An example of an RTEMS open call is shown below.
fd = open("/dev/occan0", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 96.

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary
memory.

Table 97: Open errno values.

23.2.4 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the occan driver.

23.2.5 1I/0 Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most
operating systems support at least two arguments to ioctl, the first being an integer which
selects ioctl function and secondly a pointer to data that may be interpreted uniquely for each
function. A typical ioctl call definition:

int ioctl(int fd, int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the OC _CAN driver's header file
occan.h. In functions where only one argument is needed the pointer (void *arg) may be
converted to an integer and interpreted directly, thus simplifying the code.

23.2.5.1 Data structures

The occan_afilter struct is used when changing acceptance filter of the OC CAN receiver.

struct occan_afilter {
unsi gned int code[4];
unsi gned i nt mask[4];
i nt singl e_node;

b

Member Description

code Specifies the pattern to match, only the unmasked bits are used in the
filter.

mask Selects what bits in code will be used or not. A set bit is interpreted as
don't care.

single mode Set to none-zero for a single filter - single filter mode, zero selects dual
filter mode.

Table 98: occan_afilter member descriptions.

The CANMsg struct is used when reading and writing messages. The structure describes the
driver's view of a CAN message. The structure is used for writing and reading. The sshot fields
lacks meaning during reading and should be ignored. See the transmission and reception section
for more information.

typedef struct {
char extended;

char rtr;
char sshot;

unsi gned char |en;
unsi gned char data[8];

unsigned int id;
} CANMsg;
Member Description
extended Indicates whether message has 29 or 11 bits ID tag. Extended or Standard frame.
rtr Remote Transmission Request bit.
sshot Single Shot. Setting this bit will make the hardware skip resending the message
on transmission error.
len Length of data.
data Message data, data[0] is the most significant byte - the first byte.
Id The ID field of the message. An extended frame has 29 bits whereas a standard

frame has only 11-bits. The most significant bits are not used.

Table 99: CANMsg member descriptions.

The occan stats struct contains various statistics gathered from the OC CAN hardware.

typedef struct {
/* tx/rx stat
unsi gned i nt
unsi gned i nt

s */
rX_megs;
t X_nBgs;

[* Error Interrupt counters */

unsi gned i nt
unsi gned i nt
unsi gned int
unsi gned int
unsi gned i nt

/* ALC 4-0 */
unsi gned i nt

/* ECC 7-6 */
unsi gned i nt
unsi gned i nt
unsi gned int
unsi gned int

/* ECC 5 */
unsi gned int
unsi gned int

/* ECC 4:0 */
unsi gned i nt

err_warn;
err_dovr;
err_errp
err_arb;
err_bus;

err_arb_bitnunf32];

err_bus_bit; /* Bit error */
err_bus form /* FormError */
err_bus _stuff; /* Stuff Error */
err_bus other; /* Oher Error */

err_bus_rx;
err_bus_tx;

err_bus_segs[32];

/* total nunber of interrupts */

unsi gned int

ints;

/* software nmonitoring hw errors */

unsi gned int
} occan_stats;

tx_buf _error;

Member Description

rX_msgs Number of CAN messages received.

tx msgs Number of CAN messages transmitted.

err warn Number of error warning interrupts

err dovr Number of data overrun interrupts

err _errp Number of error passive interrupts

err arb Number of times arbitration has been lost.

err bus Number of bus errors interrupts.

err arb bitnum Array of counters, err arb bitnum[index] is incremented when arbitration is
lost at bit index.

err bus bit Number of bus errors that was caused by a bit error.

err bus form Number of bus errors that was caused by a form error.

err bus stuff Number of bus errors that was caused by a stuff error.

err bus other Number of bus errors that was not caused by a bit, form or stuff error.

err bus tx Number of bus errors detected that was due to transmission.

err bus rx Number of bus errors detected that was due to reception.

err bus_segs Array of 32 counters that can be used to see where the frame transmission

often fails. See hardware documentation and header file for details on how to
interpret the counters.

ints Number of times the interrupt handler has been invoked.

Table 100: occan_stats member descriptions.

23.2.5.2 Configuration

The OC _CAN core and driver are configured using ioctl calls. The table 99 below lists all
supported ioctl calls. OCCAN IOC should be concatenated with the call number from the table
to get the actual constant used in the code. Return values for all calls are 0 for success and -1 on
failure. Errno is set after a failure as indicated in table 98.

An example is shown below where the receive and transmit buffers are set to 32 respective 8 by
using an ioctl call:

result = ioctl(fd, OCCAN_| OC_SET_BUFLEN, (8<<16) | 32);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The CAN hardware is not in the correct state. Many ioctl calls need the CAN
device to be in reset mode. One can switch state by calling START or STOP.

ENOMEM N(}t einough memory to complete operation. This may cause other ioctl commands
to fail.

Table 101: ERRNO values for ioctl calls.

Call Number Call Mode Description

START Reset Exit reset mode, brings up the link. Enables read and write.

STOP Running Exit operating mode, enter reset mode. Most of the settings can
only be set when in reset mode.

GET STATS Don't care Get Stats.

GET STATUS Don't care Get status of device. Bus off can be read out.

SET SPEED Reset Set baud rate

SET BLK MODE Don't Care Set blocking or non-blocking mode for read and write.

SET BUFLEN Reset Set receive and transmit buffer length.

SET BTRS Reset Set timing registers manually.

Table 102: ioctl calls supported by the OC_CAN driver.

23.2.5.2.1 START

This ioctl command places the CAN core in operating mode. Settings previously set by other ioctl
commands are written to hardware just before leaving reset mode. It is necessary to enter
operating mode to be able to read or write messages on the CAN bus.

The command will fail if receive or transmit buffers are not correctly allocated or if the CAN core
already is in operating mode.

23.2.5.2.2 STOP

This call makes the CAN core leave operating mode and enter reset mode. After calling STOP
further calls to read and write will result in errors.

It is necessary to enter reset mode to change operating parameters of the CAN core such as the
baud rate and for the driver to safely change configuration such as FIFO buffer lengths.

The command will fail if the CAN core already is in reset mode.
23.2.5.2.3 GET_STATS

This call copies the driver's internal counters to a user provided data area. The format of the data
written is described in the data structure subsection. See the occan_stats data structure.

The call will fail if the pointer to the data is invalid.
23.2.5.2.4 GET_STATUS

This call stores the current status of the CAN core to the address pointed to by the argument
given to ioctl. This call is typically used to determine the error state of the CAN core. The 4 byte
status bit mask can be interpreted as in table 97above.

Mask Description

OCCAN _STATUS RESET Core is in reset mode

OCCAN STATUS OVERRUN Data overrun

OCCAN _STATUS WARN Has passed the error warning limit (96)
OCCAN _STATUS ERR PASSIVE Has passed the Error Passive limit (127)
OCCAN STATUS ERR BUSOFF Core is in reset mode due to a bus off (255)

Table 103: Status bit mask

This call never fail.

23.2.5.2.5 SET_SPEED

The SET SPEED ioctl call is used to set the baud rate of the CAN bus. The timing register values
are calculated for the given baud rate. The baud rate is given in Hertz. For the baud rate
calculations to function properly one must define SYS FREQ to the system frequency. It is
located in the driver source occan.c.

If the timing register values could not be calculated -1 is returned and the errno value is set to
EINVAL.

23.2.5.2.6 SET_BTRS

This call sets the timing registers manually. It is encouraged to use this function over the
SET SPEED.

This call fail if CAN core is in operating mode, in that case errno will be set to EBUSY.

23.2.5.2.7 SET_BLK_MODE

This call sets blocking mode for receive and transmit operations, i.e. read and write. Input is a bit
mask as described in the table below.

Bit number Description

OCCAN _BLK MODE RX Set this bit to make read block when no messages can be read.

OCCAN BLK MODE TX Set this bit to make write block until all messages has been sent or put
info software fifo.

Table 104: SET BLK _MODE ioctl arguments

This call never fail.

23.2.5.2.8 SET_BUFLEN

This call sets the buffer length of the receive and transmit software FIFOs. To set the FIFO
length the core needs to be in reset mode. In the table below the input to the ioctl command is
described.

Mask Description
0x0000ffff Receive buffer length in number of CANMsg structures.
0xffff0000 Transmit buffer length in number of CANMsg structures.

Table 105: SET_BUF_LEN ioctl argument

Errno will be set to ENOMEM when the driver was not able to get the requested memory
amount. EBUSY is set when the core is in operating mode.

23.2.6 Transmission

Transmitting messages are done with the write call. It is possible to write multiple packets in one
call. An example of a write call is shown below:

result = wite(fd, & x_nsgs[0], sizeof(CANMsQ) *mnmsgcnt))

On success the number of transmitted bytes is returned and -1 on failure. Errno is also set in the
latter case. Tx msgs points to the beginning of the CANMsg structure which includes id, type of
message, data and data length. The last parameter sets the number of CAN messages that will be
transmitted it must be a multiple of CANMsg structure size.

The call will fail if the user tries to send more bytes than is allocated for a single packet (this can
be changed with the SET PACKETSIZE ioctl call) or if a NULL pointer is passed.

The write call can be configured to block when the software fifo is full. In non-blocking mode
write will immediately return either return -1 indicating that no messages was written or the
total number of bytes written (always a multiple of CANMsg structure size). Note that 3 message
write request may end up in only 2 written, the caller is responsible to check the number of
messages actually written in non-blocking mode.

If no resources are available in non-blocking mode the call will return with an error. The errno
variable is set according to the table given below.

ERRNO Description

EINVAL An invalid argument was passed. The buffer length was less than a single
CANMsg structure size.

EBUSY The link is not in operating mode, but in reset mode. Nothing done.

ETIMEDOUT In non-blocking mode

EIO Calling task was woken up from blocking mode by a bus off error. The CAN core

has entered reset mode. Further calls to read or write will fail until the ioctl
command START is issued again.

Table 106: ERRNO values for write

Each Message has an individual set of options controlled in the CANMsg structure. See the data
structure subsection for structure member descriptions.

23.2.7 Reception

Reception is done using the read call. An example is shown below:

CANMsg rx_nsgs[5];
len = read(fd, rx_nsgs, sizeof(rx_mnsgs));

The requested number of bytes to be read is given in the third argument. The messages will be
stored in rx msgs. The actual number of received bytes (a multiple of sizeof(CANMsg)) is
returned by the function on success and -1 on failure. In the latter case errno is also set.

The CANMsg data structure is described in the data structure subsection.

The call will fail if a null pointer is passed, invalid buffer length, the CAN core is in reset mode or
due to a bus off error in blocking mode.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until at
least one packet has been received. In non-blocking mode, the call will return immediately and if
no packet was available -1 is returned and errno set appropriately. The table below shows the
different errno values is returned.

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer or the length was illegal.

EBUSY CAN core is in reset mode. Swtich to operating mode by issuing a START ioctl
command.

ETIMEDOUT In non-blocking mode no messages were available in the software receive
FIFO.

EIO A blocking read was interrupted by a bus off error. The CAN core has entered
reset mode. Further calls to read or write will fail until the ioctl command
START is issued again.

Table 107: ERRNO values for read calls.

24 Gaisler SatCAN FPGA driver (SatCAN)

24.1 INTRODUCTION

This document is intended as an aid in getting started developing with the Gaisler GRLIB
wrapper for the SatCAN FPGA core using the driver described in this document. It briefly takes
the reader through some of the most important steps in using the driver such as setting up a
connection, configuring the driver, reading and writing CAN messages. The reader is assumed to
be well acquainted with the operation of the SatCAN core and RTEMS.

24.1.1 SatCAN Hardware Wrapper

See the SatCAN wrapper manual.

24.1.2 Software Driver

The driver provides means for processes and threads to send and receive messages and provides
callback functions for SatCAN wrapper interrupts.

All core registers can be accessed via Input/Output-control (ioctl) calls.

24.1.3 Supported OS

Currently the driver is available for RTEMS.

24.1.4 Examples

There is a simple example available, it illustrates how to set up a connection, reading and writing
messages using the SATCAN driver. It is made up of two tasks communicating with each other
where one task uses the OC_CAN driver and the other the SatCAN driver. To be able to run the
example one must have the cores connected together. The current example is tailored for with a
configuration matching GR712RC and also initializes the CAN MUX RTEMS driver which is
described in a separate document.

The example can be found under the samples directory and consists of the files samples/rtems-
occan.c, occan lib.c and occan lib.h.

24.1.5 Support

For support, contact the Gaisler Research support team at support@gaisler.com

24.2 USER INTERFACE

The RTEMS SATCAN driver supports the standard accesses to file descriptors such as read,
write and ioctl. User applications should include the SATCAN driver's header file, satcan.h,
which contains definitions of all necessary data structures and defines used when accessing the
driver. An example application using the driver is provided in the samples directory.

24.2.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The function satcan register whose prototype is provided in
satcan.h is used for registering the driver. It returns 0 on success and 1 on failure. A typical
register call from the LEON3 Init task:

mailto:support@gaisler.com

if (occan_register(&nba_conf, &satcan_conf))
printf(“Sat CAN register Failed\n”);

The second argument to the function is the SatCAN configuration structure. The contents of this
structure is described below:

typedef struct {
int nodeno;
int dps;

void (*ahb_irq_cal |l back) (void);

void (*pps_irq_call back)(void);

void (*nb_irqg_call back) (void);

void (*md_irqg_call back) (voi d);

void (*nB_irqg_call back) (void);

void (*n2_irq_call back) (void);

void (*ml_irqg_call back) (void);

void (*sync_irqg_call back) (void);

void (*can_irq_call back)(unsigned int fifo);

} satcan_config;

Member Description

nodeno Integer containing the writeable bits if the node number. The four least significant
bits of this member are written to the writeable part of the node number.

dps Set to 0 if core is DPS, set to 1 of core is non-DPS i.e. slave.

ahb irqg callback

Function pointer to function called when the core issues an interrupt and the
wrapper interrupt pending register has the AHB bit set.

pps_irq callback

Function pointer to function called when the core issues an interrupt and the
wrapper interrupt pending register has the PPS bit set.

mb5 _irq callback

Function pointer to function called when the core issues an interrupt and the
wrapper interrupt pending register has the M5 bit set.

m4 irq callback

Function pointer to function called when the core issues an interrupt and the
wrapper interrupt pending register has the M4 bit set.

m3 irq callback

Function pointer to function called when the core issues an interrupt and the
wrapper interrupt pending register has the M3 bit set.

m2 irq callback

Function pointer to function called when the core issues an interrupt and the
wrapper interrupt pending register has the M2 bit set.

ml irq callback

Function pointer to function called when the core issues an interrupt and the
wrapper interrupt pending register has the M1 bit set.

sync_irqg callback

Function pointer to function called when the core issues an interrupt and the
wrapper interrupt pending register has the SYNC bit set.

can_irq callback

Function pointer to function called when the core issues an interrupt and the
wrapper interrupt pending register has the CAN bit set.

Table 108: Members in satcan_config structure

The last callback function, can irq callback, is called with an unsigned integer as argument. This
integer contains the value of the SatCAN FIFO register read in the interrupt handler.

Each callback function is called whenever the corresponding status bit in the wrapper interrupt
pending register is set, regardless of whether or not the interrupt is masked in the wrapper
interrupt mask register. If the the user does not want to use a callback function the
corresponding member in the satcan config structure must be set to NULL. After the call to
satcan _register(..) has returned the structure can be deallocated.

When the driver is registered the driver allocates its internal configuration structures and
registers the name /dev/satcan with RTEMS. The SatCAN wrapper is initialized with the node
number and DPS setting specified in the configuration structure and the core is reset. After the
core has come out of reset the registers containing the memory address of the newly allocated 2K
DMA memory area are initialized.

24.2.2 Opening the device

Opening the device enables the user to access the hardware of the SatCAN device. An example of
an RTEMS open call is shown below.

fd = open("/dev/satcan", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 108.

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary
memory.

Table 109: Open errno values.

When the device is opened the driver enables the AHB and CAN interrupts in the SatCAN
wrapper logic. Interrupts EOD1, EOD2 and CAN Critical are enabled in the SatCAN FPGA core.
The SatCAN FPGA core is also configured to use “CAN” interrupt for interrupt #0
(CAN TODn Int selis set to '1') and RX together with the RX DMA channel is enabled.

24.2.3 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

When the device is closed the SatCAN wrapper and SatCAN FPGA interrupt mask registers are
cleared. CAN RX and all DMA channels are disabled. The driver's internal state is initialized to
default values. Close always returns 0 (success) for the SATCAN driver.

24.2.4 Reading from the device

After the device has been successfully opened it can be accessed via calls to read(...). Read
expects a pointer to a satcan msg structure, or list of structures, and only accepts a multiple of
the size of satcan msg as the number of bytes to read. The satcan msg structure, defined in
satcan.h, and a description of its members is given below:

typedef struct {
unsi gned char header [SATCAN HEADER SI ZE] ;
unsi gned char payl oad[SATCAN_PAYLQAD SI ZE] ;
} satcan_nsg;

Member Description

header Header of SatCAN message as described in SatCAN FPGA documentation. The
default value of the define SATCAN HEADER SIZE is 4.

payload Payload of SatCAN message as described in SatCAN FPGA documentation. The
default value of the define SATCAN PAYLOAD SIZE is 8.

Table 110: Members in satcan_msg structure

The driver does not buffer received SatCAN messages but provides direct access to the SatCAN
FPGA DMA area. Therefore the caller must specify which CAN ID the message should be read
from. An example call reading a message received with ID 0x0040 looks like:

int i, size;

sat can_nsg nsg;

nmsg. header [0] 0x40;

nsg. header [1] 0;

if ((size = read(fd, &sg, sizeof(satcan_nsg))) !=
si zeof (sat can_nsg))
printf("ERROR read() returned %\ n", size);

The driver uses the value of msg.header[1:0] together with the current DMA setting (2K or 8K
messages) determine where in the DMA area the message should be fetched. All elements in the
satcan msg structre are overwritten with data fetched from the DMA area. This includes the
initialized members msg.header[1:0] which should keep their original value when the read(..) call
returns. The read function returns sizeof(satcan msg) on success and -1 on failure. In the latter
case errno is also set.

ERRNO Description
EINVAL A NULL pointer was passed as the data pointer or the length was illegal.

Table 111: ERRNO values for read calls.

24.2.5 Writing to the device

Transmission of messages are performed with the write call. It is possible to write one or several
messages in each call. The driver copies the messages to be sent from the specified satcan msg
structures to the DMA area.

A call to write(..) has different behavior depending on the DMA mode of the driver. The DMA
mode is set using an Input/Output Control call described later in this document.

When the driver is in SATCAN DMA MODE SYSTEM a call to write(..) will block until the core
signals that it has completed DMA. When the driver is in SATCAN DMA MODE USER a call to
write(..) will return immediately after the data has been placed in the DMA area. The driver will
not activate any of the DMA TX channels and start of DMA transfers are left to the user using
Input/Output Control calls.

On success the write(..) call returns number of transmitted bytes and -1 on failure. Errno is also
set in the latter case.

An example call sending a Enable Override message is shown below:

int i, ret;
sat can_nsg nsg;

nmsg. header [0] = OxEQ;
nsg. header[1] = 0;

nsg. header[2] = 0x81;
nmseg. header [3] = OxFF;

nmeg. payl oad[0] = 15;
for (i = 1; i < SATCAN_PAYLOAD SIZE; i ++)
msg. payl oad[i] = O;
ret = wite(fd, &nrsg, sizeof(satcan_nsq));
if (ret !'= sizeof(satcan_nsg))
printf("Wite of override nmsg failed\n");

ERRNO Description

EINVAL An invalid argument was passed. The buffer length was not equal to the
satcan_msg structure size or no DMA channel is enabled.

EIO Transmit DMA is activated. The driver requires that the write(..) call exclusively
controls the DMA TX channels.

Table 112: ERRNO values for write

24.2.6 1I/0 Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most
operating systems support at least two arguments to ioctl, the first being an integer which
selects ioctl function and secondly a pointer to data that may be interpreted uniquely for each
function. A typical ioctl call definition:

int ioctl(int fd, int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.
All supported commands and their data structures are defined in the SatCAN driver's header file

satcan.h.

24.2.6.1 Data structures

The satcan regmod structure shown below is used to read and modify core registers.

typedef struct {
unsi gned int reg;
unsi gned int val;
} satcan_regnod;

Member Description

reg Register to be read or modify. The allowed values for this member are listed
further down in this document.

val When reading a register this member is utilized to return the register value. When
modifying a register this member should be initialized with the new register value
or mask.

Table 113: Members in satcan_regmod structure

24.2.6.2 Configuration

The SatCAN core and driver are configured using ioctl calls. The table 110 below lists all
supported ioctl calls. SATCAN IOC should be concatenated with the call number from the table
to get the actual constant used in the code. Return values for all calls are 0 for success and -1 on
failure. Errno is set after a failure as indicated in table 109.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The CAN hardware is not in the correct state.

ENOMEM Noft elnough memory to complete operation. This may cause other ioctl commands
to fail.

Table 114: ERRNO values for ioctl calls.

Call Number Description

DMA 2K Instructs driver and core to use 2K DMA mode. Default setting.

DMA 8K Instructs driver and core to use 8K DMA mode.

GET REG Provides direct read access to all core registers.

SET REG Provides direct write access to all core registers.

OR REG Writes register with current register value logical or specified value

AND REG Writes register with current register value masked with a specified value

EN TX1 DIS TX2 Changes internal driver state to enable DMA TX channel 1, Disable DMA TX
channel 2

EN TX2 DIS TX1 Changes internal driver state to disable DMA TX channel 1, Enable DMA TX
channel 2

GET DMA MODE Returns the current DMA transmit mode

SET DMA MODE Sets the DMA transmit mode

ACTIVATE DMA Activates a specified DMA channel

DEACTIVATE DMA Deactivates a specified DMA channel

GET DOFFSET Gets the data offset used for writing TX DMA messages

SET DOFFSET Sets the data offset used for writing TX DMA messages

GET TIMEOUT Get time out value used when waiting for DMA TX completion

SET TIMEOUT Set time out value used when waiting for DMA TX completion

Table 115: ioctl calls supported by the SatCAN FPGA driver.

24.2.6.2.1 DMA_2K

This ioctl command instructs the SatCAN core and driver to use a DMA area with room for 2048
messages. The driver is initialized in this state by default. This call disables the RX DMA channel
and allocates a new memory area. After the new memory area has been successfully allocated the
RX DMA channel is re-enabled.

24.2.6.2.2 DMA_8K

This ioctl command instructs the SatCAN core and driver to use a DMA area with room for 8192

messages. This call disables the RX DMA channel and allocates a new memory area. After the
new memory area has been successfully allocated the RX DMA channel is re-enabled. The drivers
default setting is to use a DMA area with room for 2K messages. The example below shows how
to instruct the driver to use an 8K DMA area:

if (ioctl(fd, SATCAN | OC DVA 8K)) {
printf("ERROR Failed to enable 8K DVA area\n");

24.2.6.2.3 GET_REG

This call provides read access to all the core's registers. Note that reading a register may affect
the hardware state and may impact the correct function of the driver. The GET REG call takes an
register and an return pointer as additional arguments. Valid register values are listed in table
1.9. Note that some of the registers listed in the table a write only and a SATCAN IOC GET REG
call will return the read register that occupies the corresponding address. An example of reading
the SatCAN CmdRegl:

sat can_regnod regnod;

regnod. reg = SATCAN_CMDL,

if (ioctl(fd, SATCAN_| OC GET_REG ®nod))
printf("Failed to read CMDL register\n");

printf("CVD1 register value: 0x%8x\n", regnod.val);

The contents of the satcan regmod structure has been previously described. The reg member is
initialized with a value from table 1.9. The contents of the specified register is returned in the
structure's val member.

Register constant

Register name

SATCAN SWRES

Software reset

SATCAN INT EN

Interrupt enable

SATCAN FIFO

FIFO read

SATCAN FIFO RES

FIFO reset

SATCAN_TSTAMP

Current time stamp

SATCAN _CMDO

Command register 0

SATCAN CMD1

Command register 1

SATCAN START CTC

Start cycle time counter

SATCAN RAM BASE

RAM offset address

SATCAN STOP CTC

Stop cycle time counter

SATCAN DPS ACT

DPS active status

SATCAN PLL RST

DPLL reset

SATCAN PLL CMD

DPLL command

SATCAN PLL STAT

DPLL status

SATCAN PLL OFF

DPLL offset

SATCAN DMA DMA channel enable

SATCAN DMA TX 1 CUR DMA channel 1 TX current address
SATCAN DMA TX 1 END DMA channel 1 TX end address
SATCAN DMA TX 2 CUR DMA channel 2 TX current address
SATCAN DMA TX 2 END DMA channel 2 TX current address
SATCAN RX CAN RX enable

SATCAN FILTER START Filter start ID

SATCAN FILTER SETUP Filter setup

SATCAN FILTER STOP Filter stop ID

SATCAN WCTRL Wrapper status/control register
SATCAN WIPEND Wrapper interrupt pending register
SATCAN WIMASK Wrapper interrupt mask register
SATCAN WAHBADDR Wrapper AHB address register

Table 116: Values used together with GET_REG and SET_REG

24.2.6.2.4 SET_REG

This call writes a given value to a specified register. Note that assigning a register may interfere
with the correct operation of the driver software. An example of writing a register is given below:

printf("Reset PLL\n");

regnod. reg = SATCAN PLL_RST;

regnod. val = 1;

if (ioctl(fd, SATCAN | OC _SET_REG ®nod))
printf("Reset PLL failed\n"):

24.2.6.2.5 OR_REG

This call modifies a specified register by performing a bitwise logical or operation with the
specified value and the current register value. Note that assigning a register may interfere with
the correct operation of the driver software. An example of masking in a value to a register is
given below:

printf("Enable sync pul se and sync nessage\n");

regnod. reg = SATCAN_CMD1;

regnod. val = 0x30;

if (ioctl(fd, SATCAN | OC OR REG ®nod))
printf("Failed to enable sync pul se sync nsg\n");

24.2.6.2.6 AND_REG

This call modifies a specified register by performing a bitwise logical and operation with the
specified value and the current register value. Note that assigning a register may interfere with
the correct operation of the driver software. The use of this call follows the same syntax as the
OR REG call, described above.

24.2.6.2.7 EN_TX1_DIS_TX2

This call enables transmit DMA channel 1 and disabled transmit DMA channel 2. It does not
immediately modify the hardware registers. The DMA channels are only enabled during a call to
write. This ioctl call only modifies the internal state of the driver. The example below shows how
to enable DMA TX channel 1:

if (ioctl(fd, SATCAN IOC EN TX1 DI S TX2)) {
printf("Failed to enable DMA TX channel 1\n");

24.2.6.2.8 EN_TX2_DIS_TX1

This call enables transmit DMA channel 2 and disables transmit DMA channel 1. It does not
immediately modify the hardware registers. The DMA channels are only enabled during a call to
write. This ioctl call only modifies the internal state of the driver.

24.2.6.2.9 GET_ DMA_MODE

This call returns the current DMA mode of the driver. The driver has two modes for DMA
operation. User mode (SATCAN DMA MODE USER) and system mode
(SATCAN DMA MODE SYSTEM). In user mode calls to write(..) will place the messages in the
DMA area bit will not activate any of the DMA TX channels and return immediately. In system
mode the driver will activate the selected DMA TX channel and the call to write(..) will block until
the core signals that it has completed the DMA operation.

24.2.6.2.10 SET_DMA _MODE
This call sets the driver DMA mode. Available values are SATCAN DMA MODE USER and

SATCAN DMA MODE SYSTEM. See the previous description of GET DMA MODE and the
description of the write(..) call for more information about the modes. An example call using
SET DMA MODE is shown below:

int val;

val = SATCAN DVA MODE USER;

if (ioctl(fd, SATCAN | OC SET DVA MODE, &val))
printf("Failed to set DVA node\n");

24.2.6.2.11 ACTIVATE_DMA

This call activates one of the DMA TX channels when the driver is set to user DMA mode. The
user can not activate a DMA channel using this call if the driver is in system DMA mode. An
example call activating DMA TX channel 2 is shown below:

int val;

val = SATCAN DVA ENABLE TX2;

if (ioctl(fd, SATCAN_|OC ACTIVATE DMA, &val))
printf("Taskl: Could not enable DVA TX channel 2\n");

24.2.6.2.12 DEACTIVATE DMA

This call deactivates one of the DMA TX channels when the driver is set to user DMA mode. The
user can not deactivate a DMA channel using this call if the driver is in system DMA mode. An
example call deactivating DMA TX channel 2 is shown below:

int val;

val = SATCAN DVA ENABLE TX2;

if (ioctl(fd, SATCAN | OC DEACTI VATE DMA, &val))
printf("Could not disable DVA TX channel 2\n");

24.2.6.2.13 GET_DOFFSET
This call sets the offset used when writing TX messages via calls to write(..). TX DMA messages

are written at start of DMA buffer + data offset. The argument to this call is a pointer to the
integer containing the offset.

24.2.6.2.14 SET _DOFFSET
This call returns the offset used when writing TX messages via calls to write(..). TX DMA

messages are written at start of DMA buffer + data offset. The argument to this call is a pointer
to an integer. The integer is assigned the current offset.

24.2.6.2.15 GET_TIMEOUT

This call returns the time out value that the write(..) call uses when waiting for TX DMA
completion. The argument is a pointer to an rtems _interval type.

24.2.6.2.16 SET_TIMEOUT

This call sets the time out value that the write(..) call uses when waiting for TX DMA completion.
The argument is a pointer to an rtems interval type.

25 Gaisler CAN_MUX driver (CAN_MUX)

25.1 INTRODUCTION

This document is intended as an aid in getting started developing with Gaisler GRLIB CAN MUX
core using the driver described in this document. It briefly takes the reader through some of the
most important steps in using the driver such as configuring the driver and using Input/Output-
control calls to modify the hardware state. The reader is assumed to be well acquainted with the
operation of the CAN MUX core and RTEMS.

25.1.1 CAN_MUX Hardware
See the CAN MUX core manual.

25.1.2 Software Driver

The driver provides means for setting the CAN MUX MUX control register.

25.1.3 Supported OS

Currently the driver is available for RTEMS.

25.1.4 Examples

The rtems-satcan example uses the CAN MUX driver.

25.1.5 Support

For support, contact the Gaisler Research support team at support@gaisler.com

25.2 USER INTERFACE

The RTEMS CAN MUX driver supports the standard accesses to file descriptors such as read,
write and ioctl. The implementation of read and write calls are dummy functions. The driver is
controlled exclusively via ioctl. User applications should include the CAN MUX driver's header
file, canmux.h, which contains definitions of all necessary values and functions used when
accessing the driver.

25.2.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The function canmux_register whose prototype is provided
in canmux.h is used for registering the driver. The function returns 0 on success. A typical
register call from the LEON3 Init task:

if (cannmux_register(&nba_conf))
printf(“CAN_ MJX register failed\n”);
25.2.2 Opening the device

Opening the device enables the user to access the hardware of the CAN MUX core. An example
of an RTEMS open call is shown below.

mailto:support@gaisler.com

fd = open("/dev/cannux", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 117.

Errno Description
ENODEV Illegal device name or not available
EBUSY Device already opened

Table 117: Open errno values.

25.2.3 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)
Close always returns 0 (success) for the CAN MUX driver.

25.2.4 1/0 Control interface

The driver and hardware is controlled via the standard system call ioctl. Most operating systems
support at least two arguments to ioctl, the first being an integer which selects ioctl function and
secondly a pointer to data that may be interpreted uniquely for each function. A typical ioctl call
definition:

int ioctl(int fd, int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

The CAN MUX driver does not use any additonal data except for the integer that selects the ioctl
function. All supported commands are defined in the CAN MUX driver's header file canmux.h
and are described further down in this document.

25.2.4.1 Configuration

The CAN MUX core and driver is controlled using ioctl calls. The table 119 below lists all
supported ioctl calls. OCCAN IOC should be concatenated with the call name from the table to
get the actual constant used in the code. Return values for all calls are 0 for success and -1 on
failure. Errno is set after a failure as indicated in table 118.

An example is shown below where CAN bus A is routed to the SatCAN core.
result = ioctl(fd, CANMUX | OC BUSA SATCAN);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

Table 118: ERRNO values for ioctl calls.

Call Number

Description

BUSA_SATCAN

Routes bus A to SatCAN core

BUSA OCCAN1

Routes bus A to OC-CAN 1 core

BUSB SATCAN

Routes bus B to SatCAN core

BUSB OCCAN?2

Routes bus B to OC-CAN 2 core

Table 119: ioctl calls supported by the CAN_MUX driver.

(\EROFLEX

GR-RTEMS-DRIVER 165 GAISLER

26 Gaisler ASCS (GRASCS)

26.1 INTRODUCTION

This document is intended as an introduction to the RTEMS driver for the Gaisler ASCS core. It is
recommended that the reader also has access to the GRASCS IP core documentation when
reading this document.

26.1.1 Software driver

The driver allows the developer of application software to communicate with the GRASCS core. It
supplies the functions to initialize the core, send and receive data, start and stop synchronization
etc. The complete user interface is described in more detail in section 1.2 below. The driver is
thread safe with the following two exceptions: ASCS etr select, ASCS TC sync start, and
ASCS TC sync_stop can not be called from different threads, and ASCS start and ASCS_stop can
not be called from different threads. The driver supports all the different configurations of the
GRASCS core that is mentioned in the GRASCS IP core documentation.

26.1.2 Examples

A demonstration software which shows how to use the driver interface is distributed together
with the driver. The software initialize the core, start the serial and synchronization interfaces,
perform data writes and data reads and then stops the interfaces again. The software has been

developed for pure demonstration purposes and the effects of the transactions performed on a
real ASCS slave are unknown.

26.1.3 Support
For support, contact the Gaisler Research support team at support@gaisler.com
26.2 USER INTERFACE

In table 1.1 all the functions of the GRASCS driver interface are listed. To gain access to the
functions a user application should include the GRASCS driver's header file.

mailto:support@gaisler.com

(\EROFLEX

GR-RTEMS-DRIVER 166 GAISLER
Function name Described in Description
section
ASCS init 1.2.1 Initializes driver and GRASCS core
ASCS input select 1.2.2 Selects slave
ASCS etr select 1.2.3 Select source for synchronization pulse
ASCS start 1.2.4 Starts serial interface
ASCS stop 1.2.5 Stops serial interface
ASCS iface status 1.2.6 Report status of serial and synchronization
interfaces
ASCS TC send 1.2.7 Performs a data write (TC)
ASCS TC send block 1.2.8 Performs a number of TCs
ASCS TC sync_start 1.2.9 Starts synchronization interface
ASCS TC sync stop 1.2.10 Stops synchronization interface
ASCS TM recv 1.2.11 Performs a data read (TM)
ASCS TM recv block 1.2.12 Performs a number of TMs

Table 120: GRASCS driver interface

(\EROFLEX

GR-RTEMS-DRIVER 167 GAISLER

26.2.1 ASCS_init

Prototype: int ASCS init()

Argument

This function does not take any arguments
Return value: 0 on success, -1 on failure

Descriptio This function must be called before any other functions in the ASCS driver are

n: called. ASCS init initializes the driver and resets the core. When the function
returns all of the cores registers will have their default values, which means that
both the serial interface and synchronization interface are stopped.

26.2.2 ASCS_input_select

Prototype: int ASCS input select(int slave)
Argument Description
slave The number of the slave the core should listen to during a TM

Return value: 0 on success, -GRASCS ERROR CAPFAULT if slave value is invalid,
-GRASCS ERROR TRANSACTIVE if a TM is in progress

Descriptio This function sets the bits in the core's command register that control which slave

n: data input is valid during a TM. Valid range of the input 0 - (nslaves-1), where
nslaves is the number of slaves the core has been configured to communicate
with (nslaves generic).

(\EROFLEX

GR-RTEMS-DRIVER 168 GAISLER

26.2.3 ASCS _etr _select

Prototype: int ASCS_etr select(int etr, int freq)

Argument Description
etr The source for the etr signal, valid range 0 - 6
freq The ETR frequency in Hz

Return value: 0 on success, -GRASCS ERROR CAPFAULT if arguments have invalid values,
-GRASCS ERROR STARTSTOP if synchronization interface is running

Descriptio This function need to be called if the source of the ETR synchronization pulse

n: should be changed. The etr input specifies which source to use, where 0 means
internal counter and 1 - 6 means external time marker 1 - 6. The freq input
specifies the frequency of the etr signal. If etr is not 0 then the freq argument
need to be the same as the frequency of the external time marker that is used.
The core can not generate an ETR pulse of one frequency from an external time
marker of a different frequency. This function, ASCS TC sync start and
ASCS TC sync stop can not be called from different threads.

26.2.4 ASCS start

Prototype: void ASCS_start()
Argument
This function does not take any arguments

Return None
value:

Descriptio A call to this function starts the core's serial interface and the core is then ready
n: to perform transactions. This function and ASCS stop can not be called from
different threads.

26.2.5 ASCS_stop

Prototype: void ASCS_stop()
Argument
This function does not take any arguments

Return None
value:

Descriptio A call to this function stops the core's serial interface. This function will block

n: until any possible call to ASCS TC send, ASCS TC send _block, ASCS TM recv or
ASCS _TM recv_block has returned. This function and ASCS_start can not be
called from different threads.

26.2.6 ASCS iface_status

(\EROFLEX
GR-RTEMS-DRIVER 169

GAISLER
Prototype: int ASCS iface status()
Argument
This function does not take any arguments
Return 0 if both serial interface and synchronization interface are stopped, 1 if serial
value: interface is running and synchronization interface is stopped, 2 if serial interface
is stopped and synchronization interface is running, 3 if both interfaces are
running

Descriptio Uses the internal driver status and the value of the core's status register to report
n: if serial and synchronization interfaces are running or stopped.

26.2.7 ASCS _TC send

Prototype: int ASCS TC send(int *word)
Argument Description

word Pointer to data that should be sent as a telecommands. The
argument is handled as a point erto a short int if the core is
configured to send 16-bit words, or a char pointer for 8-bit words.

ntrans The number of telecommands that should be sent
Return 0 on success, -GRASCS ERROR TRANSACTIVE if TC could not be started
value: because some other transaction is in progress, -GRASCS ERROR STARTSTOP if

TC could not be started because serial interface is stopped.

Descriptio Sends a telecommand with the data pointed to by the word argument. If the TC is
n: started the function blocks until the transaction is complete. If the TC can not be
started the function returns with an error code. This function is thread safe.

26.2.8 ASCS_TC _send block

Prototype: int ASCS TC send block(int *block, int ntrans)

Argument Description

block Pointer to the start a block of data that should be sent as a number
of telecommands. The block argument is handled as a point erto a
block of short int if the core is configured to send 16-bit words, or a
char pointer for 8-bit words.

ntrans The number of telecommands that should be sent
Return 0 on success, -GRASCS ERROR TRANSACTIVE if TC could not be started
value: because some other transaction is in progress, -GRASCS ERROR STARTSTOP if

TC could not be started because serial interface is stopped.

Descriptio Sends a number of telecommands with the data pointed to be the block argument.
n: If the first TC is started the function blocks until all the transaction are complete.

If the first TC can not be started the function returns with an error code. This
function is thread safe.

26.2.9 ASCS_TC_sync_start

(\EROFLEX

GR-RTEMS-DRIVER 170 GAISLER
Prototype: void ASCS TC sync_start(void)

Argument

This function does not take any arguments

Return None

value:

Descriptio Starts the synchronization interface. There might be a delay between the time

n: this function is called and the time the interface is actually started, depending on

whether a TM is active or not. Software can poll ASCS iface status to find out
when interface is running. The first pulse on the synchronization interface might
be delay with up to one period depending on the source used for the ETR signal.
This function, ASCS _TC sync_stop and ASCS _etr select can not be called from

different threads.

(\EROFLEX

GR-RTEMS-DRIVER 171 GAISLER

26.2.10 ASCS_TC sync_stop

Prototype: void ASCS _TC sync_stop(void)
Argument

This function does not take any arguments

Return None

value:

Descriptio Stops the synchronization interface. In order not to prematurely abort a ETR

n: pulse there might be a delay between the time this function is called and the time

the interface is actually stopped. Software can poll ASCS iface status to find out
when the interface is stopped. This function, ASCS TC sync_start and
ASCS etr select can not be called from different threads.

26.2.11 ASCS_TM_recv

Prototype: int ASCS TM recv(int *word)
Argument Description

word Pointer to where data received in a TM should be stored. The
argument is handled as a short int pointer if the core is configured to
send 16-bit words, or a char pointer for 8-bit words.

Return 0 on success, -GRASCS ERROR TRANSACTIVE if TM could not be started
value: because some other transaction is in progress, -GRASCS ERROR STARTSTOP if
TM could not be started because serial interface is stopped.

Descriptio Starts a TM and stores the incoming data at the address word points to. If the TM
n: can not be started the function returns with an error code otherwise it blocks
until the transaction is complete. This function is thread safe.

26.2.12 ASCS_TM_recv_block

Prototype: int ASCS TM recv(int *block, in ntrans)

Argument Description

block Pointer to the start of a block where data received in a number of
TMs should be stored. The block argument is handled as a point erto
a block of short int if the core is configured to send 16-bit words, or a
char pointer for 8-bit words.

ntrans The number of TMs that should be sent
Return 0 on success, -GRASCS ERROR TRANSACTIVE if TM could not be started
value: because some other transaction is in progress, -GRASCS ERROR STARTSTOP if

TM could not be started because serial interface is stopped.

Descriptio Starts a number of TMs and stores the incoming data with the beginning of the

n: address that block points to. If the first TM can not be started the function
returns with an error code otherwise it blocks until all the transactions are
complete. This function is thread safe.

(\EROFLEX

GR-RTEMS-DRIVER 172 GAISLER

26.3 EXAMPLE CODE

To use the GRASCS driver its header file should be included:

#i ncl ude <grascs. h>

The driver must first be initialized, and the return value must be checked to see that the
initialization went well:

status = ASCS init();
if(status < 0) {
printf("ERROR Failed to initialize ASCS driver\n");
exit(0);
}
printf("Successfully intialized ASCS driver\n");

When the ASCS init function has been called the application can start calling the other functions
as well. Below is an example of how to call ASCS TC send block and send ten TCs.

retval = ASCS TC send_bl ock((i nt*)bl ock, 10);
if(retval < 0) {
if(retval == - GRASCS_ERROR_STARTSTOP)

printf("ERROR Failed to start TC because serial interface never
started\n");

el se if(retval == -GRASCS_ERROR TRANSACTI VE)

printf("ERROR Failed to start TC because a transaction is in
progress\n");

}

27 RAW UART DRIVER INTERFACE (APBUART)

27.1 USER INTERFACE

The RTEMS "Raw" UART driver supports the standard accesses to file descriptors such as read,
write and ioctl. User applications include the apbuart driver's header file (apbuart.h) which
contains definitions of all necessary data structures and bit masks used when accessing the
driver.

The APBUART driver require the RTEMS Driver Manager.

The UART driver is an interrupt driven "raw" character stream driver with the ability to add a
"carriage return" (\r in C) after a "new line" (\n in C) has been detected in the output stream.

The UART interrupt handler copies received characters to a receive FIFO buffer placed in RAM
to avoid overruns. Characters are then read from the RAM buffer by calling read.

Writing a number of characters when the hardware transmitter is full results in that the driver
puts the characters into a software FIFO buffer located in RAM to be sent later on by the
transmitter interrupt handler.

27.1.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The RTEMS I/O driver registration is performed
automatically by the driver when UART hardware is found for the first time. The driver is called
from the driver manager to handle detected UART hardware. In order for the driver manager to
unite the UART driver with the UART hardware one must register the driver to the driver
manager. This process is described in the driver manager chapter.

27.1.2 Driver resource configuration

This driver does not have any configurable resources. All configuration can be made though the
ioctl interface.

27.1.3 Opening the device

Opening the device enables the user to access the hardware of a certain APBUART device. The
driver is used for all APBUART devices available. The devices are separated by assigning each
device a unique name and a number called minor. The name is passed during the opening of the
driver. Some example device names are printed out below.

Device number Filesystem name Location

0 /dev/apbuart0 On-Chip Bus
1 /dev/apbuartl On-Chip Bus
2 /dev/apbuart2 On-Chip Bus
Depends on system configuration /dev/rastaioO/apbuart0 GR-RASTA-IO
Depends on system configuration /dev/rastaioO/apbuartl GR-RASTA-IO

Table 121: Device number to device name conversion.

An example of an RTEMS open call is shown below.

fd = open("/dev/apbuart0", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 121.

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary
memory.

Table 122: Open errno values.

27.1.4 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)
Close always returns 0 (success) for the apbuart driver.

27.1.5 1/0O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Two
arguments must be provided to ioctl, the first being an integer which selects ioctl function and
secondly a pointer to data that may be interpreted uniquely for each function. A typical ioctl call
definition:

int ioctl(int fd, int cnmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the UART driver's header file
apbuart.h. In functions where only one argument is needed the pointer (void *arg) may be
converted to an integer and interpreted directly, thus simplifying the code.

27.1.5.1 Configuration

The UART core and driver are configured using ioctl calls. The table 123 below lists all supported
ioctl calls. APBUART IOC_ must be concatenated with the call number from the table to get the
actual constant used in the code. Return values for all calls are 0 for success and -1 on failure.
Errno is set after a failure as indicated in table 122.

An example is shown below where the driver's read call changes behaviour. After this call the
driver will block the calling thread until free space in the receiver's circular buffer are available:

result = ioctl(fd, APBUART | OC_SET_BAUDRATE, 115200);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The APBUART hardware is not in the correct state. ioctl calls may need the UART
to be in stopped mode to function correctly. One can switch state by calling
START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands

to fail.

Table 123: ERRNO values for ioctl calls

Call Number Call Mode Description

START Stopped Exit paused mode, brings enables receiver and transmitter.
Enables read and write.

STOP Running Exit operating mode. Disables read and write, but enables user to
change FIFO depth.

SET RX FIFO LEN Stopped Sets software receiver FIFO length in number of bytes.

SET TX FIFO LEN Stopped Sets software transmitter FIFO length in number of bytes.

SET BAUDRATE Don't Care Sets baud rate of a UART channel.

SET SCALER Don't Care Sets the baud rate manually by setting the scaler register of the
APBUART core.

SET BLOCKING Don't Care Set receive (read), transmit (write) blocking mode and TX-Flush
mode which blocks until all characters have bee put into software
transmit FIFO.

GET STATS Don't Care Store UART driver statistics to a user defined buffer.

CLR STATS Don't Care Resets the statistic counters.

SET ASCII MODE Don't Care Set/unset ASCII mode. When ASCII mode is enabled a new line is

replaced with a new line and a carriage return. \n' => "\n\r'

Table 124: ioctl calls supported by the APBUART driver.

27.1.5.1.1 START

This ioctl command enables the receiver and transmitter of the UART core. Settings previously
set by other ioctl commands are written to hardware just before entering running mode. It is
necessary to enter running mode to be able to read or write to/from the UART.

The command will fail if software receive or transmit buffers are not correctly allocated or if the
UART driver already is in running mode.

27.1.5.1.2 STOP

This call makes the UART hardware leave running mode and enter stopped mode. After calling
STOP further calls to read and write will result in errors.

It is necessary to enter stopped mode to change operating parameters of the UART driver to
safely change configuration such as FIFO buffer lengths.

The command will fail if the driver already is in stopped mode.

27.1.5.1.3 SET_RXFIFO_LEN

Sets the software receive FIFO length. The argument specifies the number of bytes for the new
RX FIFO buffer.

This command may return ENOMEM if not enough memory was available to complete the
request, this will make calls to START fail until a new buffer is allocated with
SET RX FIFO LEN.

27.1.5.1.4 SET_TX_FIFO_LEN

Sets the software transmit FIFO length. The argument specifies the number of bytes for the new
TX FIFO buffer.

This command may return ENOMEM if not enough memory was available to complete the
request, this will make calls to START fail until a new buffer is allocated with
SET TX FIFO LEN.

27.1.5.1.5 SET_BAUDRATE

Sets the baud rate of the UART hardware by specifying the rate in number of bits/second as
argument. The SCALER register of the UART hardware is calculated by the driver using the
UART core frequency and the requested baud rate.

This command fails if an out of range baud rate is given, maximum 115200 bits/second.

27.1.5.1.6 SET_SCALER

Makes it possible for the user to set the baud rate of the UART hardware manually. The UART
SCALER register is documented in the IP Core manual. The new scaler register value is given as
argument to this command.

27.1.5.1.7 SET_BLOCKING

Sets receive, transmit or transmit flush blocking mode. The argument to SET BLOCKING is a
bitmask as described in the table below.

Bit mask name Function

BLK RX If set, enables blocking mode for read calls.

BLK TX If set, enables blocking mode for write calls.

BLK FLUSH If set, enables TX Flush mode. Blocks thread calling write until all requested data
has been put into hardware transmission FIFO or software transmit FIFO.

Table 125: SET_BLOCKING Argument Bit Mask

27.1.5.1.8 GET_STATS

Stores the current driver statistics counters to a user defined data area. A pointer to the data
area must be provided as argument. -1 will be returned and errno set to EINVAL if a invalid
pointer is given.

27.1.5.1.9 CLR_STATS

Resets drivers statistics counters.

27.1.5.1.10 SET_ASCII_MODE

Sets ASCII mode of the driver. A non-zero argument enabled ASCII mode. In ASCII mode a "new
line" character is replace with a "carriage return" and a "new line". This makes it easier to work
with terminals.

27.1.6 Transmission

Transmitting characters to the UART serial line can be done with the write call. It is possible to
write multiple bytes in one call. An example of a write call is shown below:

result = wite(fd, &uffer[0], sizeof(buffer));

On success the number of transmitted bytes is returned and -1 on failure. Errno is also set in the
latter case. buffer points to the beginning of the character byte array. The last parameter sets the
number of bytes taken from buffer that will be transmitted.

The write call can be configured to block when the software FIFO is full. In non-blocking mode
write will immediately return either return -1 indicating that no data were written or the total
number of bytes written are returned. Note that a write request of 3 characters may end up in
only 2 written, the caller is responsible to check the number of messages actually written.

If no resources are available the call will return with an error in non-blocking mode. The errno
variable is set according to the table given below.

ERRNO Description

EINVAL An invalid argument was passed. The buffer length was less than a single
CANMsg structure size.

EBUSY The link is not in operating mode, but in reset mode. Nothing done.

ETIMEDOUT In non-blocking mode and driver was unable to put any bytes into the software

transmit FIFO or the hardware transmit buffer.

Table 126: ERRNO values for write

27.1.7 Reception

Reception of characters from the UART serial line can be done using the read call. An example is
shown below:

char buffer[16];
len = read(fd, buffer, 16);

The requested number of bytes to be read is given in the third argument. The received bytes will
be stored in buffer. The actual number of received bytes is returned by the function on success
and -1 on failure. In the latter case errno is also set.

The call will fail if a null pointer is passed, invalid buffer length, the UART core is in stopped
mode or because the UART receive FIFO is empty in non-blocking mode.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until at
least one byte has been received. In non-blocking mode, the call will return immediately and if no
message was available -1 is returned and errno set appropriately. The table below shows the
different errno values returned.

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer or the length was illegal.

EBUSY CAN core is in reset mode. Switch to started mode by issuing a START ioctl
command.

ETIMEDOUT 121;11:118>n-b10cking mode no messages were available in the software receive

Table 127: ERRNO values for read calls.

28 Gaisler SPICTRL SPI DRIVER (SPICTRL)

28.1 INTRODUCTION

This section describes the SPICTRL Master driver available for RTEMS. The SPICTRL driver
provides the necessary functions needed by the RTEMS I2C Library. The RTEMS I2C Library is
used for both I2C and SPI. The RTEMS I2C Library is not documented here.

The SPICTRL driver require the RTEMS Driver Manager.

28.1.1 SPI Hardware

The SPICTRL core is documented in the GR-IP core's manual. The driver supports multiple SPI
cores.

28.1.2 Examples

There are two examples available, one that read and write data to a standard SPI FLASH and one
that access a SD Card FAT file system. The SPI driver initialize the I12C Library when a SPI core
is found and the application initialize the higher level drivers.

The examples are part of the Gaisler RTEMS distribution, it can be found under /opt/rtems-
4.10/src/samples/rtems-spi.c and rtems-spi-sdcard.c.

28.2 USER INTERFACE

The RTEMS SPICTRL SPI driver supports the RTEMS I2C Library operations and the
simultaneous read/write operation available using the ioctl interface. The driver is united with
SPICTRL cores by the driver manager as SPICTRL cores are found. During driver initialization
the SPI driver initializes the RTEMS I2C Library and registers the driver. The driver is registered
with the name /dev/spil, /dev/spi2 and so on.

An example application using the driver is provided in the samples directory distributed with the
toolchain.

28.2.1 Driver registration

The registration of the driver is needed in order for the RTEMS I2C Library to know about the
SPI hardware driver. The RTEMS I2C driver registration is performed automatically by the driver
when SPICTRL hardware is found for the first time. The driver is called from the driver manager
to handle detected SPICTRL hardware. In order for the driver manager to unite the SPICTRL
driver with the SPICTRL hardware one must register the driver to the driver manager. This
process is described in the driver manager chapter.

28.2.2 Accessing the SPI bus

The SPI bus can be accessed direct in RAW mode or by using a so called high level driver. The
high level drivers must be connected with the SPICTRL driver by using the
rtems _libi2c register drv function. The SD Card higher level driver does this automatically where
as the memory driver needs the user to do this before initializing the memory driver. The location
of the higher level drivers and the RTEMS I2C Library is indicated in table 128. All paths are
given relative the RTEMS kernel source root.

Source description Location

12C Library cpukit/libi2c

High level drivers c/src/libchip/i2c

SPICTRL driver c/src/lib/libbsp/sparc/shared/spi

Table 128: SPI source location

When accessing the driver in RAW mode a device node must be created manually in the file
system by calling rtems filesystem make dev t and mknod with the correct major and minor
number identifying the SPICTRL driver. The major number must be the same as the RTEMS 12C
Library I/O driver major number, the minor number identify the SPICTRL driver. The macro
RTEMS LIBI2C MAKE MINOR can be used to generate a valid minor number.

After a device node is created either manually for the RAW mode or by I2C Library for the higher
level driver the device node can be accessed using standard means such as open, close, read,
write and ioctl.

28.2.3 Extensions to the standard RTEMS interface

The SPICTRL core supports automated periodic transfers if enabled in the hardware design. The
driver provides means for accessing the extra features that the SPICTRL core implements
through the ioctl interface. The additional features are optional, when ignored the driver
operates as a standard RTEMS SPI driver.

The extra ioctl commands supported are listed in the table below. In periodic mode the SPI core
is setup to execute one SPI request multiple times, each transfer is started on a constant interval
or when an external trigger pulse is detected. In normal operation read and writes are done
simultaneously, however in the automated (AM) periodic transfer mode multiple transfers are
executed. Once the core has been set up to operate in periodic mode (via CONFIG),
libi2c write() and ibi2c read() are replaced with calls to PERIOD READ/PERIOD WRITE ioctl().
In periodic mode the TX/RX FIFO can not be read, instead receive and transmit registers let us
peek into the FIFO. Up to four mask registers controls which TX/RX registers are part of the
transfers. Please see the SPICTRL hardware document for an overview of the AM periodic mode.

Command Description

PERIOD START Start periodic transfers

PERIOD STOP Stop periodic transfers

PERIOD READ Read receive registers and mask registers, in periodic
mode only

PERIOD WRITE Write transmit registers and mask registers, in periodic
mode only

CONFIG Configure periodic and non periodic transfers

STATUS Return the current status, the event register of the core

Table 129: Additional ioctl commands

Below is an example of the steps that can be used when accessing the driver in periodic mode.
1. libi2c send start()
2. libi2c ioctl(SET TRFMODE)
3. lib2ic send address()

4. libi2c ioctl(CONFIG, &config)
Enable periodic mode, configure SPICTRL periodic transfer options

5. libi2c_ioctl(PERIOD WRITE, &period io)
Fills TX Registers and set MASK registers, note that this has some constraints. The
content written here will be transmitted over and over again, according to the MASK
register.

6. lib2ic ioctl(PERIOD START)
Starts the periodic transmission of the content in the TX Registers selected by the MASK
register

7. lib2ic_ioctl(PERIOD READ, &period io)
Read one response of the transmitted data. It will hang until data is available. If hanging
is not an option use lib2ic_ioctl(STATUS) to determine on beforehand if it will hang.

8. OPTIONAL: libi2¢_ioctl(PERIOD WRITE, &period io)
The transmitted data on the SPI wires can be changed by calling the PERIOD WRITE,
note that this method requires that TX registers beeing used are not overwritten.

9. Go back to 7. to read the content of one more transfer, stop by stepping to 10.

10.1libi2c _ioctl(STOP)
Stop to set up a new periodic or normal transfer.

11.1ibi2c_stop()

28.2.3.1 PERIOD_START

Start previously configured automatic periodic transfers. Starting periodic transfers can only be
done after CONFIG has been called enabling automated periodic transfers, and after
PERIOD WRITE has been called to set up the MASK and TX registers. Once the transfers has
been started STATUS can be called to indicate the current transfer status and PERIOD READ
can be called to read the current content of the receive registers.

28.2.3.2 PERIOD_STOP

Stops any ongoing period transfer by writing zero to the AM configuration register.
28.2.3.3 CONTFIG

Configures the SPICTRL core in normal operation or in periodic operation. If periodic mode is
enabled driver configure the periodic mode options by looking at the user provided argument,
the argument is assumed to be a pointer to spictrl ioctl config data structure with the layout and
properties indicated below.

/* SPICTRL IOCTL _CONFIG argument */
struct spictrl ioctl config {
int clock gap;
unsigned int flags;
int periodic_mode;

unsigned int period;
unsigned int period flags;
unsigned int period_slvsel;

Field Description

clock gap Clock GAP on SPI bus between words, the FIFO word size is dependent on the
software configuration

flags Hardware options, such as enable Clock GAP and TAC mode

periodic_mode non-zero enables automated periodic transfers

period The period that might be used in periodic transfers

period flags AM Configuration register content. ACT bit has no effect. This controls the

behaviour of libi2c read().

period_slvsel Slave chip select when no transfer is active.

Table 130: spictrl_ioctl_config field description

28.2.3.4 STATUS

Copies the Event register of the SPICTRL core to a user provided buffer.

28.2.3.5 PERIOD_WRITE

Configures the SPICTRL TX and MASK registers. The registers are only used in periodic mode.
The command may be called before or during periodic transfers are ongoing. The MASK register
selects which registers will be used in the transfer process. Please see the SPI core hardware
documentation how periodic mode is used.

Note that changing TX registers used in current transfers may create invalid SPI commands. One
can make sure this does not happen by only changing content of unused TX registers, or by
stopping the ongoing periodic transfers with PERIOD STOP.

The command takes one argument, the argument is assumed to be a pointer to a
spictrl period io data structure with the layout and properties indicated below.

The transmit register [N*32+M] corresponds to bit: masks[N] & (1<<M) .
/¥ SPICTRL IOCTL PERIOD READ and SPICTRL IOCTL PERIOD WRITE argument */

struct spictrl period io {
int options;
unsigned int masks[4];
void *data;

Field

Description

options Selects operation performed by command

READ BITO 1=Read Mask registers into masks[].

BIT1 1=Read receive registers and store into data array. Only the
registers specified by masks[] will be read. Note that the
received registers are read after the masks[] registers has
been updated, which if BITO will result in the active registers
will be read into data.

WRITE BITO 1=Write Mask registers with content of masks[]. Note that
the MASK registers will be updated after the Transmit
registers has been written.

BIT1 1=Write transmit registers with values taken from data
array. Only the registers specified by masks[] will be
written/updated.

masks An array of 4 32-bit words. Each bit corresponds to a Transmit or a Receive
register. The masks array can be read from MASK registers or stored to MASK
registers (if BITO is set), or only used to indicate which Transmit/Receive
registers that should be Written/Read (if BITO is zero).

data Pointer to data array read (PERIOD WRITE) or written (PERIOD READ). The

element size of the array depends on the configured word size (see CONFIG).
The element size is either 8, 16 or 32-bits, the smallest possible that still fits the

data words.

Table 131: spictrl period_io field description

The data pointer points to data in the format of an array with the same element size as the
transfer bit-length configured. For example a 8-bit config will result in data being interpreted as
an array of bytes, a 12-bit config in an array of 16-bit words etc. The order of the elements will
be determined by: the lowest bit set in the mask will be the first, the second lowest the second in

the array etc.

28.2.3.6 PERIOD_READ

This command Read the MASK registers and/or reads the Receive registers. The behaviour is
controlled with ioctl() the argument provided by the user. The argument is a pointer to a data
structure of the format spictrl period io described in Table 129.

By setting options to 0x3 will make the command read the receive registers activated only. The
receive register [N*32+M] corresponds to bit: masks[N] & (1<<M).

29 Gaisler i2C Master DRIVER (I2CMST)

29.1 INTRODUCTION

This section describes the I2C Master driver available for RTEMS. The I2CMST driver provides
the necessary functions needed by the RTEMS I2C Library. The RTEMS I2C Library is not
documented here.

The I2CMST driver require the RTEMS Driver Manager.

29.1.1 12C Hardware

The I2CMST core is documented in the GR-IP core's manual. The driver supports multiple 12C
cores.

29.1.2 Examples

There is an example available, it illustrates how to set up the I12C driver, initialize the 12C Library
and access an 12C EEPROM. The EEPROM can be accessed with on of two different methods,
either RAW mode or by using the high level driver.

The example is part of the Gaisler RTEMS distribution, it can be found under /opt/rtems-
4.10/src/samples/rtems-i2cmst.c.

29.2 USER INTERFACE

The RTEMS I2CMST I2C driver supports the RTEMS I2C Library operations. The driver must be
registered before it can be used. During driver registration the I12C driver initializes the RTEMS
I12C Library and registers the driver. The driver is registered with the name /dev/i2c1, /dev/i2c2
and so on.

An example application using the driver is provided in the samples directory distributed with the
toolchain.

29.2.1 Driver registration

The registration of the driver is needed in order for the RTEMS I2C Library to know about the
[2CMST hardware driver. The RTEMS I2C driver registration is performed automatically by the
driver when I2CMST hardware is found for the first time. The driver is called from the driver
manager to handle detected I2CMST hardware. In order for the driver manager to unite the
I2CMST driver with the I2CMST hardware one must register the driver to the driver manager.
This process is described in the driver manager chapter.

29.2.2 Accessing the I12C bus

The I2C bus can be accessed direct in RAW mode or by using a so called high level driver. The
high level drivers must be connected with the I[2CMST driver by wusing the
rtems _libi2c register drv function. The location of the higher level drivers and the RTEMS I12C
Library is indicated in table 132. All paths are given relative the RTEMS kernel source root.

Source description Location
12C Library cpukit/libi2c
High level drivers c/src/libchip/i2c

I2CMST driver

c/src/lib/libbsp/sparc/shared/i2c

Table 132: 12C source location

When accessing the driver in RAW mode a device node must be created manually in the file
system by calling rtems filesystem make dev t and mknod with the correct major and minor
number identifying the I2CMST driver. The major number must be the same as the RTEMS I2C
Library I/O driver major number, the minor number identify the I2CMST driver. The macro
RTEMS LIBI2C MAKE MINOR can be used to generate a valid minor number.

After a device node is created either manually for the RAW mode or by I2C Library for the higher
level driver the device node can be accessed using standard means such as open, close, read,

write and ioctl.

30 GPIO Library

30.1 INTRODUCTION

This section describes the GPIO Library available for RTEMS. The GPIO Library implements a
simple function interface that can be used to access individual GPIO ports. The GPIO Library
provides means to control and connect an interrupt handler for a particular GPIO port. The
library itself does not access the hardware directly but through a GPIO driver, for example the
GRGPIO driver. A driver must implement a couple of function operations to satisfy the GPIO
Library. The drivers can register GPIO ports during runtime.

The two interfaces the GPIO Library implements can be found in the gpiolib header file
(gpiolib.h), it contains definitions of all necessary data structures, bit masks, procedures and
functions used when accessing the hardware and for the drivers implement GPIO ports.

This document describes the user interface rather than the driver interface.

30.1.1 Examples

There is an example available in the Gaisler RTEMS distribution, it can be found under
/opt/rtems-4.10/src/samples/rasta-adcdac/gpio-demo.c.

30.2 DRIVER INTERFACE

The driver interface is not described in this document.

30.3 USER INTERFACE

The GPIO Library provides the user with a function interface per GPIO port. The interface is
declared in gpiolib.h. GPIO ports are registered by GPIO drivers during runtime, depending on
the registration order the GPIO port are assigned a port number. The port number can be used to
identify a GPIO port. A GPIO port can also be referenced by a name, the name is assigned by the
GPIO driver and is therefore driver dependent and not documented here.

GPIO ports which does not support a particular feature, for example interrupt generation, return
error codes when tried to be accessed.

The location of the GPIO Library is indicated in table 133. All paths are given relative the RTEMS
kernel source root.

Source description Location

Interface implementation | c/src/lib/libbsp/sparc/shared/gpio/gpiolib.c

Interface declaration c/src/lib/libbsp/sparc/shared/include/gpiolib.h

Table 133: GPIOLIB source location

30.3.1 Accessing a GPIO port

The interface for one particular GPIO port is initialized by calling gpiolib open with a port
number or gpiolib open by name with the device name identifying one port. The functions
returns a pointer used when calling other functions identifying the opened GPIO port. If the
device name can not be resolved to a GPIO port the open function return NULL. The prototypes
of the initialization routines are shown below:

void *gpiolib_open(int port)
void *gpiolib_open_by nane(char *devNane)

Note that this function must be called first before accessing other functions in the interface.

Note that the port naming is dependent of the GPIO driver used to access the underlying
hardware.

30.3.2 Interrupt handler registration

Interrupt handlers can be installed to handle events as a result to GPIO pin states or state
changes. Depending on the functions supported by the GPIO driver four interrupt modes are
available, edge triggered on falling or rising edge and level triggered on low or high level. It is
possible to register a handler per GPIO port by calling gpiolib irq register setting the arguments
correctly as described in table 134. Below is the prototype for the IRQ handler (ISR) install
function.

int gpiolib_irq_register(
voi d *handl e,
voi d *func,
void *arg

)

The function takes three arguments described in the table below.

Name Description
handle Handle used internally by the function interface, it is returned by the open function.
func Pointer to interrupt service routine which will be called every time an interrupt is

generated by the GPIO hardware.

arg Argument passed to the func ISR function when called as the second argument.

Table 134: gpiolib_irq register argument description

To enable interrupt, the hardware needs to be initialized correctly, see functions described in the
function prototype section. Also the interrupts needs to be unmasked.

30.3.3 Data structures

The data structure used to access the hardware directly is described below. The data structure
gpiolib_config is defined in gpiolib.h.

struct gpiolib_config {
char mask;
char irq_level;
char irq_polarity;

Member Description

mask Mask controlling GPIO port interrupt generation

0 Mask interrupt

1 Unmask interrupt

irq level Level or Edge triggered interrupt

0 Edge triggered interrupt

1 Level triggered interrupt

irq_polarity Polarity of edge or level

0 Low level or Falling edge

1 High level or Rising edge

Table 135: gpiolib_config members

30.3.4 Function prototype description

30.3.4.1 GPIO Library functions

A short summary to the functions are presented in the prototype lists below.

Prototype Name

void gpiolib_close(void *cookie)

int grpiolib_set_config(void *cookie, struct gpiolib_config *cfg)

int gpiolib_set(void *handle, int dir, int val)

int gpiolib_get(void *handle, int *inval)

int gpiolib_irq clear(void *handle)

int gpiolib_irq enable(void *handle)

gpiolib _irg disable(void *handle)

int gpiolib_irq force(void *handle)

int gpiolib _irqg register(void *handle, void *func, void *arg)

void gpiolib_show(int port, void *handle)

Table 136: GPIO per port functions

All functions takes a handle to a opened GPIO port by the argument handle. The handle is
returned by the gpiolib _open or gpiolib_ open by name function.

If a GPIO port does not support a particular operation, a negative value is returned. On success a
zero is returned.

30.3.4.1.1 grpiolib_set_config

Configures one GPIO port according to the the gpiolib_config data structure.

The gpiolib_config structure is described in table 135.

30.3.4.1.2 gpiolib_set

Set one GPIO port in output or input mode and set the GPIO Pin value. The third argument may
not be used when dir indicated input. The direction of the GPIO port is controlled by the dir
argument, 1 indicates output and O indicates input. The value driven by the GPIO port may be
low by setting val to 0 or high by setting val to 1.

30.3.4.1.3 gpiolib_get

Get the input value of a GPIO port. The value is stored into the address indicated by the
argument inval.

30.3.4.1.4 gpiolib_irq_clear

Acknowledge any interrupt at the interrupt controller that the GPIO port is attached to. This may
be needed in level sensitive interrupt mode.

30.3.4.1.5 gpiolib_irq force

Force an interrupt by writing to the interrupt controller that the GPIO port is attached to.

30.3.4.1.6 gpiolib_irq_enable

Unmask GPIO port interrupt on the interrupt controller the GPIO port is attached to. This
enables GPIO interrupts to pass though to the interrupt controller.

30.3.4.1.7 gpiolib_irq_disable

Mask GPIO port interrupt on the interrupt controller the GPIO port is attached to. This disable
interrupt generation at the interrupt controller.

30.3.4.1.8 gpiolib_irq register

Attaches a interrupt service routine to a GPIO port. Described separately above.

31 Gaisler GPIO DRIVER (GRGPIO)

31.1 INTRODUCTION

This section describes the GRGPIO driver available for RTEMS. The GRGPIO driver provides the
necessary functions needed by the GPIO Library. The GPIO Library is not documented here.

The GRGPIO driver require the RTEMS Driver Manager.

31.1.1 GPIO Hardware

The GRGPIO core is documented in the GR-IP Core User's manual. The driver supports multiple
GPIO cores.

The hardware may be configured to support interrupt generation on any combination of GPIO
ports. The driver will fail with a return code when an interrupt is unmasked but the GPIO port
does not support interrupt generation.

31.1.2 Examples

There is an example available in the Gaisler RTEMS distribution, it can be found under
/opt/rtems-4.10/src/samples/rtems-gpio.c.

31.2 USER INTERFACE

The RTEMS GRGPIO GPIO driver supports the GPIO Library operations. The driver is united with
GRGPIO cores by the driver manager as GRGPIO cores are found. During driver initialization the
GPIO driver initializes the GPIO Library and registers the driver. Each GPIO port is handled
separately using the GPIO Library.

An example application using the driver is provided in the samples directory distributed with the
toolchain.

31.2.1 Driver registration

The registration of the driver is needed in order for the GPIO Library to know about the GPIO
hardware driver. The GPIO driver registration is performed automatically by the driver when
GRGPIO hardware is found for the first time. The driver is called from the driver manager to
handle detected GRGPIO hardware. In order for the driver manager to unite the GRGPIO driver
with the GRGPIO hardware one must register the driver to the driver manager. This process is
described in the driver manager chapter.

31.2.2 Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter.
Below is a description of configurable driver parameters. The driver parameters is unique per
GRPWM device. The parameters are all optional, the parameters only overrides the default
values or behaviour.

Name Type | Parameter description

nBits INT Tells the driver how many GPIO ports are available on this device,
normally the driver auto detect the number of GPIO ports. The OUTPUT
register of the GRGPIO core must be written in order to auto detect the
number of GPIO ports, this can be a problem in some cases when the
GPIO ports has already been initialized by the boot loader.

bypass INT This parameter specifies the BYPASS register content. If not available
zero is written into the BYPASS register during driver initialization.

Table 137: GRGPIO driver parameter description

31.2.3 Accessing GPIO ports

The GPIO ports are accessed using the GPIO Library. Each GPIO port has a unique number which
is assigned in the order the GPIO ports are registered. The GRGPIO GPIO ports are registered
core wise, the first core in AMBA Plug & Play is registered first starting with PIO[0] to PIO[N],
then all GPIO ports of the next GRGPIO core. See table below for an example.

GRGPIO Core GRGPIO 1/0 port Registration order
0 PIO[0] 0
PIO[1] 1
PIO[2] 2
PIO[3] 3
PIO[4] 4
PIO[5] 5
PIO[6] 6
PIO[7] 7
1 PIO[0] 8
PIO[1] 9
PIO[2] 10
PIO[3] 11
PIO[4] 12
PIO[5] 13
PIO[6] 14
PIO[7] 15
2 PIO[0] 16
PIO[1] 17
PIO[2] 18
PIO[3] 19
PIO[4] 20
PIO[5] 21
PIO[6] 22
PIO[7] 23

Table 138: GRGPIO registration order

The ports can also be referenced by using their names. The GRGPIO driver name the GPIO ports
according to the following string,

"/ dev/ [SYSTEM PREFI X] gr gpi o[SYSTEM CORE_NR] / [PORT_NR] "

MACRO Description

SYSTEM PREFIX In systems where multiple AMBA buses exists it is convenient
to reference a particular AMBA bus by a name.

SYSTEM PREFIX is substituted with the AMBA bus name that
the GPIO core is attached to, for example on a GR-RASTA-IO
PCI Target the AMBA bus is called rastaioN.

SYSTEM CORE_NR The core number on a particular AMBA system

PORT NR The port number on a particular GPIO core

Table 139: GRGPIO port naming

The location of the GRGPIO drivers and the GPIO Library is indicated in table 137. All paths are
given relative the RTEMS kernel source root.

Source description Location
GPIO Library c/src/lib/libbsp/sparc/shared/gpio/gpiolib.c
GRGPIO driver c/src/lib/libbsp/sparc/shared/gpio/grgpio.c

Table 140: GPIO source location

32 Gaisler ADC/DAC DRIVER (GRADCDAC)

32.1 INTRODUCTION

This section describes the GRADCDAC driver available for RTEMS. The GRADCDAC driver
provides a function interface to the user with the ability to access the hardware directly. User
applications include the gradcdac header file (gradcdac.h) which contains definitions of all
necessary data structures, bit masks, procedures and functions used when accessing the
hardware.

The GRADCDAC driver require the RTEMS Driver Manager.

32.1.1 ADC/DAC Hardware

The GRADCDAC core is documented in the GR-IP Core User's manual. The driver supports
multiple GRADCDAC cores.

The GRADCADC core has two different IRQs, one ADC interrupt and one DAC interrupt.

32.1.2 Examples

There is an example available in the Gaisler RTEMS distribution, it can be found under
/opt/rtems-4.10/src/samples/rasta-adcdac/gradcdac-demo.c.

32.2 USER INTERFACE

The RTEMS GRADCDAC ADC/DAC driver provides the user with a function interface. The
interface is declared in gradcdac.h. The driver is united with GRADCDAC cores by the driver
manager as GRADCDAC cores are found. During driver initialization the ADCDAC driver
initializes the ADC/DAC hardware to an initial state, for that point and onwards the function
interface can be used to access the ADC/DAC hardware registers.

An example application using the driver is provided in the samples/rasta-adcdac directory
distributed with the toolchain.

The location of the GRADCDAC driver is indicated in table 141. All paths are given relative the
RTEMS kernel source root.

Source description Location
GRADCDAC driver c/src/lib/libbsp/sparc/shared/analog/gradcdac.c
Driver Interface c/src/lib/libbsp/sparc/shared/include/gradcdac.h

Table 141: GRADCDAC source location

32.2.1 Driver registration

The GRADCDAC is registered to the Driver Manager layer by setting the correct define in the
project set up, see Driver Manager section.

The driver does not implement a I/O driver interface so the GRADCDAC does not register itself as
a I/0 driver, it implements a custom function interface that is available to the user.

32.2.2 Driver resource configuration

The driver does not support configurable resource parameters.

32.2.3 Accessing ADC/DAC

The Interface for one particular ADC/DAC core is initialized by calling gradcdac open with the
device name identifying one core. The function returns a pointer used when calling other
functions identifying the opened ADC/DAC core. If the device name can not be resolved to a
ADC/DAC core the open function return NULL. The prototype of the initialization routine is
shown below:

voi d *gradcdac_open(char *devnane)

Note that this function must be called first before accessing other functions in the interface.

The GRADCDAC cores are be referenced by using their names, the names are generated
according to the following string,

"/ dev/ [SYSTEM PREFI X] gr adcdac[SYSTEM CORE_NR] "

MACRO Description

SYSTEM PREFIX In systems where multiple AMBA buses exists it is convenient
to reference a particular AMBA bus by a name.

SYSTEM PREFIX is substituted with the AMBA bus name that
the ADC/DAC core is attached to, for example on a GR-RASTA-
ADCDAC PCI Target the AMBA bus is called rastaadcdacN.
This string is empty when the GRADCDAC is on the system
AMBA bus.

SYSTEM CORE NR The core number on a particular AMBA system

Table 142: GRADCDAC core naming

32.2.4 Interrupt handler registration

Interrupt handlers can be installed to handle events as a result to AD/DA conversions. It is
possible to register a handler for AD and or DA conversions by setting the adc argument
appropriately as described in table 143. Below is the prototype for the IRQ handler (ISR) install

function.

int gradcdac_install _irq_handl er(
voi d *cooki e,
int adc,
void (*isr)(int irq, void *arg),
void *arg

)

The function takes three arguments described in the table below.

Name Description
cookie Handle used internally by the function interface, it is returned by the open function.
adc Value Function
1 Register handler to ADC interrupt
2 Register handler to DAC interrupt
3 Register to both ADC and DAC interrupts
isr Pointer to interrupt service routine which will be called every time an interrupt is
generated by the ADC/DAC hardware.
arg Argument passed to the isr function when called as the second argument.

Table 143: gradcdac_install_irg handler argument description

To enable interrupt the hardware needs to be initialized correctly see functions described in the
function prototype section. Also the AD and or DA interrupts needs to be unmasked.

32.2.5 Data structures

The data structure used to access the hardware directly is described below. The data structure
gradcdac regs is defined in gradcdac.h.

struct gradcdac_regs {

}

vol atil e unsi gned
vol atil e unsi gned
i nt unusedO[2] ;

vol atil e unsi gned
vol atil e unsi gned
i nt unusedl[2];

vol atil e unsi gned
vol atil e unsi gned
vol ati |l e unsi gned
i nt unused2[1];

vol atil e unsi gned
vol ati |l e unsi gned
vol atil e unsi gned

The gradcdac config data
configuration register.

int
int

int
i nt

i nt
i nt
i nt
int
i nt
int

config;
st at us;

adc_di n;
dac_dout;

adrin;
adr out ;
adrdir;

data_in;
dat a_out;
data_dir;

structure is used to read and write the ADC/DAC controllers

struct gradcdac_

unsi gned char
char wr_pol ;
unsi gned char
unsi gned char
char rc_pol
unsi gned char
char cs_pol;

config {
dac_ws;

dac_dw;
adc_ws;

cs_node;

char ready_node;
char ready_pol;
char trigg_pol;

unsi gned char trigg_node;
unsi gned char adc_dw,
b
Member Member ADCONF Description
type Bit start
dac ws 5-bit int 19 Number of DAC wait states.
wr _pol Boolean 18 Polarity of DAC write strobe
0 |Active low
1 |Active high
dac_dw 2-bit 16 DAC data width
selection
0 |none
1 |8-bit ADDATA [0:7]
2 | 16-bit ADDATA [0:15]
3 |none/spare
adc ws 5-bit int 11 Number of ADC wait states
rc_pol Boolean 10 Polarity of ADC read convert
0 |Active low read
1 |Active high read
cs_mode 2-bit 8 Mode of ADC chip select asserted ...
selection
0 |during conversion and read phases
1 |during conversion phase
2 |during read phase
3 |continuously during both phases

cs_pol Boolean 7 Polarity of ADC chip select

0 Active low

1 |Active high

ready mode Boolean 6 Mode of ADC ready

0 |Falling edge

1 Rising edge

ready pol Boolean 5 Polarity of ADC ready

0 unused, open-loop

1 used, with time-out

trigg pol Boolean 4 Polarity of ADC triggers

0 |falling edge

1 rising edge

trigg mode 2-bit 2 ADC trigger source
selection
0 |none
1 ADTrig

2 32-bit Timer 1

3 32-bit Timer 2

adc dw 2-bit 0 ADC data width

selection
0 none

1 8-bit ADDATA[7:0]

2 16-bit ADDATA[15:0]

3 none/spare

Table 144: gradcdac_config member and ADCONF reg definition

32.2.6 Function prototype description

32.2.6.1 General ADC/DAC functions

A short summary to the functions are presented in the prototype lists below.

Prototype Name

void gradcdac_set config(void *cookie, struct gradcdac_config *cfg)

void gradcdac_get config(void *cookie, struct gradcdac_config *cfg)

void gradcdac_set cfg(void *cookie, unsigned int config)

unsigned int gradcdac _get cfg(void *cookie)

unsigned int gradcdac_get_status(void *cookie)

void gradcdac adc convert start(void *cookie)

unsigned int gradcdac_get_adrinput(void *cookie)

unsigned int gradcdac_get_adroutput(void *cookie)

void gradcdac_set adroutput(void *cookie, unsigned int output)

unsigned int gradcdac_get _adrdir(void *cookie)

void gradcdac_set adrdir(void *cookie, unsigned int dir)

unsigned int gradcdac_get datainput(void *cookie, void)

unsigned int gradcdac_get dataoutput(void *cookie, void)

void gradcdac set dataoutput(void *cookie, unsigned int output)

unsigned int gradcdac_get datadir(void *cookie, void)

void gradcdac set_datadir(void *cookie, unsigned int dir)

Table 145: General ADC/DAC functions

All functions takes a handle to the ADC/DAC core by the argument cookie. The handle is returned
by the gradcdac open function.
32.2.6.1.1 gradcdac_set_config

Writes the configuration register of the ADC / DAC controller from the gradcdac config data
structure.

The gradcdac config structure is described in table 144.

32.2.6.1.2 gradcdac_get_config

Reads the configuration from the controller's configuration register and converts into the data
structure gradcdac _config pointed to by the user provided cfg argument.

The gradcdac config structure is described in table 144.

32.2.6.1.3 gradcdac_set_cfg
Sets the configuration register directly.
The bits of the ADCONF configuration register are described in table 144.

32.2.6.1.4 gradcdac_get_cfg
Returns the current configuration register value as it is.
The bits of the ADCONF configuration register are described in table 144.

32.2.6.1.5 gradcdac_get_status

Returns the current ADC / DAC controller's status register value.

32.2.6.1.6 gradcdac_get_adrinput

Returns the current address input register value.

32.2.6.1.7 gradcdac_get_adroutput

Returns the current address output register value.

32.2.6.1.8 gradcdac_set_adroutput

Sets the controller's address output register to the argument output.

32.2.6.1.9 gradcdac_get_adrdir

Returns the current address direction register value.

32.2.6.1.10 gradcdac_set_adrdir

Sets the controller's address direction register to the argument dir.

32.2.6.1.11 gradcdac_get_datainput

Returns the current data input register value.

32.2.6.1.12 gradcdac_get_dataoutput

Returns the current data output register value.

32.2.6.1.13 gradcdac_set_dataoutput

Sets the controller's data output register to the argument output.

32.2.6.1.14 gradcdac_get_datadir

Returns the current data direction register value.

32.2.6.1.15 gradcdac_set_datadir

Sets the controller's data direction register to the argument dir.

32.2.6.2 Status interpretation help function

A short summary to the functions are presented in the prototype lists below. Functions to help
the interpretation of the status read with gradcdac get status are described in table 145. The
functions does not actually read or write any ADC/DAC register therefore the handle (cookie) is
omitted.

Prototypes Non-zero return meaning

int gradcdac DAC ReqgRej(unsigned int status) DAC conversion request rejected
int gradcdac_ DAC isCompleted(unsigned int status) DAC conversion complete

int gradcdac DAC isOngoing(unsigned int status) DAC conversion is ongoing

int gradcdac ADC isTimeouted(unsigned int status) ADC sample timed out

int gradcdac ADC RedqRej(unsigned int status) ADC sample request rejected

int gradcdac ADC isCompleted(unsigned int status) ADC conversion is completed

int gradcdac_ADC isOngoing(unsigned int status) ADC conversion is ongoing

Table 146: Status interpretation help functions

32.2.6.3 ADC functions

A short summary to the functions are presented in the prototype lists below.

Operating on all ports

void gradcdac adc convert start(void)

int gradcdac_adc_convert_try(unsigned short *digital value)

int gradcdac_adc_convert(unsigned short *digital value)

Table 147: ADC functions

32.2.6.3.1 gradcdac_adc_convert_start

Make the ADC circuitry initialize an analogue to digital conversion. The result can be read out by
gradcdac _adc _convert try or gradcdac_adc_convert.

32.2.6.3.2 gradcdac_adc_convert_try

Tries to read the conversion result previously started with gradcdac adc convert start. If the
circuitry is busy converting the function returns a non-zero value, if the conversion has
successfully finished zero is returned.

Return Code Description

Zero ADC conversion complete, digital value contain current conversion result.
Positive ADC busy, digital value contain previous conversion result.

Negative ADC conversion request failed

Table 148: gradcdac_adc_convert_try return code

32.2.6.3.3 gradcdac_adc_convert

Waits until the ADC circuity has finished a digital to analogue conversion. The waiting is
implemented as a busy loop utilizing 100% CPU load. This function returns zero on success and a
negative value on failure, a positive result is never returned. See table 142 for a description of
the return values.

32.2.6.4 DAC functions

A short summary to the functions are presented in the prototype lists below.

Operates on a single port

int gradcdac_dac_convert_try(unsigned short digital value)

void gradcdac_dac convert(unsigned short digital value)

Table 149: DAC functions

For a more detailed description see each function's respective sub section.

32.2.6.4.1 gradcdac_dac_convert_try

Try to make the DAC circuitry initialize a digital to analogue conversion. The digital value to be
converted is taken as the argument digital value. If the circuitry is busy by a previous conversion
the function returns a non-zero value, if the conversion is successfully initialized the function
returns zero.

32.2.6.4.2 gradcdac_dac_convert

Initializes a digital to analogue conversion by waiting until any previous conversion is finished
before proceeding with the conversion. The digital value to be converted is taken as the
argument digital value. The waiting is implemented as a busy loop utilizing 100% CPU load.

33 Gaisler TC driver (GRTC)

33.1 INTRODUCTION

This document is intended as an aid in getting started developing with Aeroflex Gaisler GRLIB
GRTC Telecommand (TC) core using the driver described in this document. It describes
accessing GRTC in a on-chip system and over PCI and SpaceWire. It briefly takes the reader
through some of the most important steps in using the driver such as starting TC communication,
configuring the driver and receiving TC frames. The reader is assumed to be well acquainted
with TC and RTEMS.

33.1.1 TC Hardware

See the GRTC core manual. When the GRTC core is accessed over SpaceWire RMAP is used.

33.1.2 Software Driver

The driver provides means for threads to receive TC frames using standard I/O operations. There
are two drivers, one that supports GRTC on an on-chip AMBA bus and an AMBA bus accessed
over PCI (on a GR-RASTA-TMTC board for example) and one driver that supports accessing the
GRTC over SpaceWire.

33.1.2.1 GRTC over SpaceWire

The SpaceWire capable GRTC driver introduces some limitations listed below:
12. RAW mode is not supported (the read call)

13. The GRTC DMA area accessed over SpaceWire is cached in RAM close to the CPU. The
cached DMA area is equal in length to the GRTC DMA area. The cache is synchronized
every time the user enters the receive function.

14. A field named dma partition has been added to the grtc ioc buf params structure
identifying the partition used when allocating the DMA memory on the SpaceWire node.
The custom_buffer option is still available, it determines where the cached area is located.

33.1.3 Support

For support, contact the Aeroflex Gaisler support team at support@gaisler.com.

33.2 USER INTERFACE

The RTEMS GRTC driver supports the standard accesses to file descriptors such as open, read
and ioctl. User applications include the grtc driver's header file which contains definitions of all
necessary data structures and bit masks used when accessing the driver.

The driver enables the user to configure the hardware and to receive TC frames. The driver can
be operated in two different modes either in RAW mode giving the user the possibility to read the
DMA area it self using the read call or in FRAME mode where the driver handles basic frame
parsing by looking at the header length field and the control bytes from the TC core. In the
FRAME mode the allocation of TC frames is handled by the user, empty frames are given to the
driver that puts data and header of received TC frames into the user allocated frames in a two
step process. In the first step the user provides the driver with unused frames queued in an
driver internal queue, the second step is when the user retrieve the frames containing a complete
received frame, filler is not copied in FRAME mode.

Note that RAW mode is not supported when operating the GRTC over SpaceWire.

mailto:support@gaisler.com

33.2.1 Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard
means, such as open. The function grtc_register whose prototype is provided in grtc.h is used for
registering the driver. It returns 0 on success and 1 on failure. A typical register call from the
LEONS3 Init task:

if (grtc_register(&nba _conf))
printf(“GRTC register Failed\n");

33.2.2 Opening the device

Opening the device enables the user to access the hardware of a certain GRTC device. The driver
is used for all GRTC cores available. The cores are separated by assigning each core a unique
name and a number called minor. The name is given during the opening of the driver. The first
three names are printed out:

Core number Filesystem name

0 /dev/grtcO

1 /dev/grtcl

2 /dev/grtc2

0 /dev/rastatmtcO/grtcO
0 /dev/rmap fe/grtcO

Table 150: Core number to device name conversion.

An example of an RTEMS open call is shown below.
fd = open("/dev/grtc0", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 150.

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary
memory.

Table 151: Open errno values.

33.2.3 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the grtc driver.

33.2.4 1/0 Control interface

The behaviour of the driver and hardware can be changed via the standard system call ioctl.

Most operating systems support at least two arguments to ioctl, the first being an integer which
selects ioctl function and secondly a pointer to data that may be interpreted uniquely for each
function. A typical ioctl call definition:

int ioctl(int fd,

int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the GRTC driver's header file
grtc.h. In functions where only one argument is needed the pointer (void *arg) may be converted
to an integer and interpreted directly, thus simplifying the code.

33.2.4.1 Data structures

The grtc ioc _buf params struct is used for configuring the DMA area of the TC core and driver.

struct grtc_ioc_buf_params {

unsi gned i nt

| engt h;

voi d *cust om buffer;
i nt dma_partition;
b
Member Description
length Length of custom buffer or length of DMA buffer requested to be allocated by

driver.

custom_buffer

When custom_buffer is zero, a DMA buffer will be allocate using malloc() by the
driver.

Set this option to a non-zero buffer pointer to indicate that the buffer is allocated
by the user (user custom buffer). custom buffer is interpreted as the new DMA
buffer address that the driver must use. Note that there are alignment
requirements that need to be met, see the hardware documentation.

When the least significant bit is set to one the custom address is interpreted as an
address local to the GRTC core. The GRTC driver will translate this address to an
address that the CPU can read. This is useful when the GRTC core is not on the
same bus as the CPU and translation is needed.

dma partition

SpaceWire driver version only.

This option select which partition the DMA area on the SpaceWire node is
allocated from. The AMBA RMAP bus driver provides custom functions for
allocating memory on the remote target, the memory is split into multiple
partitions.

Note that memory allocated cannot be returned/freed, this means that a memory
leak may be created when configuring the memory more than once.

Table 152: grtc_ioc_buf params member descriptions.

The grtc_ioc config struct is used for configuring the driver and the TC core.

struct grtc_ioc_config {
i nt psr _enabl e;
i nt nrzm enabl e;
i nt pss_enabl e;
i nt crc_cal c;

b

Member Description

psr_enable Enable Pseudo-De-Randomizer in the TC core. See hardware manual for more
information.

nrzm enable Enable Non-Return-to-Zero Mark Decoder. See hardware manual for more
information.

pss_enable Enable ESA/PSS. See hardware manual for more information.

crc_calc Reserved, set this to zero

Table 153: grtc_ioc_config member descriptions.

The grtc_ioc hw status data structure is used to store the register values of some of the GRTC
core's registers. See hardware manual for more information.

struct grtc_ioc_hw status {

unsi gned int sir;

unsi gned i nt far;

unsi gned i nt clcwi;

unsi gned int cl cwz;

unsi gned int phir;

unsi gned i nt str;
H
Member Description
sir Spacecraft Identifier register
far Frame Acceptance Report Register
clewl CLCW Register 1
clew?2 CLCW Register 2
phir Physical Interface Register
str Status Register

Table 154: grtc_ioc_hw_status member descriptions.

The grtc frame structure is used for adding unused frames as buffers to the TC driver and
retrieving received frames, it is the driver's representation of a TC frame. A TC frame structure
can be chained together using the next field in grtc frame. The data field is only 3 bytes in the
structure but when used the data field goes past the grtc frame boundary making different sized
frames possible. The frame structure may be allocated with the size [sizeof(struct grtc frame)
+DATA LEN-3].

struct grtc_frame {

struct grtc_frame *next ;
unsi gned short | en;
unsi gned short reserved;
struct grtc_frame_pool *pool;
/* The Frame content */
struct grtc_hdr hdr ;
unsi gned char dat a[3] ;
b
Member Description
next Points to next TC frame in TC frame chain, NULL if last frame in chain. This
field is used to make driver process multiple TC Frames at the same time,
avoiding multiple ioctl calls.
len Length of received TC Frame.
reserved Reserved by the driver.
pool Field internally used by driver, must not be changed by user.
hdr Header of a TC Frame
data Start of TC Frame payload

Table 155: grtc_frame member descriptions.

The grtc_list structure represents a linked list, a chain, of TC frames. The data structure holds
the first frame and last frame in chain.

struct grtc_list {

struct grtc_frame *head;
struct grtc_frame *tail;

i nt cnt;
b
Member Description
head First TC frame in chain
tail Last TC frame in chain, last frame in list must have it's next field set to NULL
cnt Number of frames in list

Table 156: grtc_list member descriptions.

The grtc ioc pools setup structure represents the set up of all frame pools used by the driver to
select the shortest frame to put incoming TC frames into. The size of the data structure depends
on the pool cnt field, the size can be calculated as [sizeof(struct grtc ioc pools setup) - 4 +

4*pool cnt].

struct grtc_ioc_pools_setup {

unsi gned i nt pool cnt;
unsi gned i nt pool frame_len[1];
}
Member Description
pool cnt Number of frame pools in this setup

pool frame len

Array of frame lengths, one length per pool. Pool one has frame length
pool frame len[0], Pool 2 pool frame len[1] and so on.

Table 157: grtc_ioc_pools_setup member descriptions.

The grtc_ioc_assign frm pool structure hold a chain of frames all with the same minimum length,
the length is specified by the frame len field and the frame chain is pointed to by the field
frames. This data structure is used by the driver to assign a common pool for all frames in the
chain. This is to make the frame to pool insertion faster for unused frames.

struct grtc_ioc_assign_frmpool {

unsi gned int

frame_| en;

struct grtc_frame *franes;

H

Member Description

frame len Minimum length of all TC frames in the frames field

frames Linked list of frames that will be assigned a pool by the driver

Table 158: grtc_ioc_assign_frm_pool member descriptions.

The grtc ioc_stats structure contain statistics collected by the driver in FRAME mode.

struct grtc_ioc_stats {
unsi gned | ong | ong frames_recv;

/* Errors related to incom ng data */

unsi gned i nt err;
unsi gned i nt err_hdr;
unsi gned int err _payl oad;
unsi gned i nt err_endi ng;
unsi gned int err _abandoned;
/* Errors related to the handling of incomng frames */
unsi gned int dr opped,;
unsi gned i nt dr opped_no_buf;
unsi gned i nt dr opped_t oo_I ong;
b
Member Description

frames_recv

Number of frames successfully received by the TC core

err Total number of errors related to incoming data, due to too early frame
ending or abandoned frame.
err hdr Number of errors encountered during frame header processing

err payload

Number of errors encountered during frame payload processing

err ending

Number of errors encountered during filler and end of frame processing

err abandoned

reserved for future use, NOT IMPLEMENTED

dropped

Number of dropped frames due to not the correct buffers were available
when processing the frame

dropped no buf

Number of frames dropped because no empty frames of this frame length
were available upon reception

dropped_too long

Number of frames dropped because frame length too long to match any of
the configured frame pools.

Table 159: grtc_ioc_stats member descriptions.

33.2.4.2 Configuration

The TC core and driver are configured using ioctl calls. The table 153 below lists all supported
ioctl calls. GRTC IOC must be concatenated with the call number from the table to get the
actual constant used in the code. Return values for all calls are 0 for success and -1 on failure.
Errno is set after a failure as indicated in table 152.

An example is shown below where the statistics of the driver is copied to the user buffer stats by

using an ioctl call:

struct grtc_ioc_stats stats;

result = ioctl(fd, CGRTC |OC GET_STATS, &stats);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The TC hardware is not in the correct state. Many ioctl calls need the TC core to
be in stopped or started mode. One can switch state by calling START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands
to fail.

EIO Writing to hardware failed. Feature not available in hardware.

Table 160: ERRNO values for ioctl calls.

Call Number Status Mode Description

START Stopped Both Exit stopped mode, start the receiver.

STOP Started Both Exit started mode, enter stopped mode. This stops the
receiver. Most of the settings can only be set when in
stopped mode.

ISSTARTED Both Both Indicates operating status, started or stopped.

SET BLOCKING MODE Both RAW Set blocking or non-blocking mode for read calls.

SET TIMEOUT Both RAW Set time out value used in blocking mode to wake up
blocked task if read request takes too long time to
complete.

SET MODE Stopped Both Select operating mode, RAW or FRAME mode. RAW is
default.

SET BUF PARAM Stopped Both Set DMA buffer parameters.

SET CONFIG Stopped Both Configure hardware and driver.

GET CONFIG Both Both Get current configuration previously set with
SET CONFIG or the driver defaults

GET BUF PARAM Both Both Get current DMA buffer parameters.

GET HW _STATUS Both Both Get current GRTC hardware status

GET CLCW _ADR Both Both Returns the address of the CLCWRx1 register, it can
be used to get the current CLCW fields from
hardware. For example can the no-RF and the No-Bit-
Lock bit be read from this address. See hardware
manual.

GET STATS Both FRAME | Get statistics collected by driver

CLR STATS Both FRAME | Reset driver statistics.

POOLS SETUP Stopped FRAME | Set up frame pool configuration.

ASSIGN FRM POOL Both FRAME | Assigns a chain of TC frame structures to a frame pool
internal used by driver.

ADD BUFF Started FRAME | Add a chain of free TC frames to the frame pools
internal to the GRTC driver.

RECV Both FRAME | Get all complete processed TC frames from the ready
queue internal to the GRTC driver.

Table 161: ioctl calls supported by the GRTC driver.

33.2.4.2.1 START

This ioctl command enables the TC receiver and changes the driver's operating status to started.
Settings previously set by other ioctl commands are written to hardware just before starting
reception. It is necessary to enter started mode to be able to receive TC frames using the ioctl
command GRTC IOC RECYV or to read the DMA data area by calling read().

The command will fail if the receiver is unable to be brought up, the driver or hardware
configuration is invalid or if the TC core already is started. In case of failure the return code is
negative and errno will be set to EIO or EINVAL, see table 152.

33.2.4.2.2 STOP

This call makes the TC core leave started mode and enter stopped mode. The receiver is stopped
and no frames will be received. After calling STOP further calls to read and to ioctl using
command such as ADD BUFF, RECV, ISSTARTED, STOP will behave differently or result in
error.

It is necessary to enter stopped mode to change major operating parameters of the TC core and
driver. See SET CONFIG for more details.

The command will fail if the TC driver already is in stopped mode.

33.2.4.2.3 ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped
mode and return successfully in started mode.

33.2.4.2.4 SET_BLOCKING _MODE

Changes the driver's read behaviour in RAW mode. This call has no effect for FRAME mode,
FRAME mode is always non-blocking. Two modes are available blocking mode and polling mode,
in polling mode the read() call always returns directly even when no DMA data is available. In
blocking mode the task calling read() is blocked until at least one byte is available, it is also
possible to make the blocked task time out after some time setting the timeout value using the
SET TIMEOUT ioctl command.

Input is set as as described in the table below.

Bit number Description
GRTC BLKMODE POLL Enables polling mode
GRTC BLKMODE BLK Enables blocking mode

Table 162: SET_BLOCKING_MODE ioctl arguments

The driver's default is polling mode.
Note that the blocking mode is implemented using the CLTU stored interrupt.

This command never fail.

33.2.4.2.5 SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up
after this time out expires. The time out value specifies the input to the RTEMS take semaphore
operation rtems semaphore obtain(). See the RTEMS documentation for more information how
to set the time out value.

Note that this option has no effect in polling mode.

This command never fail.

33.2.4.2.6 SET_MODE

Select RAW of FRAME mode. Argument must be either GRTC MODE RAW for RAW mode or
GRTC MODE FRAME for FRAME mode. See the section Operating mode for more information
about the modes.

The driver defaults to RAW mode.

This calls fails if driver is in started mode or due to an illegal input argument.

33.2.4.2.7 SET_BUF_PARAM

This command is used to configure the DMA buffer area of the TC core. The argument is a
pointer to an initialized grtc ioc buf params data structure described in the data structures
section. The DMA buffer may be set to a custom location and length, or the driver may be
requested to allocate a DMA buffer with the specified size. If the custom location Isb is set to one
the address is interpreted as a remote address as viewed from the GRTC core, not the CPU. This
can be useful for GRTC cores found on another bus than the CPU, for example for a GRTX core
on a GR-RASTA-TMTC PCI board.

When GRTC is operated over SpaceWire an additional option is available, the dma_partition field,
selecting from which memory partition the DMA area is allocated from. See AMBA Plug&Play
SpaceWire bus driver for an description of memory allocation. The custom option described
above is still available, however it identifies the cached memory area rather than the GRTC DMA
area.

Trying to configure the DMA buffer area in started mode result in failure, and errno set to
EBUSY. An invalid argument result in failure and errno set to EINVAL. The command will fail and
errno set to ENOMEM when the driver is requested to allocate a buffer too large to be allocated
by malloc().

33.2.4.2.8 SET_CONFIG

Configures the driver and core. This call updates the configuration that will be used by the driver
during the START command and during operation. Enabling features not implemented by the TC
core will result in EIO error when starting the TC driver.

The input is a pointer to an initialized grtc ioc_config structure described in section 33.2.2.
This call fail if the TC core is in started mode, in that case errno will be set to EBUSY, or if a
NULL pointer is given as argument, in that case errno will be set to EINVAL.

33.2.4.2.9 GET_CONFIG

Return the current configuration of the driver and hardware. The current configuration is either
the driver and hardware defaults or the configuration previously set by the SET CONFIG
command.

The input to this ioctl command is a pointer to a data area of at least the size of a grtc ioc config
structure. The data area will be stored according to the grtc ioc config data structure described
in section 33.2.2.

This command only fail if the pointer argument is invalid.

33.2.4.2.10 GET_BUF_PARAM

Get the current DMA buffer configuration. The argument is a pointer to an uninitialized
grtc_ioc_buf params data structure described in the data structures section.

This command will fail if the input argument is invalid, errno will be set to EINVAL in such cases.

33.2.4.2.11 GET_HW_STATUS

Read current TC hardware state, the argument is a pointer to a data area where the hardware
status will be stored. The status is stored using the layout of the grtc ioc hw status described in
the data structures section.

This command only fail if the pointer argument is invalid.

33.2.4.2.12 GET_CLCW_ADR

The address of the GRTC register "GRTC CLCW Register 1" is stored into a user provided
location. The register address may be used to access the current CLCW fields from the GRTC
hardware. For example can the no-RF and the No-Bit-Lock bit be read from this address. See the
hardware manual.

This command only fail if the pointer argument is invalid.

33.2.4.2.13 GET_STATS

This command copies the driver's internal statistics counters to a user provided data area. The
format of the data written is described in the data structure subsection. See the grtc ioc stats
data structure.

Note that the statistics only is available for the FRAME mode since it is only the FRAME mode
that generate statistics such as number of frames received and errors in header, in RAW mode
the data is never processed just copied to a user provided buffer.

The call will fail if the pointer to the data is invalid.

33.2.4.2.14 CLR_STATS

This command reset the driver's internal statistics counters.

This command never fail.

33.2.4.2.15 POOLS_SETUP

This command set up the frame pools internal to the driver. The frame pools must be configured
before starting the receiver in FRAME mode. For more information about frame pools see section
Operating mode. The pools are configured by the input argument pointing to an initialized
grtc_ioc pools setup data structure described in the data structure subsection.

Note that the frame length must be sorted with the first frame pool having the shortest frame
length.

The call will fail if the pointer to the data is invalid or if in RAW mode.

33.2.4.2.16 ASSIGN_FRM_POOL

Assigns a linked list of frames to a frame pool. The input argument is a pointer to a
grtc ioc_assign_frm _pool data structure containing the frame length identifying a pool and a
linked list of frames that will be assign to the matching pool. All frames must be assigned to a

frame pool before added to the driver's frame pools using the command ADD BUF. For more
information about frame pools and assigning a frame to a frame pool see section Operating mode.
See section data structures for a description of grtc ioc _assign frm_ pool.

The frame pools, using POOLS SETUP, must be set up before assigning frames to a frame pool.

This command fail and errno set to EINVAL is the input argument is invalid, the driver is in RAW
mode or no matching frame pool was found.

33.2.4.2.17 ADD_BUF

Adds a chain of frames to their respective frame pool for later use by the driver. The driver will
use the added frames when frames are received. The input argument is a pointer to a grtc frame
data structure, the first frame in the chain, see the data section for a description of the
grtc_frame structure.

Note, that the frame structure and any data pointed to by the frame added to the driver must not
be accessed until the frame has been received using the ioctl command RECV.

The call will fail if the pointer to the data is invalid or if in RAW mode.

33.2.4.2.18 RECV

This command is used to process the DMA area and retrieve a linked list of successfully
processed received frames. The input argument to RECV is a pointer to a grtc list data structure,
described in the data structure section. All currently processed frames will be put into data
structure, head will point to the first and tail to the last frame in the chain, cnt will hold the
number of frames in the list.

Note that the DMA area will not be processed in stopped mode, the RECV command will only
return already processed frames.

The call will fail if the pointer to the frame list is invalid or if in RAW mode.

33.2.5 Operating mode

In RAW mode the user can read out the raw data from the TC DMA buffer set up by the driver
using the standard read() call. This enables the user to do custom processing of incoming frames.
All TC DMA data is read one control data byte for each frame data byte, for more information
how to handle the data see the GRTC hardware manual. If the DMA buffer isn't read in time
overflow may occur and data will be lost forcing the driver to stop the receiver.

When the driver is operated in FRAME mode the driver is responsible to determine the start and
end of each frame. It does so by looking at the TC frame length field and the GRTC control bytes
provided for each frame data byte. The header and data is copied into a free frame taken from a
frame pool internal to the driver, see next section for information about frame pools, an put at
the end of a linked list with received frames that can be read by the user using the ioct] command
GRTC IOC RECV. After the user has processed the frame the frame is added again to the driver's
frame pools using the ioctl command GRTC IOC ADD BUFF. It is the users responsibility to
make sure that there always is frames available for the TC driver to copy frames into, otherwise
the TC driver will drop frames.

33.2.5.1 Driver frame pools

In FRAME mode a frame pool concept is used to group frames of equal frame length. Using
multiple pools make it possible for the driver to select a frame with a frame length as short as
possible that still fit the incoming frame data and header. The driver is configured with multiple
pools with different frame lengths, the more frame pools the smaller is the difference of the
incoming frame length to the taken buffer the driver selects. The pools are set up using the ioctl
command GRTC IOC POOLS SETUP.

Every time a frame is added to one of the driver's pool, using the GRTC IOC ADD BUFF
command, the correct frame pool must be found to put it in. To simplify and make the frame pool
detection faster each frame must be assigned to a frame pool once before use, assigning a frame
with a pool must done by using the ioctl command GRTC I0C ASSIGN FRM POOL.

33.2.6 Reception in FRAME mode

Receiving frames are done with the ioctl call using the command ADD BUF and RECV. It is
possible to receive multiple frames in one call, the frames are provided to the driver using a
linked list of frames. See the ioctl command RECV and ADD BUF for more information.

33.2.7 Reception using RAW mode

Reception is done using the read call. An example is shown below:

unsi gned char tc_rx_buf[512];
len = read(fd, tc_rx_buf, sizeof(tc_rx _buf));

The requested number of bytes to be read is given in the third argument. The messages will be
stored in tc_rx buf. The actual number of received bytes is returned by the function on success
and -1 on failure. In the latter case errno is also set.

The data formatting is described in the hardware manual.

The call will fail if a null pointer is given, invalid buffer length, the TC core is in stopped mode, no
data available in non-blocking mode or due to a time out in blocking mode.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until at
least one byte has been received, unless a time out has been given and that time has expired
causes the driver to return ETIMEDOUT. In non-blocking mode, the call will return immediately
and if no data was available -1 is returned and errno set appropriately. The table below shows the
different errno values is returned.

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer or the length was illegal.

EBUSY TC core is in stopped mode. Switch to started mode by issuing a START ioctl
command.

ETIMEDOUT In non-blocking mode no data were available in the DMA area, or in blocking

mode and the time out has expired and still no data in DMA area.

ENODEV A blocking read was interrupted by the TC receiver has been stopped. Further
calls to read will fail until the ioctl command START is issued again.

Table 163: ERRNO values for read calls.

34 Gaisler TM driver (GRTM)

34.1 INTRODUCTION

This document is intended as an aid in getting started developing with Aeroflex Gaisler GRLIB
GRTM Telemetry (TM) core using the driver described in this document. It describes accessing
GRTM in a on-chip system and over PCI and SpaceWire. It briefly takes the reader through some
of the most important steps in using the driver such as starting TM communication, configuring
the driver and sending TM frames. The reader is assumed to be well acquainted with TM and
RTEMS.

34.1.1 TM Hardware

See the GRTM core manual. When the GRTM core is accessed over SpaceWire RMAP is used.

34.1.2 Software Driver

The driver provides means for threads to send TM frames using standard I/O operations.

There are two drivers, one that supports GRTM on an on-chip AMBA bus and an AMBA bus
accessed over PCI (on a GR-RASTA-TMTC board for example) and one driver that supports
accessing the GRTM over SpaceWire.

34.1.2.1 GRTM over SpaceWire

There are some differences when the GRTM core is operated over SpaceWire, see below list for a
summary.

+ The GRTM driver manages one buffer per descriptor used to copy frame payload into. The
payload is copied over SpaceWire by the GRTM driver. The maximal frame length must be
given in order for the driver to know how much buffer space to allocate. It is controlled
through the maxFrameLength driver resource.

« The driver has three new driver resources: maxFrameLength (maximal length of frames,
used when allocating buffer space), bdAllocPartition (partition used when allocating
descriptor table, see AMBA RMAP bus driver documentation) and frameAllocPartition
(partition used when allocating buffer space, see AMBA RMAP bus driver documentation).

- TM frames has an additional option COPY DATA, it determines if the payload is to be
copied to the descriptor's buffer or if the address of the payload is an address that the
GRTM core can read directly, for example the payload may already reside on the
SpaceWire node's memory ready to be transmitted. In the latter case only the descriptor
address pointer is written.

+ The Frame options TRANSLATE and TRANSLATE AND REMEMBER has no effect.

34.1.3 Support

For support, contact the Aeroflex Gaisler support team at support@gaisler.com

34.2 USER INTERFACE

The RTEMS GRTM driver supports the standard accesses to file descriptors such as open, close
and ioctl. User applications include the grtm driver's header file which contains definitions of all
necessary data structures and bit masks used when accessing the driver.

The driver enables the user to configure the hardware and to transmit TM frames. The allocation
of TM frames is handled by the user and free frames are given to the driver that processes the

mailto:support@gaisler.com

frames for transmission in a two step process. In the first step the driver schedules frames for
transmission using the DMA descriptors or they are put into an internal queue when all
descriptors are in use, in the second step all sent frames are put into a second queue that is
emptied when the user reclaims the sent frames. The reclaimed frames can be reused in new
transmissions later on.

34.2.1 Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard
means, such as open. The function grtm register whose prototype is provided in grtm.h is used
for registering the driver. It returns 0 on success and 1 on failure. A typical register call from the
LEONS Init task:

if (grtmregister(&nba _conf))
printf(“GRTM register Failed\n”);

34.2.2 Opening the device

Opening the device enables the user to access the hardware of a certain GRTM device. The
driver is used for all GRTM cores available. The cores are separated by assigning each core a
unique name and a number called minor. The name is given during the opening of the driver. The
first three names are printed out:

Core number Filesystem name Location

0 /dev/grtm0 On Chip AMBA bus

1 /dev/grtml On Chip AMBA bus

2 /dev/grtm2 On Chip AMBA bus

0 /dev/rastatmtcO/grtmO GR-RASTA-TMTC PCI Target

0 /dev/rmap fe/grtm0 SpaceWire node with destination
address Oxfe.

2 /dev/rmap_1la/grtm?2 SpaceWire node with destination
address Ox1la.

Table 164: Core number to device name conversion.

An example of an RTEMS open call is shown below.
fd = open("/dev/grtnD", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 164.

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary
memory.

Table 165: Open errno values.

34.2.3 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)
Close always returns 0 (success) for the grtm driver.

34.2.4 1/0 Control interface

The behaviour of the driver and hardware can be changed via the standard system call ioctl.
Most operating systems support at least two arguments to ioctl, the first being an integer which
selects ioctl function and secondly a pointer to data that may be interpreted uniquely for each
function. A typical ioctl call definition:

int ioctl(int fd, int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the GRTM driver's header file
grtm.h. In functions where only one argument is needed the pointer (void *arg) may be converted
to an integer and interpreted directly, thus simplifying the code.

34.2.4.1 Data structures

The grtm ioc hw data structure indicates what features the TM hardware supports and how it
has been configured.

struct grtm.ioc_hw {

char CS;

char sp;

char ce;

char nrz;

char psr;

char te;

unsi gned char rsdep

unsi gned char rs;

char aasm

char fecf;

char ocf;

char evc;

char i dle;

char fsh;

char ncg;

char iz;

char f hec;

char aos;

unsi gned short bl k_si ze;

unsi gned short fifo_size;
b
Member Description
cs Indicates if Sub Carrier (SC) modulation is implemented
Sp Indicates if Split-Phase Level (SP) modulation is implemented
ce Indicates if Convolutional Encoding (CE) is implemented
nrz Indicates if Non-Return-to-Zero (NRZ) mark encoding is implemented
psr Indicates if Pseudo-Randomizer (PSR) is implemented
te Indicates if Turbo Encoder (TE) is implemented
rsdep Reed-Solomon interleave Depth (RSDEPTH) implemented (3-bit)
rs Indicates what Reed-Solomon encoders are implemented (0=None, 1=E16, 2=ES8,

3=Both)

aasm Indicates if Alternative ASM (AASM) implemented
fecf Indicates if Transfer frame control field CRC is implemented
ocf Indicates if Operational Control Field (OCF) is implemented
evc Indicates if Extended Virtual Channel Counter is implemented
idle Indicates if Idle Frame generation is implemented
fsh Indicates if Frame secondary header is implemented
mcg Indicates if Master Channel counter generation is implemented
iz Indicates if Insert Zone (IZ) is implemented
fhec Indicates if Frame Header Error Control (FHEC) is implemented
aos Indicates if AOS transfer frame generation is implemented
blk size TM core DMA Block size in number of bytes
fifo size TM core FIFO size in number of bytes

Table 166: grtm_ioc_hw member descriptions.

The grtm ioc_config struct is used for configuring the driver and the TM core.

struct grtm.ioc_config {

unsi gned char node;

unsi gned short franme_| engt h;
unsi gned short limt;

unsi gned i nt as_mar ker;

/* Physical |ayer options */

unsi gned short phy_subr at e;
unsi gned short phy_synbol r at e;
unsi gned char phy_opts;

[* Codi ng sub-layer Options */

unsi gned char code_rsdep
unsi gned char code_ce_rate;
unsi gned char code_csel
unsi gned i nt code_opt s;

/* Al Frames Generation */
unsi gned char all _izlen
unsi gned char al |l _opts;

/* Master Frane Generation */
unsi gned char nf _opts;

/[* Idle frame Generation */

unsi gned short i dl e_sci d;
unsi gned char i dl e_vci d;
unsi gned char idl e opts;

[* Interrupt options */

unsi gned int enabl e_cnt;
i nt i sr_desc_proc;

i nt bl ocki ng;
rtens_interval ti meout;

Member

Description

mode

Select mode hardware will operate in, TM=0, AOS=1

frame length

Frame Length in bytes

limit Number of data bytes fetched by TM DMA engine before transmission starts.
Setting limit to zero will make GRTM driver to calculate the limit value from
frame length and the block size of the hardware.

as marker Set custom Attached Synchronization Marker (ASM)

phy subrate

Sub Carrier rate division factor - 1

phy symbolrate

Symbol Rate division factor - 1

phy opts

Physical layer options, mask of GRTM_IOC PHY XXXX

code rsdep

Coding sub-layer Reed-Solomon interleave depth (3-bit)

code ce rate

Convolutional encoding rate, select one of GRTM_CERATE 00 ...
GRTM_CERATE 07

code csel External TM clock source selection, 2-bit (application specific)

code opts Coding sub-layer options, mask of GRTM _IOC_CODE_XXXX

all izlen All frame generation FSH (TM) or Insert Zone (AOS) length in bytes

all opts All frame generation options, mask of GRTM I0C ALL XXXX

mf opts Master channel frame generation, mask of GRTM _I0C MF XXXX

idle scid Idle frame spacecraft ID, 10-bit

idle vcid Idle frame virtual channel ID, 6-bit

idle opts Idle frame generation options, mask of GRTM IOC IDLE XXXX

enable cnt Number of frames between interrupts are generated, zero disables interrupt.

Allows user to fine grain interrupt generation

ist_desc_proc

Allow TM interrupt service routine (ISR) to process descriptors

blocking Blocking mode select, GRTM BLKMODE POLL for polling mode or
GRTM_BLMODE BIK for blocking mode
timeout Blocking mode time out

Table 167: grtm_ioc_config member descriptions.

The grtm frame structure is used in for transmitting TM frames and retrieving sent frames, it is
the driver's representation of a TM frame. A TM frame structure can be chained together using
the next field in grtm frame.

struct grtmframe {
unsi gned i nt

fl ags;

struct grtmframe *next;

unsi gned i nt *payl oad;

H

Member Description

flags Mask indicating options, transmission state and errors for the frame.
GRTM FLAGS XXX. See Table 168

next Points to next TM frame. This field is used to make driver process multiple
TM Frames at the same time, avoiding multiple ioctl calls.

payload Points to a data area holding the complete TM frame. The area include fields

such as header, payload, OCF, CRC.

Table 168: grtm_frame member descriptions.

Flag

Description

GRTM_FLAGS_SENT

Indicates whether the frame has been transmitted or not

GRTM _FLAGS_ERR

Indicates if errors has been experienced during transmission of the frame

GRTM_FLAGS_TS

Generate Time Strobe (TS) for the frame

GRTM_FLAGS MCB

Bypass the TM core's Master Channel Counter generation

GRTM _FLAGS FSHB

Bypass the TM core's Frame Secondary Header (FSH) generation

GRTM FLAGS OCFB

Bypass the TM core's Operational Control Field (OCF) generation

GRTM_FLAGS FHECB

Bypass the TM core's Frame Header Error Control (FHEC) generation

GRTM _FLAGS 1ZB

Bypass the TM core's Insert Zone (IZ) generation

GRTM _FLAGS FECFB

Bypass the TM core's Frame Error Control Field (FECF) generation

COPY DATA

This option has effect only on the SpaceWire version of the driver.

Indicates if the TM frame payload should be copied into the assigned
descriptor's buffer or not. If this option is not set then the payload address is
assumed to be readable by the GRTM core and the descriptor address pointer
is written with the address of the payload directly.

TRANSLATE

Translate frame payload address from CPU address to remote bus (the bus
GRTM is resident on). This is useful when dealing with buffers on remote
buses, for example when GRTM is on a AMBA bus accessed over PCI. This is
the case for GR-RASTA-TMTC.

Not used in SpaceWire version of driver.

TRANSLATE AND REMEM
BER

As TRANSLATE, however if the translated payload address equals the
payload address the TRANSLATE AND REMEMBER bit is cleared and the
TRANSLATE bit is set.

Not used in SpaceWire version of driver.

Table 169: Frame flags description.

The grtm list structure represents a linked list, a chain of TM frames. The data structure holds
the first frame and last frame in chain.

struct grtmlist {
struct grtmframe *head;
struct grtmframe *tail;

b

Member Description

head First TM frame in chain

tail Last TM frame in chain, last frame in list must have it's next field set to
NULL

Table 170: grtm_list member descriptions.

The grtm ioc_stats structure contain statistics collected by the driver.

struct grtmioc _stats {

unsi gned | ong | ong franes_sent;
unsi gned i nt err_underrun;
b
Member Description
frames_sent Number of frames successfully sent by the TM core
err underrun Number of AMBA underrun errors

Table 171: grtm_ioc_stats member descriptions.

34.2.4.2 Configuration

The GRTM core and driver are configured using ioctl calls. The table 170 below lists all
supported ioctl calls. GRTM IOC must be concatenated with the call number from the table to
get the actual constant used in the code. Return values for all calls are 0 for success and -1 on
failure. Errno is set after a failure as indicated in table 169.

An example is shown below where the statistics of the driver is copied to the user buffer stats by
using an ioctl call:

struct grtmioc_stats stats;

result = ioctl(fd, GRTMI|OC GET_STATS, &stats);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The TM hardware is not in the correct state. Many ioctl calls need the TM core to
be in stopped or started mode. One can switch state by calling START or STOP.

ENOMEM Noft ?nough memory to complete operation. This may cause other ioctl commands
to fail.

EIO Writing to hardware failed. Feature not available in hardware.

ENODEV Operation aborted due to transmitter being stopped.

Table 172: ERRNO values for ioctl calls.

Call Number Call Description
Mode

START Stopped Exit stopped mode, start the receiver.

STOP Started Exit started mode, enter stopped mode. Most of the settings can
only be set when in stopped mode.

ISSTARTED Both Indicates operating status, started or stopped.

SET BLOCKING MODE | Both Set blocking or non-blocking mode for RECLAIM.

SET TIMEOUT Both Set time out value used in blocking mode to wake up blocked task if
request takes too long time to complete.

SET CONFIG Stopped Configure hardware and software driver

GET CONFIG Both Get current configuration previously set with SET CONFIG or the
driver defaults

GET STATS Both Get statistics collected by driver

CLR STATS Both Reset driver statistics.

GET HW IMPL Both Returns the features and implemented by the TM core.

GET OCFREG Both Returns the address of the OCF/CLCW register, it can be used to
update the transmitted OCF/CLCW.

RECLAIM Both Returns all TM frames sent since last call to RECLAIM, the frames
are linked in a chain.

SEND Started Add a chain of TM frames to the transmission queue of the GRTM
driver.

Table 173: ioctl calls supported by the GRTM driver.

34.2.4.2.1 START

This ioctl command enables the TM transmitter and changes the driver's operating status to
started. Settings previously set by other ioctl commands are written to hardware just before
starting transmission. It is necessary to enter started mode to be able to send TM frames using
the ioctl command GRTM IOC SEND.

The command will fail if the transmitter is unable to be brought up, the driver or hardware
configuration is invalid or if the TM core already is started. In case of failure the return code is
negative and errno will be set to EIO or EINVAL, see table 169.

34.2.4.2.2 STOP

This call makes the TM core leave started mode and enter stopped mode. The transmitter is
stopped and no frames will be sent. After calling STOP further ioctl commands such as SEND,
RECLAIM, ISSTARTED, STOP will behave differently or result in error.

It is necessary to enter stopped mode to change major operating parameters of the TM core and
driver. See SET CONFIG for more details.

The command will fail if the TM driver already is in stopped mode.

34.2.4.2.3 ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped
mode and return successfully in started mode.

34.2.4.2.4 SET_BLOCKING_MODE

Changes the driver's GRTM IOC RECLAIM command behaviour. Two modes are available
blocking mode and polling mode, in polling mode the ioctl command RECLAIM always return
directly even when no frames are available. In blocking mode the task calling RECLAIM is
blocked until at least one frame can be reclaimed, it is also possible to make the blocked task
time out after some time setting the timeout value using the SET CONFIG or SET TIMEOUT
ioctl commands.

The argument is set as as described in the table below.

Bit number Description
GRTM_BLKMODE POLL Enables polling mode
GRTM _BLKMODE BLK Enables blocking mode

Table 174: SET_BLOCKING_MODE ioctl arguments

The driver's default is polling mode.

Note that the blocking mode is implemented using the DMA transmit frame interrupt, changing
the isr desc proc parameter of the SET CONFIG command effects the blocking mode
characteristics. For example, enabling interrupt generation every tenth TM frame will cause the
blocked task to be woken up after maximum ten frames when going into blocked mode.

This command never fail.

34.2.4.2.5 SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up
after this time out expires. The time out value specifies the input to the RTEMS take semaphore
operation rtems semaphore obtain(). See the RTEMS documentation for more information how
to set the time out value.

Note that this option has no effect in polling mode.
Note that this option is also set by SET CONFIG.

This command never fail.

34.2.4.2.6 SET_CONFIG

Configures the driver and core. This call updates the configuration that will be used by the driver
during the START command and during operation. Enabling features not implemented by the TM
core will result in EIO error when starting the TM driver. The hardware features available can be
obtained by the GET HW IMPL command.

The input is a pointer to an initialized grtm ioc_config structure described in section 34.2.4.1.

Note that the time out value and blocking mode can also be set with SET TIMEOUT and
SET BLOCKING MODE.

This call fail if the TM core is in started mode, in that case errno will be set to EBUSY, or if a
NULL pointer is given as argument, in that case errno will be set to EINVAL.

34.2.4.2.7 GET_CONFIG

Returns the current configuration of the driver and hardware. The current configuration is either
the driver and hardware defaults or the configuration previously set by the SET CONFIG

command.

The input to this ioctl command is a pointer to a data area of at least the size of a
grtm _ioc _config structure. The data area will be updated according to the grtm ioc config data
structure described in section 34.2.4.1.

This command only fail if the pointer argument is invalid.
34.2.4.2.8 GET_STATS

This command copies the driver's internal statistics counters to a user provided data area. The
format of the data written is described in the data structure subsection. See the grtm ioc stats
data structure.

The call will fail if the pointer to the data is invalid.
34.2.4.2.9 CLR_STATS

This command reset the driver's internal statistics counters.

This command never fail.

34.2.4.2.10 GET_HW_IMPL

This command copies the TM core's features implemented to a user provided data area. The
format of the data written is described in the data structure subsection. See the grtm ioc hw
data structure.

Knowing the features supported by hardware can be used to make software run on multiple
implementations of the TM core.

The call will fail if the pointer to the data is invalid.

34.2.4.2.11 GET_OCFREG

The address of the GRTM register "GRTM Operational Control Field Register" is stored into a
user provided location. The register address may be used to updated the CLCW or OCF value
transmitted in TM frames to ground without using an ioctl command to perform the request. This
address is typically used by Telecommand (TC) software to tell ground of the current FARM/COP
state.

Note that OCF/ CLCW is transmitted only in started mode.

This command never fail.

34.2.4.2.12 RECLAIM

Returns processed TM frames to user. All frames returned has been provided by the user in
previous calls to SEND, and need not all to have been successfully sent. RECLAIM can be
configured to operate in polling mode, blocking mode and blocking mode with a time out. In
polling mode the task always returns with or without processed frames, in blocking mode the
task is blocked until at least one frame has been processed. See the ioctl command SET CONFIG
and SET BLOCKING MODE to change mode of the RECLAIM command.

RECLAIM stores a linked list of processed TM frames into the data area pointed to by the user
argument. The format for the stored data follows the layout of the grtm list structure described
in section 34.2.2. The grtm list structure holds the first and last TM frame processed by the
driver. The flags field indicates if the frame was sent or if errors were experienced during
transmission of this frame. See table 168 for flags details.

In started mode, this command enables scheduled TM frames for transmission as descriptors
become free during the processing of received TM frames.

The call will fail if the pointer to the data area is invalid (EINVAL), the RECLAIM call operates in
blocking mode and the time out expires (ETIMEDOUT) or the driver was stopped during the
calling task was blocked (ENODEYV). See table below.

ERRNO Description

EINVAL An invalid argument.

ETIMEDOUT The blocked task was timed out and still no frames was transmitted

ENODEV The calling task was woken up from blocking mode by the transmitter being
stopped. The TM driver has has entered stopped mode. Further calls to RECLAIM
will retrieve sent and unsent frames.

Table 175: ERRNO values for RECLAIM

34.2.4.2.13 SEND

Scheduling ready TM frames for transmission is done with the ioct]l command SEND. The input is
a linked list of TM frames to be scheduled. When all TM DMA descriptors are active, enabled and
linked to a frame to transmit, the remaining frames are queued internally by the driver. The TM
core is capable of generating parts of the header, the CRC and OCF/CLCW depending on the
implementation and configuration of the TM core. The implemented features are selected by
setting generics in the VHDL model, the implemented features can be read using the
GET HW IMPL command. The features enabled is controlled by the SET CONFIG command. For
features available see the hardware manual for the TM core. The hardware generated parts may
be overridden by setting the flags of the input TM frame structure accordingly.

Every call to SEND will trigger scheduled TM frames for transmission, calling SEND with the
argument set to NULL will thus trigger previously scheduled TM frames for transmission. This
might be necessary when interrupts are not used to process descriptors or when interrupt
generation for TM frames are disabled, see SET CONFIG.

The input to SEND is a pointer to a grtm list data structure described in section 34.2.4.1. The
head and tail fields of the data structure points to the first and the last TM frame to be scheduled
for transmission. The TM frame structure, grtm frame, used is described in section 34.2.2. The
data area length pointed to by the payload field is assumed to be at least frame length long. The
frame length is set by the SET CONFIG command. The hardware generated parts may be
overridden by setting the flags field of the TM frame structure accordingly.

Note, that the frame structure and any data pointed to by the frame scheduled for transmission
must not be accessed until the frame has been reclaimed using the ioctl command RECLAIM.

SEND will fail if the input frame list is incorrectly set up, errno will be set to EINVAL in such
cases.

34.2.5 Transmission

Transmitting frames are done with the ioctl call using the command SEND and RECLAIM. It is
possible to send multiple frames in one call, the frames are provided to the driver using a linked
list of frames. See the ioctl commands SEND and RECLAIM for more information.

35 GRCTM DRIVER

35.1 INTRODUCTION

This section describes the GRLIB GRCTM (CCSDS Time Manager) device driver interface. The
driver implements a simple interface to read and write registers of the core and interrupt
handling. The driver supports the on-chip AMBA and the AMBA-over-PCI bus. It relies on the
driver manager for device discovery and interrupt handling.

The GRCTM driver require the Driver Manager.
In order to use the driver interface the user must be well acquainted with GRCTM hardware, see

hardware manual.

35.1.1 Examples

There is an example available that illustrates how the GRCTM driver interface can be used to
configure the GRCTM core. The example application can be configured as a Time-Master or
Time-Slave demonstrating both sending and receiving time over TimeWire and how it can be
connected to the SPWCUC for time-codes and sending time-packets according to CCSDS
Unsegmented Code Transfer Protocol using the RTEMS GRSPW driver.

Note that the example may need to be configured, see the TIME SYNC * options.
The example can be built by running:

$ cd /opt/rtens-4. 10/ src/sanpl es/ 1553
$ nmake rtens-gri1553bcbm

35.2 USER INTERFACE

35.2.1 Overview

The GRCTM software driver provides access to the GRCTM core's registers and helps with device
detection, driver loading and interrupt handling.

The driver sources and interface definitions are listed in the table below, the path is given
relative to the SPARC BSP sources c/src/lib/libbsp/sparc.

Filname Description
shared/time/grctm.c GRCTM Driver source
shared/include/grctm.h GRCTM Driver interface declaration

Table 176: GRCTM driver Source location

35.2.1.1 Accessing the GRCTM core

A GRCTM core is accessed by first opening a specific GRCTM device by calling
grctm open(INSTANCE NUMBER), after successfully opening a device the returned value of
grctm_open can be used as input other functions in the GRCTM driver interface. Registers can be
accessed and interrupts enabled.

35.2.1.2 Interrupt service

The GRCTM core can be programmed to interrupt the CPU on certain events, see hardware
manual. All interrupts causes the driver's interrupt service routine (ISR) to be called, it gathers
statistics and call the optional user assigned callback. The callback is registered using the
function gretm_int register().

35.2.2 Application Programming Interface

The GRCTM driver API consists of the functions in the table below.

Prototype

Description

void *grctm open(int minor)

Open a GRCTM device by instance number, the
number is determined by the order in which the core
is found (Plug&Play order).

The function returns a handle to GRCTM driver used
internally, it must be given to all functions in the API.

void grctm_close(void *grctm)

Close a previously opened GRCTM driver.

int spwcuc_reset(void *grctm)

Reset the GRCTM core by writing to the GRR (Global
Reset Register) register of the core.

void grctm_int register(
void *grctm,
grctm isr t func,
void *data)

Register (optional) interrupt callback routine with
custom argument. Called from the driver's ISR.

void grctm int enable(void *grctm)

Enable/unmask GRCTM interrupt on global interrupt
controller

void grctm int disable(void *grctm)

Disable/mask GRCTM interrupt on global interrupt
controller

void grctm clear irqgs(
void *grctm,
int irgs)

Clear pending interrupts by writing to the PICR
register. The input is a bit-mask of which interrupt
flags to clear.

void grctm enable irgs(
void *grctm,
int irgs)

Enable/unmask and/or disable/mask interrupt sources
from the GRCTM core by writing the IMR register.
The irqs argument is a bit-mask written unmodified to
the register.

void grctm_clr stats(void *grctm)

Clear statistics gathered by driver.

void grctm get stats(
void *grctm,
struct grctm_stats *stats)

Copy driver's current statistics counters to a custom
location given by stats.

void grctm enable ext sync(void
*grctm)

Enable external synchronisation (from SPWCUC)

void grctm disable ext sync(void
*grctm)

Disable external synchronisation (from SPWCUC)

void grctm_enable tw sync(void *grctm)

Enable TimeWire synchronisation

void grctm disable tw sync(void
*grctm)

Disable TimeWire synchronisation

void grctm_disable fs(void *grctm)

Disable frequency synthesizer from driving ET

void grctm _enable fs(void *grctm)

Enable frequency synthesizer to drive ET

unsigned int grctm_get et coarse(void
*grctm)

Return elapsed coarse time

unsigned int grctm_get et fine(void
*grctm)

Return elapsed fine time

unsigned long long grctm_get_et(void
*grctm)

Return elapsed time (coarse and fine)

int grctm is dat latched(void *grctm, int
dat)

Return 1 if specified datation has been latched

void grctm set dat_edge(void *grctm,
int dat, int edge)

Set triggering edge of datation input

unsigned int grctm _get dat coarse(void
*grctm, int dat)

Return latched datation coarse time

unsigned int grctm_get dat fine(void
*grctm, int dat)

Return latched datation fine time

unsigned long long Return latched datation ET
grctm_get dat et(void *grctm, int dat)

unsigned int grctm get pulse reg(void | Return current pulse configuration
*grctm, int pulse)

void grctm_set pulse reg(void *grctm, Set pulse register

int pulse, unsigned int val)

void grctm cfg pulse(void *grctm, int Configure pulse: pp = period, pw = width, pl = level,
pulse, int pp, int pw, int pl, int en) en = enable

void grctm enable pulse(void *grctm, Enable pulse output

int pulse)

void grctm disable pulse(void *grctm, Disable pulse output

int pulse)

void grctm register(void) Register the GRCTM driver to Driver Manager

Table 177: function prototypes

35.2.2.1 Data structures

The grctm stats data structure holds statistics gathered by the driver. It can be read by the
gretm_get stats() function.

struct grctmstats {
unsigned int nirgs;
unsi gned int pul se[8];

b
Member Description
nirqgs Total number of interrupts handled by driver
pulse Number of interrupts generated by each pulse channel
(maximum 8 channels). pulse[N] represents pulse
channel N.

Table 178: grctm_status member descriptions.

36 SPWCUC DRIVER

36.1 INTRODUCTION

This section describes the GRLIB SPWCUC (SpaceWire - CCSDS Unsegmented Code Transfer
Protocol) device driver interface. The driver implements a simple interface to read and write
registers of the core, interrupt handling. The driver supports the on-chip AMBA and the AMBA-
over-PCI bus. It relies on the driver manager for device discovery and interrupt handling.

The SPWCUC driver require the Driver Manager.

In order to use the driver interface the user must be well acquainted with SPWCUC hardware,
see hardware manual.

36.1.1 Examples

There is an example available that illustrates how the SPWCUC driver interface can be used to
configure the SPWCUC core and manage interrupts. The example application can be configured
as a Time-Master or Time-Slave demonstrating both sending and receiving SpaceWire time-codes
and sending time-packets according to CCSDS Unsegmented Code Transfer Protocol using the
RTEMS GRSPW driver.

Note that the example may need to be configured, see the TIME SYNC * options.
The example can be built by running:

$ cd /opt/rtens-4. 10/ src/sanpl es/ 1553
$ nmake rtens-gri1553bcbm

36.2 USER INTERFACE

36.2.1 Overview

The SPWCUC software driver provides access to the SPWCUC core's registers and helps with
device detection, driver loading and interrupt handling.

The driver sources and interface definitions are listed in the table below, the path is given
relative to the SPARC BSP sources c/src/lib/libbsp/sparc.

Filname Description
shared/time/spwcuc.c SPWCUC Driver source
shared/include/spwcuc.h SPWCUC Driver interface declaration

Table 179: SPWCUC driver Source location

36.2.1.1 Accessing the SPWCUC core

A SPWCUC core is accessed by first opening a specific SPWCUC device by calling
spwcuc open(INSTANCE NUMBER), after successfully opening a device the returned value of
spwcuc _open can be used as input other functions in the SPWCUC driver interface. Registers can
be accessed and interrupts can be enabled.

36.2.1.2 Interrupt service

The SPWCUC core can be programmed to interrupt the CPU on certain events, see hardware
manual. All interrupts causes the driver's interrupt service routine (ISR) to be called, it gathers
statistics and call the optional user assigned callback. The callback is registered using the
function spwcuc int register().

36.2.2 Application Programming Interface

The SPWCUC driver API consists of the functions in the table below.

Prototype

Description

void *spwcuc_open(int minor)

Open a SPWCUC device by instance number, the
number is determined by the order in which the core
is found (Plug&Play order).

The function returns a handle to SPWCUC driver used
internally, it must be given to all functions in the API.

void spwcuc_close(void *spwcuc)

Close a previously opened SPWCUC driver.

int spwcuc_reset(void *spwcuc)

Reset the SPWCUC core by writing to the CONTROL
register of the core. This function also clears pending
interrupts by writing PICR.

void spwcuc_config(
void *spwcuc,
struct spwcuc_cfg *cfqg)

Configure SPWCUC registers according to cfg
argument. See the data structure description of .

void spwcuc_int register(
void *spwcuc,
spwcuc _isr t func,
void *data)

Register (optional) interrupt callback routine with
custom argument. Called from the driver's ISR.

void spwcuc_int_enable(void *spwcuc)

Enable/unmask SPWCUC interrupt on global interrupt
controller

void spwcuc_int disable(void *spwcuc)

Disable/mask SPWCUC interrupt on global interrupt
controller

void spwcuc_clear irgs(
void *spwcuc,
int irgs)

Clear pending interrupts by writing to the PICR
register. The input is a bit-mask of which interrupt
flags to clear.

void spwcuc_enable irgs(
void *spwcuc,
int irgs)

Enable/unmask and/or disable/mask interrupt sources
from the SPWCUC core by writing the IMR register.
The irqs argument is a bit-mask written unmodified to
the register.

void spwcuc_clr stats(void *spwcuc)

Clear statistics gathered by driver.

void spwcuc_get stats(
void *spwcuc,
struct spwcuc_stats *stats)

Copy driver's current statistics counters to a custom
location given by stats.

unsigned int spwcuc_get et coarse(
void *spwcuc)

Returns 32-bit received elapsed coarse time, the value
is taken from the 'T-Field Coarse Time Packet
Register".

unsigned int spwcuc_get et fine(
void *spwcuc)

Returns 24-bit received elapsed fine time, the value is
taken from the 'T-Field Fine Time Packet Register' and
shifted down 8 times.

unsigned long long spwcuc _get et(void
*spwcuc)

Return 56-bit received elapsed time (ET), a
combination of Coarse and Fine time.

unsigned int
spwcuc_get next et coarse(void
*spwcuc)

Return next 32-bit Elapsed Coarse Time.

unsigned int
spwcuc_get next et fine(void *spwcuc)

Return next 24-bit Elapsed Fine Time.

unsigned long long
spwcuc_get next et(void *spwcuc)

Return next 56-bit elapsed time (combination of next
Coarse and Fine Time), this time can be used when
generating SpaceWire Time-Packets.

void spwcuc_force_et(void *spwcuc,
unsigned long long time)

Force/Set the elapsed time (coarse 32-bit and fine 24-
bit) by writing the T-Field Time Packet Registers and
set the FORCE bit.

unsigned int spwcuc_get tp et coarse(
void *spwcuc)

Return received 32-bit Elapsed Coarse Time.

unsigned int spwcuc_get tp et fine(Return received 24-bit Elapsed Fine Time.
void *spwcuc)

unsigned long long spwcuc _get tp et(Return received 56-bit Elapsed Time (a combination of
void *spwcuc) coarse and fine).

Table 180: function prototypes

36.2.2.1 Data structures

The spwcuc cfg data structure is used to configure a SPWCUC device and driver. The
configuration parameters are described in the table below.

struct spwecuc_cfg {
unsi gned char sel _out;
unsi gned char sel _in;
unsi gned char mappi ng;
unsi gned char tol erance;
unsi gned char tid;
unsi gned char ctf;
unsi gned char cp
unsi gned char txen
unsi gned char rxen
unsi gned char pktsyncen
unsi gned char pktiniten
unsi gned char pktrxen
unsi gned char dl a;
unsi gned char dl a_mask;
unsi gned char pid;
unsi gned int offset;

H

Member Description

sel out Bits 3-0 enable time code transmission on respective
output

sel in Select SpW to receive time codes on, 0-3

mapping Define mapping of time code time info into T-field, 0-31

tolerance Define SpaceWire time code reception tolerance, 0-31

tid Define CUC P-Field time code identification, 1 = Level
1,2 =Level 2

ctf If 1 check time code flags to be all zero

cp If 1 check P-Field time code id against tid

txen Enable SpaceWire time code transmission

rxen Enable SpaceWire time code reception

pktsyncen Enable SpaceWire time CUC packet sync

pktiniten Enable SpaceWire time CUC packet init

pktrxen Enable SpaceWire time CUC packet

dla SpaceWire destination logical address

dla_mask SpaceWire destination logical address

pid SpaceWire protocol ID

offset Packet reception offset

Table 181: spwcuc_cfg member descriptions.

The spwcuc stats data structure holds statistics gathered by the driver. It can be read by the
spwcuc_get stats() function.

struct spwcuc_stats {

unsi gned int nirgs;
unsigned int tick_ tx;
unsigned int tick_tx_wap;
unsigned int tick rx;
unsigned int tick rx_wap;
unsigned int tick_rx_error;
unsigned int tolerr;
unsi gned int sync;
unsi gned int syncerr;
unsi gned int wap;
unsi gned int waperr;
unsi gned int pkt_rx;
unsi gned int pkt_err;
unsigned int pkt_init;
H
Member Description
nirgs Total number of interrupts handled by driver
tick tx Number of TickTx interrupts

tick tx wrap

Number of TickTxWrap interrupts

tick rx

Number of TickRx interrupts

tick rx wrap

Number of TickRxWrap interrupts

tick rx error

Number of TickRxWrap interrupts

tolerr Number of Tolerance Error interrupts
sync Number of Sync interrupts

syncerr Number of Sync Error interrupts
wrap Number of Wrap interrupts

wraperr Number of Wrap Error interrupts

pkt rx Number of Packet Rx interrupts

pkt err Number of Packet Error interrupts
pkt init Number of Packet Init interrupts

Table 182: spwcuc_status member descriptions.

37 Gaisler Packetwire RX driver (GRPWRX)

37.1 INTRODUCTION

This document is intended as an aid in getting started developing with Aeroflex Gaisler GRLIB
PACKETWIRE RX (GRPWRX) core using the driver described in this document. It describes
accessing GRPWRX in a on-chip system and over PCI. It briefly takes the reader through some of
the most important steps in using the driver such as starting GRPWRX communication,
configuring the driver and receiving GRPWRX packets. The reader is assumed to be well
acquainted with GRPWRX and RTEMS.

37.1.1 Software Driver

The driver provides means for threads to receive GRPWRX packets using standard I/O
operations.

37.1.2 Support

For support, contact the Aeroflex Gaisler support team at support@gaisler.com

37.2 USER INTERFACE

The RTEMS grpwrx driver supports the standard accesses to file descriptors such as open, close
and ioctl. User applications include the grpwrx driver's header file which contains definitions of
all necessary data structures and bit masks used when accessing the driver.

The driver enables the user to configure the hardware and to receive GRPWRX packets. The
allocation of GRPWRX packets is handled by the user and free packets are given to the driver
that processes the packets for reception in a two step process. In the first step the driver
schedules packets for reception using the DMA descriptors or they are put into an internal queue
when all descriptors are in use, in the second step all received packets are put into a second
queue that is emptied when the user reclaims the received packets. The reclaimed packets can
then be reused in new reception later on.

37.2.1 Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard
means, such as open. The function grpwrx_register drv whose prototype is provided in grpwrx.h
is used for registering the driver:

grpw x_register_drv();

37.2.2 Opening the device

Opening the device enables the user to access the hardware of a certain grpwrx device. The
driver is used for all grpwrx cores available. The cores are separated by assigning each core a
unique name and a number called minor. The name is given during the opening of the driver. The
first three names are printed out:

mailto:support@gaisler.com

Core number | Filesystem name Location

0 /dev/grpwrx0 On Chip AMBA bus

1 /dev/grpwrx1 On Chip AMBA bus

2 /dev/grpwrx2 On Chip AMBA bus

0 /dev/rastatmtcO/grpwrx0 | GR-RASTA-TMTC PCI Target

Table 183: Core number to device name conversion.

An example of an RTEMS open call is shown below.
fd = open("/dev/grpwx0", O RDVWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 183.

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary
memory.

Table 184: Open errno values.

37.2.3 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)
Close always returns 0 (success) for the grpwrx driver.

37.2.4 1/0 Control interface

The behaviour of the driver and hardware can be changed via the standard system call ioctl.
Most operating systems support at least two arguments to ioctl, the first being an integer which
selects ioctl function and secondly a pointer to data that may be interpreted uniquely for each
function. A typical ioctl call definition:

int ioctl(int fd, int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the grpwrx driver's header file
grpwrx.h. In functions where only one argument is needed the pointer (void *arg) may be
converted to an integer and interpreted directly, thus simplifying the code.

37.2.4.1 Data structures

The grpwrx ioc_hw data structure indicates what features the GRPWRX hardware supports and
how it has been configured.

struct grpw x_ioc_hw {

unsi gned short fifo_size;
unsi gned short node;
unsi gned short cl kdi vi de;
H
Member Description
fifo size GRPWRX core FIFO size in number of bytes
mode GRPWRX core mode, 1=framing mode, 0 = packet mode
clkdivide GRPWRX physical layer clock divider used

Table 185: grpwrx_ioc_hw member descriptions.

The grpwrx ioc config struct is used for configuring the driver and the GRPWRX core.

struct grpwx_ioc_config {

i nt fram ng;

[* Physical |ayer options */
unsi gned short phy_cl kri se;
unsi gned short phy_val i dpos;
unsi gned short phy_readypos;

unsi gned short phy_busypos;

[* Interrupt options */

unsi gned i nt

enabl e_cnt;

i nt i sr_desc_proc;
i nt bl ocki ng;
rtens_interval ti meout;

s

Member Description

framing Enable framing mode (1)

phy clkrise

Rising clock edge coinciding with serial bit change

phy validpos

Positive polarity of valid output signal

phy readypos

Positive polarity of ready input signal

phy busypos

Positive polarity of busy input signal

enable cnt

Number of packets between interrupts are generated, zero disables interrupt.
Allows user to fine grain interrupt generation

isr desc_proc

Allow interrupt service routine (ISR) to process descriptors

blocking Blocking mode select, grpwrx BLKMODE POLL for polling mode or
grpwrx BLMODE BLK for blocking mode
timeout Blocking mode time out

Table 186: grpwrx_ioc_config member descriptions.

The grpwrx_packet structure is used in for receiving GRPWRX packets and retrieving received
packets, it is the driver's representation of a GRPWRX packet. A GRPWRX packet structure can
be chained together using the next field in grpwrx packet.

struct grpw x_packet {

unsi gned i nt fl ags;
struct grpw x_packet *next ;
i nt |ength;
unsi gned i nt *payl oad;
b
Member Description
flags Mask indicating options, transmission state and errors for the packet.
GRPWRX FLAGS XXX. See Table 187
next Points to next GRPWRX packet. This field is used to make driver process
multiple GRPWRX packets at the same time, avoiding multiple ioctl calls.
Length The length of the receive packet in framing mode.
payload Points to a data area holding the complete GRPWRX packet. The area
include fields such as header, payload, OCF, CRC.

Table 187: grpwrx_packet member descriptions.

Flag Description

GRPWRX FLAGS RECEIVED Indicates whether the packet has been transmitted or not

GRPWRX FLAGS ERR Indicates if errors has been experienced during transmission of the
packet

GRPWRX FLAGS FHP Indicates weather to set the First Header Pointer (FPH) flag of the

GRPWRX buffer descriptor 's word 0. The length of the packet should
be 2 and the payload field should point to the location of the CCSDS
frame's first header pointer field.

TRANSLATE Translate packet payload address from CPU address to remote bus
(the bus grpwrx is resident on). This is useful when dealing with
buffers on remote buses, for example when grpwrx is on a AMBA bus
accessed over PCI. This is the case for GR-RASTA-TMTC.

TRANSLATE AND REMEMBER As TRANSLATE, however if the translated payload address equals
the payload address the TRANSLATE AND REMEMBER bit is
cleared and the TRANSLATE bit is set.

Table 188: grpwrx_packet flags description.

The grpwrx list structure represents a linked list, a chain of GRPWRX packets. The data
structure holds the first packet and last packet in chain.

struct grpwx_list {
struct grpw x_packet *head;
struct grpw x_packet *tail;

b

Member Description

head First GRPWRX packet in chain

tail Last GRPWRX packet in chain, last packet in list must have it's next field set
to NULL

Table 189: grpwrx_list member descriptions.

The grpwrx ioc_stats structure contain statistics collected by the driver.

struct grpwx_ioc_stats {

unsi gned | ong | ong packets_recei ved;
unsi gned i nt err_underrun;
b
Member Description
packets receved Number of packets successfully received by the GRPWRX core
err underrun Number of AMBA underrun errors

Table 190: grpwrx_ioc_stats member descriptions.

37.2.4.2 Configuration

The grpwrx core and driver are configured using ioctl calls. The table 189 below lists all
supported ioctl calls. grpwrx IOC_ must be concatenated with the call number from the table to
get the actual constant used in the code. Return values for all calls are 0 for success and -1 on
failure. Errno is set after a failure as indicated in table 188.

An example is shown below where the statistics of the driver is copied to the user buffer stats by
using an ioctl call:

struct grpw x_ioc_stats stats;

result = ioctl(fd, grpwx_ | OC GET_STATS, &stats);

ERRNO Description
EINVAL Null pointer or an out of range value was given as the argument.
EBUSY The GRPWRX hardware is not in the correct state. Many ioctl calls need the

GRPWRX core to be in stopped or started mode. One can switch state by calling
START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands
to fail.

EIO Writing to hardware failed. Feature not available in hardware.

ENODEV Operation aborted due to transmitter being stopped.

Table 191: ERRNO values for ioctl calls.

Call Number Call Description
Mode

START Stopped Exit stopped mode, start the receiver.

STOP Started Exit started mode, enter stopped mode. Most of the settings can
only be set when in stopped mode.

ISSTARTED Both Indicates operating status, started or stopped.

SET BLOCKING MODE | Both Set blocking or non-blocking mode for RECLAIM.

SET TIMEOUT Both Set time out value used in blocking mode to wake up blocked task if
request takes too long time to complete.

SET CONFIG Stopped Configure hardware and software driver

GET CONFIG Both Get current configuration previously set with SET CONFIG or the
driver defaults

GET STATS Both Get statistics collected by driver

CLR STATS Both Reset driver statistics.

GET HW IMPL Both Returns the features and implemented by the GRPWRX core.

GET OCFREG Both Returns the address of the OCF/CLCW register, it can be used to
update the transmitted OCF/CLCW.

RECLAIM Both Returns all GRPWRX packets received since last call to RECLAIM,
the packets are linked in a chain.

RECV Started Add a chain of GRPWRX packets to the reception queue of the
grpwrx driver.

Table 192: ioctl calls supported by the grpwrx driver.

37.2.4.2.1 START

This ioctl command enables the GRPWRX receiver and changes the driver's operating status to
started. Settings previously set by other ioctl commands are written to hardware just before
starting reception. It is necessary to enter started mode to be able to receive GRPWRX packets
using the ioctl command grpwrx IOC RECV.

The command will fail if the receiver is unable to be brought up, the driver or hardware
configuration is invalid or if the GRPWRX core already is started. In case of failure the return
code is negative and errno will be set to EIO or EINVAL, see table 188.

37.2.4.2.2 STOP

This call makes the GRPWRX core leave started mode and enter stopped mode. The receiver is
stopped and no packets will be received. After calling STOP further ioctl commands such as
RECV, RECLAIM, ISSTARTED, STOP will behave differently or result in error.

The command will fail if the GRPWRX driver already is in stopped mode.

37.2.4.2.3 ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped
mode and return successfully in started mode.

37.2.4.2.4 SET_BLOCKING_MODE

Changes the driver's GRPWRX IOC RECLAIM command behaviour. Two modes are available

blocking mode and polling mode, in polling mode the ioctl command RECLAIM always return
directly even when no packets are available. In blocking mode the task calling RECLAIM is
blocked until at least one packet can be reclaimed, it is also possible to make the blocked task
time out after some time setting the timeout value using the SET CONFIG or SET TIMEOUT
ioctl commands.

The argument is set as as described in the table below.

Bit number Description
GRPWRX BLKMODE POLL Enables polling mode
GRPWRX BLKMODE BLK Enables blocking mode

Table 193: SET_BLOCKING_MODE ioctl arguments

The driver's default is polling mode.

Note that the blocking mode is implemented using the DMA transmit packe interrupt, changing
the isr desc proc parameter of the SET CONFIG command effects the blocking mode
characteristics. For example, enabling interrupt generation every tenth GRPWRX packet will
cause the blocked task to be woken up after maximum ten packets when going into blocked
mode.

This command never fail.

37.2.4.2.5 SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up
after this time out expires. The time out value specifies the input to the RTEMS take semaphore
operation rtems semaphore obtain(). See the RTEMS documentation for more information how
to set the time out value.

Note that this option has no effect in polling mode.
Note that this option is also set by SET CONFIG.

This command never fail.

37.2.4.2.6 SET_CONFIG

Configures the driver and core. This call updates the configuration that will be used by the driver
during the START command and during operation. Enabling features not implemented by the
GRPWRKX core will result in EIO error when starting the GRPWRX driver. The hardware features
available can be obtained by the GET HW IMPL command.

The input is a pointer to an initialized grpwrx ioc config structure described in section 37.2.4.1.

Note that the time out value and blocking mode can also be set with SET TIMEOUT and
SET BLOCKING MODE.

This call fail if the GRPWRX core is in started mode, in that case errno will be set to EBUSY, or if
a NULL pointer is given as argument, in that case errno will be set to EINVAL.

37.2.4.2.7 GET_CONFIG

Returns the current configuration of the driver and hardware. The current configuration is either
the driver and hardware defaults or the configuration previously set by the SET CONFIG
command.

The input to this ioctl command is a pointer to a data area of at least the size of a

grpwrx_ioc_config structure. The data area will be updated according to the grpwrx ioc_config
data structure described in section 37.2.4.1.

This command only fail if the pointer argument is invalid.
37.2.4.2.8 GET_STATS

This command copies the driver's internal statistics counters to a user provided data area. The
format of the data written is described in the data structure subsection. See the grpwrx ioc stats
data structure.

The call will fail if the pointer to the data is invalid.
37.2.4.2.9 CLR_STATS

This command reset the driver's internal statistics counters.

This command never fail.

37.2.4.2.10 GET_HW_IMPL

This command copies the GRPWRX core's features implemented to a user provided data area.
The format of the data written is described in the data structure subsection. See the
grpwrx_ioc_hw data structure.

Knowing the features supported by hardware can be used to make software run on multiple
implementations of the GRPWRX core.

The call will fail if the pointer to the data is invalid.

37.2.4.2.11 RECLAIM

Returns processed GRPWRX oackets to user. All packets returned has been provided by the user
in previous calls to RECV, and need not all to have been successfully received. RECLAIM can be
configured to operate in polling mode, blocking mode and blocking mode with a time out. In
polling mode the task always returns with or without processed packets, in blocking mode the
task is blocked until at least one packet has been processed. See the ioctl command
SET CONFIG and SET BLOCKING MODE to change mode of the RECLAIM command.

RECLAIM stores a linked list of processed GRPWRX packets into the data area pointed to by the
user argument. The format for the stored data follows the layout of the grpwrx list structure
described in section 37.2.2. The grpwrx list structure holds the first and last GRPWRX packet
processed by the driver. The flags field indicates if the packet was received or if errors were
experienced during transmission of this packet. See table 187 for flags details.

In started mode, this command enables scheduled GRPWRX packet for transmission as
descriptors become free during the processing of received GRPWRX packet.

The call will fail if the pointer to the data area is invalid (EINVAL), the RECLAIM call operates in
blocking mode and the time out expires (ETIMEDOUT) or the driver was stopped during the
calling task was blocked (ENODEYV). See table below.

ERRNO Description

EINVAL An invalid argument.
ETIMEDOUT The blocked task was timed out and still no packets was transmitted
ENODEV The calling task was woken up from blocking mode by the transmitter being

stopped. The GRPWRX driver has has entered stopped mode. Further calls to
RECLAIM will retrieve received packet.

Table 194: ERRNO values for RECLAIM

37.2.4.2.12 RECV

Scheduling reception of packets is done with the ioctl command RECV. The input is a linked list
of GRPWRX packets to be scheduled. When all GRPWRX DMA descriptors are active, enabled and
linked to a packet to transmit, the remaining packets are queued internally by the driver.

Every call to RECV will trigger scheduled GRPWRX packets for reception, calling RECV with the
argument set to NULL will thus trigger previously scheduled GRPWRX packets for reception.
This might be necessary when interrupts are not used to process descriptors or when interrupt
generation for GRPWRX packets are disabled, see SET CONFIG.

The input to RECV is a pointer to a grpwrx _list data structure described in section 37.2.4.1. The
head and tail fields of the data structure points to the first and the last GRPWRX packet to be
scheduled for transmission. The GRPWRX packet structure, grpwrx packet, used is described in
section 37.2.2. The data area to store the received packet is designated by the payload field. In
packet mode it has to be at lease 64k, in framing mode it has to be the size indicated by the
length field.

Note, that the packet structure and any data pointed to by the packet scheduled for reception
must not be accessed until the packet has been reclaimed using the ioctl command RECLAIM.

RECV will fail if the input packet list is incorrectly set up, errno will be set to EINVAL in such
cases.

37.2.5 Reception

Receiving packets are done with the ioctl call using the command RECV and RECLAIM. It is
possible to receive multiple packets in one call, the packets are provided to the driver using a
linked list of packets. See the ioctl commands RECV and RECLAIM for more information.

38 Gaisler AES DMA driver (GRAES)

38.1 INTRODUCTION

This document is intended as an aid in getting started developing with Aeroflex Gaisler GRLIB
AES DMA (GRAES) core using the driver described in this document. It describes accessing
GRAES in a on-chip system and over PCI. It briefly takes the reader through some of the most
important steps in using the driver such as starting the GRAES driver, configuring the driver and
en/decrypt AES packets. The reader is assumed to be well acquainted with GRAES, AES and
RTEMS.

38.1.1 Software Driver

The driver provides means for threads to receive GRAES packets using standard I/O operations.

38.1.2 Support

For support, contact the Aeroflex Gaisler support team at support@gaisler.com

38.2 USER INTERFACE

The RTEMS graes driver supports the standard accesses to file descriptors such as open, close
and ioctl. User applications include the graes driver's header file which contains definitions of all
necessary data structures and bit masks used when accessing the driver.

The driver enables the user to configure the hardware and to de/encode AES packets. The
allocation of AES blocks is handled by the user and blocks are given to the driver that processes
the blocks in a two step process. In the first step the driver schedules blocks for de/encryption
using the DMA descriptors or they are put into an internal queue when all descriptors are in use,
in the second step all processed packets are put into a second queue that is emptied when the
user reclaims the received blocks. The reclaimed blocks can then be reused in new processing
later on.

38.2.1 Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard
means, such as open. The function graes register drv whose prototype is provided in graes.h is
used for registering the driver:

grpaes_register_drv();

38.2.2 Opening the device

Opening the device enables the user to access the hardware of a certain graes device. The driver
is used for all graes cores available. The cores are separated by assigning each core a unique
name and a number called minor. The name is given during the opening of the driver. The first
three names are printed out:

mailto:support@gaisler.com

Core number | Filesystem name Location

0 /dev/graes0 On Chip AMBA bus

1 /dev/graesl On Chip AMBA bus

2 /dev/graes2 On Chip AMBA bus

0 /dev/rastatmtcO/graes0 GR-RASTA-GRAESTC PCI Target

Table 195: Core number to device name conversion.

An example of an RTEMS open call is shown below.
fd = open("/dev/graes0", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 195.

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary
memory.

Table 196: Open errno values.

38.2.3 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)
Close always returns 0 (success) for the graes driver.

38.2.4 1/0 Control interface

The behaviour of the driver and hardware can be changed via the standard system call ioctl.
Most operating systems support at least two arguments to ioctl, the first being an integer which
selects ioctl function and secondly a pointer to data that may be interpreted uniquely for each
function. A typical ioctl call definition:

int ioctl(int fd, int cnd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the graes driver's header file
graes.h. In functions where only one argument is needed the pointer (void *arg) may be
converted to an integer and interpreted directly, thus simplifying the code.

38.2.4.1 Data structures

The graes ioc_hw data structure indicates what features the GRAES hardware supports and how
it has been configured.

struct graes_ioc_hw {

unsi gned short keysi ze;
3
Member Description
keysize GRAES core key size, fixed 256

Table 197: graes_ioc_hw member descriptions.

The graes_ioc_config struct is used for configuring the driver and the GRAES core.

struct graes_ioc_config {

[* Interrupt options */

unsi gned i nt enabl e_cnt;
i nt i sr_desc_proc;
i nt bl ocki ng;
rtens_interval ti meout;
H
Member Description
enable cnt Number of blocks between interrupts are generated, zero disables interrupt.
Allows user to fine grain interrupt generation
isr_desc_proc Allow GRAES interrupt service routine (ISR) to process descriptors
blocking Blocking mode select, graes BLKMODE POLL for polling mode or
graes BLMODE BLK for blocking mode
timeout Blocking mode time out

Table 198: graes_ioc_config member descriptions.

The graes block structure is used in for queueing GRAES blocks and retriving processed blocks,
it is the driver's representation of a GRAES block. A GRAES block structure can be chained

together using the next field in graes block.

struct graes_bl ock {

unsi gned i nt fl ags;
struct graes_bl ock *next ;
i nt | engt h;
unsi gned char *key;
unsi gned char *jv;
unsi gned char *payl oad; [* in */
unsi gned char *out ; [* out */
s
Member Description
flags Mask indicating options, Processing state and errors for the block.
GRAES FLAGS XXX. See Table 199
next Points to next GRAES block. This field is used to make driver process
multiple GRAES blocks at the same time, avoiding multiple ioctl calls.
length Length of the block to de/encrypt
key Pointer to iAES-2256 key or null
iv Pointer to initialization vector or null
payload Pointer to Plaintext/Ciphertext
Out Pointer to output buffer or null

Table 199: graes_block member descriptions.

Flag

Description

GRAES BD ED

When set encryption will be performed otherwise decryption

GRAES FLAGS PROCESSED

Indicates whether the block has been processed or not

GRAES FLAGS ERR

Indicates if errors has been experienced during processing of the
block

TRANSLATE

Translate bllock payload addresses from CPU address to remote
bus (the bus graes is resident on). This is useful when dealing
with buffers on remote buses, for example when graes is on a
AMBA bus accessed over PCI. This is the case for GR-RASTA-
GRAESTC.

TRANSLATE AND REMEMBER

As TRANSLATE, however if the translated payload addresses
equals the payload address the TRANSLATE AND REMEMBER
bit is cleared and the TRANSLATE bhit is set.

Table 200: graes_block flags description.

The graes list structure represents a linked list, a chain of GRAES blocks. The data structure
holds the first block and last block in chain.

struct graes_list {
struct graes_bl ock *head;
struct graes_block *tail;

b

Member Description

head First GRAES block in chain

tail Last GRAES block in chain, last block in list must have it's next field set to
NULL

Table 201: graes_list member descriptions.

The graes_ioc_stats structure contain statistics collected by the driver.

struct graes_ioc_stats {

unsi gned | ong | ong bl ocks_processed,;
unsi gned i nt err_underrun;
b
Member Description
blocks processed Number of blocks successfully processed by the GRAES core
err underrun Number of AMBA underrun errors

Table 202: graes_ioc_stats member descriptions.

38.2.4.2 Configuration

The graes core and driver are configured using ioctl calls. The table 201 below lists all supported
ioctl calls. graes I0C_must be concatenated with the call number from the table to get the actual
constant used in the code. Return values for all calls are 0 for success and -1 on failure. Errno is
set after a failure as indicated in table 200.

An example is shown below where the statistics of the driver is copied to the user buffer stats by
using an ioctl call:

struct graes_ioc_stats stats;

result = ioctl(fd, graes | OC GET_STATS, &stats);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The GRAES hardware is not in the correct state. Many ioctl calls need the GRAES
core to be in stopped or started mode. One can switch state by calling START or
STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands
to fail.

EIO Writing to hardware failed. Feature not available in hardware.

ENODEV Operation aborted due to GRAES being stopped.

Table 203: ERRNO values for ioctl calls.

Call Number Call Mode | Description

START Stopped Exit stopped mode, start the receiver.

STOP Started Exit started mode, enter stopped mode. Most of the settings
can only be set when in stopped mode.

ISSTARTED Both Indicates operating status, started or stopped.

SET BLOCKING MODE Both Set blocking or non-blocking mode for RECLAIM.

SET TIMEOUT Both Set time out value used in blocking mode to wake up blocked
task if request takes too long time to complete.

SET CONFIG Stopped Configure hardware and software driver

GET CONFIG Both Get current configuration previously set with SET CONFIG
or the driver defaults

GET STATS Both Get statistics collected by driver

CLR STATS Both Reset driver statistics.

GET HW IMPL Both Returns the features and implemented by the GRAES core.

RECLAIM Both Returns all GRAES blocks processed since last call to
RECLAIM, the blocks are linked in a chain.

ENCRYPT Started Add a chain of GRAES blocks to the en/decryption queue of

the GRAES driver.

Table 204: ioctl calls supported by the graes driver.

38.2.4.2.1 START

This ioctl command enables the GRAES core and changes the driver's operating status to started.
Settings previously set by other ioctl commands are written to hardware just before starting
processing.

38.2.4.2.2 STOP

This call makes the GRAES core leave started mode and enter stopped mode. After calling STOP
further ioctl commands such as ENCRYPT, RECLAIM, ISSTARTED, STOP will behave differently
or result in error.

The command will fail if the GRAES driver already is in stopped mode.

38.2.4.2.3 ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped
mode and return successfully in started mode.

38.2.4.2.4 SET_BLOCKING_MODE

Changes the driver's GRAES IOC RECLAIM command behaviour. Two modes are available
blocking mode and polling mode, in polling mode the ioctl command RECLAIM always return
directly even when no blocks are available. In blocking mode the task calling RECLAIM is
blocked until at least one block can be reclaimed, it is also possible to make the blocked task time
out after some time setting the timeout value using the SET CONFIG or SET TIMEOUT ioctl
commands.

The argument is set as as described in the table below.

Bit number Description
GRAES BLKMODE POLL Enables polling mode
GRAES BLKMODE BLK Enables blocking mode

Table 205: SET_BLOCKING_MODE ioctl arguments

The driver's default is polling mode.

Note that the blocking mode is implemented using the DMA de/encrypt block interrupt, changing
the isr desc proc parameter of the SET CONFIG command effects the blocking mode
characteristics. For example, enabling interrupt generation every tenth GRAES block will cause
the blocked task to be woken up after maximum ten blocks when going into blocked mode.

This command never fail.
38.2.4.2.5 SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up
after this time out expires. The time out value specifies the input to the RTEMS take semaphore
operation rtems semaphore obtain(). See the RTEMS documentation for more information how
to set the time out value.

Note that this option has no effect in polling mode.
Note that this option is also set by SET CONFIG.

This command never fail.
38.2.4.2.6 SET_CONFIG

Configures the driver and core. This call updates the configuration that will be used by the driver
during the START command and during operation. Enabling features not implemented by the
GRAES core will result in EIO error when starting the GRAES driver. The hardware features
available can be obtained by the GET HW IMPL command.

The input is a pointer to an initialized graes ioc config structure described in section 38.2.4.1.

Note that the time out value and blocking mode can also be set with SET TIMEOUT and
SET BLOCKING MODE.

This call fail if the GRAES core is in started mode, in that case errno will be set to EBUSY, or if a
NULL pointer is given as argument, in that case errno will be set to EINVAL.

38.2.4.2.7 GET_CONFIG

Returns the current configuration of the driver and hardware. The current configuration is either
the driver and hardware defaults or the configuration previously set by the SET CONFIG
command.

The input to this ioctl command is a pointer to a data area of at least the size of a
graes ioc config structure. The data area will be updated according to the graes ioc config data
structure described in section 38.2.4.1.

This command only fail if the pointer argument is invalid.

38.2.4.2.8 GET_STATS

This command copies the driver's internal statistics counters to a user provided data area. The
format of the data written is described in the data structure subsection. See the graes ioc stats
data structure.

The call will fail if the pointer to the data is invalid.

38.2.4.2.9 CLR_STATS

This command reset the driver's internal statistics counters.

This command never fail.

38.2.4.2.10 GET_HW_IMPL

This command copies the GRAES core's features implemented to a user provided data area. The
format of the data written is described in the data structure subsection. See the graes ioc hw
data structure.

Knowing the features supported by hardware can be used to make software run on multiple
implementations of the GRAES core.

The call will fail if the pointer to the data is invalid.

38.2.4.2.11 RECLAIM

Returns processed GRAES block to user. All blocks returned has been provided by the user in
previous calls to ENCRYPT, and need not all to have been successfully de/encrypted. RECLAIM
can be configured to operate in polling mode, blocking mode and blocking mode with a time out.
In polling mode the task always returns with or without processed packets, in blocking mode the
task is blocked until at least one packet has been processed. See the ioctl command
SET CONFIG and SET BLOCKING _MODE to change mode of the RECLAIM command.

RECLAIM stores a linked list of processed GRAES blocks into the data area pointed to by the
user argument. The format for the stored data follows the layout of the graes list structure
described in section 38.2.2. The graes list structure holds the first and last GRAES block
processed by the driver. The flags field indicates if the block was received or if errors were
experienced during processing of this packet. See table 199 for flags details.

In started mode, this command enables scheduled GRAES block for de/encryption as descriptors
become free during the processing of GRAES blocks.

The call will fail if the pointer to the data area is invalid (EINVAL), the RECLAIM call operates in
blocking mode and the time out expires (ETIMEDOUT) or the driver was stopped during the
calling task was blocked (ENODEV). See table below.

ERRNO Description

EINVAL An invalid argument.

ETIMEDOUT The blocked task was timed out and still no blocks was processed

ENODEV The calling task was woken up from blocking mode by the GRAES code being
stopped. The GRAES driver has has entered stopped mode. Further calls to
RECLAIM will retrieve processed packet.

Table 206: ERRNO values for RECLAIM

38.2.4.2.12 ENCRYPT

Scheduling de/encryption of block is done with the ioctl command ENCRYPT. The input is a
linked list of GRAES blocks to be scheduled. When all GRAES DMA descriptors are active,
enabled and linked to a block, the remaining blocks are queued internally by the driver.

Every call to ENCRYPT will trigger scheduled GRAES blocks for de/encryption, calling PROCESS
with the argument set to NULL will thus trigger previously scheduled GRAES blocks for
de/encryption. This might be necessary when interrupts are not used to process descriptors or
when interrupt generation for GRAES blocks are disabled, see SET CONFIG.

The input to ENCRYPT is a pointer to a graes list data structure described in section 38.2.4.1.
The head and tail fields of the data structure points to the first and the last GRAES block to be
scheduled for de/encryption. The GRAES block structure, graes block, used is described in
section 38.2.2, the data field corresponding to the GRAES buffer descriptor fields.

Note, that the block structure and any data pointed to by the block scheduled for de/encryption
must not be accessed until the block has been reclaimed using the ioctl command RECLAIM.

ENCRYPT will fail if the input block list is incorrectly set up, errno will be set to EINVAL in such
cases.

38.2.5 De/encryption

De/encrypting blocks is done with the ioctl call using the command ENCRYPT and RECLAIM. It is
possible to de/encrypt multiple blocks in one call, the blocks are provided to the driver using a
linked list of blocks. See the ioctl commands ENCRYPT and RECLAIM for more information.

39 Support

For support, contact the Aeroflex Gaisler Research support team at support@gaisler.com.

mailto:support@gaisler.com

	1 Drivers documentation introduction
	2 GRLIB AMBA Plug & Play
	2.1 Introduction
	2.1.1 AMBA Plug&Play terms and names
	2.1.2 Sources

	2.2 Overview
	2.3 Initialization
	2.4 Finding AMBAPP devices by Plug&Play
	2.5 Allocating a device
	2.6 Name database
	2.7 Frequency of a device

	3 Driver Manager
	3.1 Introduction
	3.1.1 Driver manager terms and names
	3.1.2 Sources

	3.2 Overview
	3.2.1 Bus and bus driver
	3.2.1.1 Bus specific device information

	3.2.2 Root driver
	3.2.3 Device driver
	3.2.4 Device
	3.2.5 Driver resources
	3.2.6 Driver interface

	3.3 Configuration
	3.3.1 Available LEON drivers

	3.4 Initialization
	3.4.1 LEON3 BSP

	3.5 Interrupt
	3.6 Address translation
	3.7 Function interface

	4 RMAP Stack
	4.1 Introduction
	4.1.1 Examples

	4.2 Driver interface
	4.3 Logical and Path Addressing
	4.4 Zero-Copy implementation
	4.5 RMAP GRSPW Driver
	4.6 Thread-safe
	4.7 User interface
	4.7.1 Data structures
	4.7.2 Function interface description
	4.7.2.1.1 rmap_init
	4.7.2.1.2 rmap_ioctl
	4.7.2.1.3 rmap_send
	4.7.2.1.4 rmap_crc_calc
	4.7.2.1.5 rmap_write and rmap_read

	5 SpaceWire Network model
	5.1 Introduction
	5.2 Overview
	5.3 Requirements
	5.4 Node description
	5.4.1 The Node ID

	5.5 Read and Write operation
	5.6 Interrupt handling
	5.7 Using the SpaceWire Bus Driver

	6 AMBA over SpaceWire
	6.1 Introduction
	6.2 Overview
	6.3 Requirements
	6.4 Interrupt handling
	6.5 Memory allocation on Target
	6.6 Differences between on-chip AMBA drivers

	7 SPARC/LEON PCI DRIVERS
	7.1 INTRODUCTION
	7.1.1 Examples

	7.2 Sources
	7.3 Configuration
	7.3.1 GRPCI
	7.3.2 GRPCI2
	7.3.3 AT697

	7.4 User interface
	7.4.1 PCI Address space
	7.4.2 PCI Interrupt
	7.4.3 PCI Endianess

	8 GR-RASTA-ADCDAC PCI TARGET
	9 GR-RASTA-IO PCI TARGET
	10 GR-RASTA-TMTC PCI TARGET
	11 GR-RASTA-SPW_ROUTER PCI TARGET
	12 GR-CPCI-LEON4-N2X PCI Peripheral
	12.1 Driver registration
	12.2 Driver resource configuration

	13 Gaisler SpaceWire (GRSPW)
	13.1 Introduction
	13.1.1 Software driver
	13.1.2 Examples
	13.1.3 Support

	13.2 User interface
	13.2.1 Driver registration
	13.2.2 Driver resource configuration
	13.2.2.1 Custom DMA area parameters

	13.2.3 Opening the device
	13.2.4 Closing the device
	13.2.5 I/O Control interface
	13.2.5.1 Data structures
	13.2.5.2 Configuration
	13.2.5.2.1 START
	13.2.5.2.2 STOP
	13.2.5.2.3 SET_NODEADDR
	13.2.5.2.4 SET_RXBLOCK
	13.2.5.2.5 SET_DESTKEY
	13.2.5.2.6 SET_CLKDIV
	13.2.5.2.7 SET_TIMER
	13.2.5.2.8 SET_DISCONNECT
	13.2.5.2.9 SET_COREFREQ
	13.2.5.2.10 SET_PROMISCUOUS
	13.2.5.2.11 SET_RMAPEN
	13.2.5.2.12 SET_RMAPBUFDIS
	13.2.5.2.13 SET_CHECK_RMAP
	13.2.5.2.14 SET_RM_PROT_ID
	13.2.5.2.15 SET_TXBLOCK
	13.2.5.2.16 SET_TXBLOCK_ON_FULL
	13.2.5.2.17 SET_DISABLE_ERR
	13.2.5.2.18 SET_LINK_ERR_IRQ
	13.2.5.2.19 SET_PACKETSIZE
	13.2.5.2.20 GET_LINK_STATUS
	13.2.5.2.21 GET_CONFIG
	13.2.5.2.22 GET_STATISTICS
	13.2.5.2.23 CLR_STATISTICS
	13.2.5.2.24 SEND
	13.2.5.2.25 LINKDISABLE
	13.2.5.2.26 LINKSTART
	13.2.5.2.27 SET_EVENT_ID
	13.2.5.2.28 SET_TCODE_CTRL
	13.2.5.2.29 SET_TCODE
	13.2.5.2.30 GET_TCODE

	13.2.6 Transmission
	13.2.7 Reception

	13.3 Receiver example

	14 SpaceWire ROUTER
	14.1 Introduction
	14.1.1 SpaceWire Router register driver
	14.1.2 AMBA port driver

	15 SpaceWire ROUTER Register Driver
	15.1 Introduction
	15.2 User interface
	15.2.1 Driver registration
	15.2.2 Driver resource configuration
	15.2.3 Opening the device
	15.2.4 Closing the device
	15.2.5 I/O Control interface
	15.2.5.1 HWINFO
	15.2.5.2 CFG_SET
	15.2.5.3 CFG_GET
	15.2.5.4 ROUTES_SET
	15.2.5.5 ROUTES_GET
	15.2.5.6 PS_SET
	15.2.5.7 PS_GET
	15.2.5.8 WE_SET
	15.2.5.9 PORT
	15.2.5.10 CFGSTS_SET
	15.2.5.11 CFGSTS_GET
	15.2.5.12 TC_GET

	16 GR1553B DRIVER
	16.1 INTRODUCTION
	16.1.1 GR1553B Hardware
	16.1.2 Software Driver
	16.1.3 Driver Registration

	17 GR1553B REMOTE TERMINAL DRIVER
	17.1 INTRODUCTION
	17.1.1 GR1553B Remote Terminal Hardware
	17.1.2 Examples

	17.2 User Interface
	17.2.1 Overview
	17.2.1.1 Accessing an RT device
	17.2.1.2 Introduction to the RT Memory areas
	17.2.1.3 Sub Address Table
	17.2.1.4 Descriptors
	17.2.1.5 Data Buffers
	17.2.1.6 Event Logging
	17.2.1.7 Interrupt service
	17.2.1.8 Indication service
	17.2.1.9 Mode Code support
	17.2.1.10 RT Time

	17.2.2 Application Programming Interface
	17.2.2.1 Data structures
	17.2.2.2 gr1553rt_open
	17.2.2.3 gr1553rt_close
	17.2.2.4 gr1553rt_config
	17.2.2.5 gr1553rt_start
	17.2.2.6 gr1553rt_stop
	17.2.2.7 gr1553rt_status
	17.2.2.8 gr1553rt_indication
	17.2.2.9 gr1553rt_evlog_read
	17.2.2.10 gr1553rt_set_vecword
	17.2.2.11 gr1553rt_set_bussts
	17.2.2.12 gr1553rt_sa_setopts
	17.2.2.13 gr1553rt_list_sa
	17.2.2.14 gr1553rt_sa_schedule
	17.2.2.15 gr1553rt_irq_err
	17.2.2.16 gr1553rt_irq_mc
	17.2.2.17 gr1553rt_irq_sa
	17.2.2.18 gr1553rt_list_init
	17.2.2.19 gr1553rt_bd_init
	17.2.2.20 gr1553rt_bd_update

	18 GR1553B BUS MONITOR DRIVER
	18.1 INTRODUCTION
	18.1.1 GR1553B Remote Terminal Hardware
	18.1.2 Examples

	18.2 User Interface
	18.2.1 Overview
	18.2.1.1 Accessing a BM device
	18.2.1.2 BM Log memory
	18.2.1.3 Accessing the BM Log memory
	18.2.1.4 Time
	18.2.1.5 Filtering
	18.2.1.6 Interrupt service

	18.2.2 Application Programming Interface
	18.2.2.1 Data structures
	18.2.2.2 gr1553bm_open
	18.2.2.3 gr1553bm_close
	18.2.2.4 gr1553bm_config
	18.2.2.5 gr1553bm_start
	18.2.2.6 gr1553bm_stop
	18.2.2.7 gr1553bm_time
	18.2.2.8 gr1553bm_available
	18.2.2.9 gr1553bm_read

	19 GR1553B Bus Controller DRIVER
	19.1 INTRODUCTION
	19.1.1 GR1553B Bus Controller Hardware
	19.1.2 Software Driver
	19.1.3 Examples

	19.2 BC Device Handling
	19.2.1 Device API
	19.2.1.1 Data Structures
	19.2.1.2 gr1553bc_open
	19.2.1.3 gr1553bc_close
	19.2.1.4 gr1553bc_start
	19.2.1.5 gr1553bc_pause
	19.2.1.6 gr1553bc_resume
	19.2.1.7 gr1553bc_stop
	19.2.1.8 gr1553bc_indication
	19.2.1.9 gr1553bc_status
	19.2.1.10 gr1553bc_ext_trig
	19.2.1.11 gr1553bc_irq_setup

	19.3 Descriptor List Handling
	19.3.1 Overview
	19.3.2 Example: steps for creating a list
	19.3.3 Major Frame
	19.3.4 Minor Frame
	19.3.5 Slot (Descriptor)
	19.3.6 Changing a scheduled BC list (during BC-runtime)
	19.3.7 Custom Memory Setup
	19.3.8 Interrupt handling
	19.3.9 List API
	19.3.9.1 Data structures
	19.3.9.2 gr1553bc_list_alloc
	19.3.9.3 gr1553bc_list_free
	19.3.9.4 gr1553bc_list_config
	19.3.9.5 gr1553bc_list_link_major
	19.3.9.6 gr1553bc_list_set_major
	19.3.9.7 gr1553bc_minor_table_size
	19.3.9.8 gr1553bc_list_table_size
	19.3.9.9 gr1553bc_list_table_alloc
	19.3.9.10 gr1553bc_list_table_free
	19.3.9.11 gr1553bc_list_table_build
	19.3.9.12 gr1553bc_major_alloc_skel
	19.3.9.13 gr1553bc_list_freetime
	19.3.9.14 gr1553bc_slot_alloc
	19.3.9.15 gr1553bc_slot_free
	19.3.9.16 gr1553bc_mid_from_bd
	19.3.9.17 gr1553bc_slot_bd
	19.3.9.18 gr1553bc_slot_irq_prepare
	19.3.9.19 gr1553bc_slot_irq_enable
	19.3.9.20 gr1553bc_slot_irq_disable
	19.3.9.21 gr1553bc_slot_jump
	19.3.9.22 gr1553bc_slot_exttrig
	19.3.9.23 gr1553bc_slot_transfer
	19.3.9.24 gr1553bc_slot_dummy
	19.3.9.25 gr1553bc_slot_empty
	19.3.9.26 gr1553bc_slot_update
	19.3.9.27 gr1553bc_slot_raw
	19.3.9.28 gr1553bc_show_list

	20 Gaisler B1553BRM DRIVER (BRM)
	20.1 INTRODUCTION
	20.1.1 BRM Hardware
	20.1.2 Software Driver
	20.1.3 Supported OS
	20.1.4 Examples

	20.2 User interface
	20.2.1 Driver registration
	20.2.2 Driver resource configuration
	20.2.2.1 Custom DMA area parameter

	20.2.3 Opening the device
	20.2.4 Closing the device
	20.2.5 I/O Control interface
	20.2.5.1 Data structures
	20.2.5.1.1 Remote Terminal operating mode
	20.2.5.1.2 Bus Controller operating mode
	20.2.5.1.3 Bus Monitor operating mode

	20.2.6 Configuration
	20.2.6.1 SET_MODE
	20.2.6.2 SET_BUS
	20.2.6.3 SET_MSGTO
	20.2.6.4 SET_RT_ADDR
	20.2.6.5 BRM_SET_STD
	20.2.6.6 BRM_SET_BCE
	20.2.6.7 BRM_TX_BLOCK
	20.2.6.8 BRM_RX_BLOCK
	20.2.6.9 BRM_CLR_STATUS
	20.2.6.10 BRM_GET_STATUS
	20.2.6.11 BRM_SET_EVENTID

	20.2.7 Remote Terminal operation
	20.2.8 Bus Controller operation
	20.2.9 Bus monitor operation

	21 Gaisler B1553RT DRIVER (RT)
	21.1 INTRODUCTION
	21.1.1 RT Hardware
	21.1.2 Examples

	21.2 User interface
	21.2.1 Driver registration
	21.2.2 Driver resource configuration
	21.2.2.1 Custom DMA area parameter

	21.2.3 Opening the device
	21.2.4 Closing the device
	21.2.5 I/O Control interface
	21.2.5.1 Data structures
	21.2.5.1.1 Remote Terminal operating mode

	21.2.6 Configuration
	21.2.6.1 RT_SET_ADDR
	21.2.6.2 RT_SET_BCE
	21.2.6.3 RT_SET_VECTORW
	21.2.6.4 RT_RX_BLOCK
	21.2.6.5 RT_SET_EXTMDATA
	21.2.6.6 RT_CLR_STATUS
	21.2.6.7 RT_GET_STATUS
	21.2.6.8 RT_SET_EVENTID

	21.2.7 Remote Terminal operation

	22 CAN DRIVER INTERFACE (GRCAN)
	22.1 User interface
	22.1.1 Driver registration
	22.1.2 Driver resource configuration
	22.1.2.1 Custom DMA area parameters

	22.1.3 Opening the device
	22.1.4 Closing the device
	22.1.5 I/O Control interface
	22.1.5.1 Data structures
	22.1.5.2 Configuration
	22.1.5.2.1 START
	22.1.5.2.2 STOP
	22.1.5.2.3 ISSTARTED
	22.1.5.2.4 FLUSH
	22.1.5.2.5 SET_SILENT
	22.1.5.2.6 SET_ABORT
	22.1.5.2.7 SET_SELECTION
	22.1.5.2.8 SET_BTRS
	22.1.5.2.9 SET_RXBLOCK
	22.1.5.2.10 SET_TXBLOCK
	22.1.5.2.11 SET_TXCOMPLETE
	22.1.5.2.12 SET_RXCOMPLETE
	22.1.5.2.13 GET_STATS
	22.1.5.2.14 CLR_STATS
	22.1.5.2.15 SET_AFILTER
	22.1.5.2.16 SET_SFILTER
	22.1.5.2.17 GET_STATUS

	22.1.6 Transmission
	22.1.7 Reception

	23 Gaisler Opencores CAN driver (OC_CAN)
	23.1 INTRODUCTION
	23.1.1 CAN Hardware
	23.1.2 Software Driver
	23.1.3 Supported OS
	23.1.4 Examples
	23.1.5 Support

	23.2 User interface
	23.2.1 Driver registration
	23.2.2 Driver resource configuration
	23.2.3 Opening the device
	23.2.4 Closing the device
	23.2.5 I/O Control interface
	23.2.5.1 Data structures
	23.2.5.2 Configuration
	23.2.5.2.1 START
	23.2.5.2.2 STOP
	23.2.5.2.3 GET_STATS
	23.2.5.2.4 GET_STATUS
	23.2.5.2.5 SET_SPEED
	23.2.5.2.6 SET_BTRS
	23.2.5.2.7 SET_BLK_MODE
	23.2.5.2.8 SET_BUFLEN

	23.2.6 Transmission
	23.2.7 Reception

	24 Gaisler SatCAN FPGA driver (SatCAN)
	24.1 INTRODUCTION
	24.1.1 SatCAN Hardware Wrapper
	24.1.2 Software Driver
	24.1.3 Supported OS
	24.1.4 Examples
	24.1.5 Support

	24.2 User interface
	24.2.1 Driver registration
	24.2.2 Opening the device
	24.2.3 Closing the device
	24.2.4 Reading from the device
	24.2.5 Writing to the device
	24.2.6 I/O Control interface
	24.2.6.1 Data structures
	24.2.6.2 Configuration
	24.2.6.2.1 DMA_2K
	24.2.6.2.2 DMA_8K
	24.2.6.2.3 GET_REG
	24.2.6.2.4 SET_REG
	24.2.6.2.5 OR_REG
	24.2.6.2.6 AND_REG
	24.2.6.2.7 EN_TX1_DIS_TX2
	24.2.6.2.8 EN_TX2_DIS_TX1
	24.2.6.2.9 GET_DMA_MODE
	24.2.6.2.10 SET_DMA_MODE
	24.2.6.2.11 ACTIVATE_DMA
	24.2.6.2.12 DEACTIVATE DMA
	24.2.6.2.13 GET_DOFFSET
	24.2.6.2.14 SET_DOFFSET
	24.2.6.2.15 GET_TIMEOUT
	24.2.6.2.16 SET_TIMEOUT

	25 Gaisler CAN_MUX driver (CAN_MUX)
	25.1 INTRODUCTION
	25.1.1 CAN_MUX Hardware
	25.1.2 Software Driver
	25.1.3 Supported OS
	25.1.4 Examples
	25.1.5 Support

	25.2 User interface
	25.2.1 Driver registration
	25.2.2 Opening the device
	25.2.3 Closing the device
	25.2.4 I/O Control interface
	25.2.4.1 Configuration

	26 Gaisler ASCS (GRASCS)
	26.1 Introduction
	26.1.1 Software driver
	26.1.2 Examples
	26.1.3 Support

	26.2 User interface
	26.2.1 ASCS_init
	26.2.2 ASCS_input_select
	26.2.3 ASCS_etr_select
	26.2.4 ASCS_start
	26.2.5 ASCS_stop
	26.2.6 ASCS_iface_status
	26.2.7 ASCS_TC_send
	26.2.8 ASCS_TC_send_block
	26.2.9 ASCS_TC_sync_start
	26.2.10 ASCS_TC_sync_stop
	26.2.11 ASCS_TM_recv
	26.2.12 ASCS_TM_recv_block

	26.3 Example code

	27 RAW UART DRIVER INTERFACE (APBUART)
	27.1 User interface
	27.1.1 Driver registration
	27.1.2 Driver resource configuration
	27.1.3 Opening the device
	27.1.4 Closing the device
	27.1.5 I/O Control interface
	27.1.5.1 Configuration
	27.1.5.1.1 START
	27.1.5.1.2 STOP
	27.1.5.1.3 SET_RXFIFO_LEN
	27.1.5.1.4 SET_TX_FIFO_LEN
	27.1.5.1.5 SET_BAUDRATE
	27.1.5.1.6 SET_SCALER
	27.1.5.1.7 SET_BLOCKING
	27.1.5.1.8 GET_STATS
	27.1.5.1.9 CLR_STATS
	27.1.5.1.10 SET_ASCII_MODE

	27.1.6 Transmission
	27.1.7 Reception

	28 Gaisler SPICTRL SPI DRIVER (SPICTRL)
	28.1 INTRODUCTION
	28.1.1 SPI Hardware
	28.1.2 Examples

	28.2 User interface
	28.2.1 Driver registration
	28.2.2 Accessing the SPI bus
	28.2.3 Extensions to the standard RTEMS interface
	28.2.3.1 PERIOD_START
	28.2.3.2 PERIOD_STOP
	28.2.3.3 CONFIG
	28.2.3.4 STATUS
	28.2.3.5 PERIOD_WRITE
	28.2.3.6 PERIOD_READ

	29 Gaisler i2C Master DRIVER (I2CMST)
	29.1 INTRODUCTION
	29.1.1 I2C Hardware
	29.1.2 Examples

	29.2 User interface
	29.2.1 Driver registration
	29.2.2 Accessing the I2C bus

	30 GPIO Library
	30.1 INTRODUCTION
	30.1.1 Examples

	30.2 Driver interface
	30.3 User interface
	30.3.1 Accessing a GPIO port
	30.3.2 Interrupt handler registration
	30.3.3 Data structures
	30.3.4 Function prototype description
	30.3.4.1 GPIO Library functions
	30.3.4.1.1 grpiolib_set_config
	30.3.4.1.2 gpiolib_set
	30.3.4.1.3 gpiolib_get
	30.3.4.1.4 gpiolib_irq_clear
	30.3.4.1.5 gpiolib_irq_force
	30.3.4.1.6 gpiolib_irq_enable
	30.3.4.1.7 gpiolib_irq_disable
	30.3.4.1.8 gpiolib_irq_register

	31 Gaisler GPIO DRIVER (GRGPIO)
	31.1 INTRODUCTION
	31.1.1 GPIO Hardware
	31.1.2 Examples

	31.2 User interface
	31.2.1 Driver registration
	31.2.2 Driver resource configuration
	31.2.3 Accessing GPIO ports

	32 Gaisler ADC/DAC DRIVER (GRADCDAC)
	32.1 INTRODUCTION
	32.1.1 ADC/DAC Hardware
	32.1.2 Examples

	32.2 User interface
	32.2.1 Driver registration
	32.2.2 Driver resource configuration
	32.2.3 Accessing ADC/DAC
	32.2.4 Interrupt handler registration
	32.2.5 Data structures
	32.2.6 Function prototype description
	32.2.6.1 General ADC/DAC functions
	32.2.6.1.1 gradcdac_set_config
	32.2.6.1.2 gradcdac_get_config
	32.2.6.1.3 gradcdac_set_cfg
	32.2.6.1.4 gradcdac_get_cfg
	32.2.6.1.5 gradcdac_get_status
	32.2.6.1.6 gradcdac_get_adrinput
	32.2.6.1.7 gradcdac_get_adroutput
	32.2.6.1.8 gradcdac_set_adroutput
	32.2.6.1.9 gradcdac_get_adrdir
	32.2.6.1.10 gradcdac_set_adrdir
	32.2.6.1.11 gradcdac_get_datainput
	32.2.6.1.12 gradcdac_get_dataoutput
	32.2.6.1.13 gradcdac_set_dataoutput
	32.2.6.1.14 gradcdac_get_datadir
	32.2.6.1.15 gradcdac_set_datadir

	32.2.6.2 Status interpretation help function
	32.2.6.3 ADC functions
	32.2.6.3.1 gradcdac_adc_convert_start
	32.2.6.3.2 gradcdac_adc_convert_try
	32.2.6.3.3 gradcdac_adc_convert

	32.2.6.4 DAC functions
	32.2.6.4.1 gradcdac_dac_convert_try
	32.2.6.4.2 gradcdac_dac_convert

	33 Gaisler TC driver (GRTC)
	33.1 INTRODUCTION
	33.1.1 TC Hardware
	33.1.2 Software Driver
	33.1.2.1 GRTC over SpaceWire

	33.1.3 Support

	33.2 User interface
	33.2.1 Driver registration
	33.2.2 Opening the device
	33.2.3 Closing the device
	33.2.4 I/O Control interface
	33.2.4.1 Data structures
	33.2.4.2 Configuration
	33.2.4.2.1 START
	33.2.4.2.2 STOP
	33.2.4.2.3 ISSTARTED
	33.2.4.2.4 SET_BLOCKING_MODE
	33.2.4.2.5 SET_TIMEOUT
	33.2.4.2.6 SET_MODE
	33.2.4.2.7 SET_BUF_PARAM
	33.2.4.2.8 SET_CONFIG
	33.2.4.2.9 GET_CONFIG
	33.2.4.2.10 GET_BUF_PARAM
	33.2.4.2.11 GET_HW_STATUS
	33.2.4.2.12 GET_CLCW_ADR
	33.2.4.2.13 GET_STATS
	33.2.4.2.14 CLR_STATS
	33.2.4.2.15 POOLS_SETUP
	33.2.4.2.16 ASSIGN_FRM_POOL
	33.2.4.2.17 ADD_BUF
	33.2.4.2.18 RECV

	33.2.5 Operating mode
	33.2.5.1 Driver frame pools

	33.2.6 Reception in FRAME mode
	33.2.7 Reception using RAW mode

	34 Gaisler TM driver (GRTM)
	34.1 INTRODUCTION
	34.1.1 TM Hardware
	34.1.2 Software Driver
	34.1.2.1 GRTM over SpaceWire

	34.1.3 Support

	34.2 User interface
	34.2.1 Driver registration
	34.2.2 Opening the device
	34.2.3 Closing the device
	34.2.4 I/O Control interface
	34.2.4.1 Data structures
	34.2.4.2 Configuration
	34.2.4.2.1 START
	34.2.4.2.2 STOP
	34.2.4.2.3 ISSTARTED
	34.2.4.2.4 SET_BLOCKING_MODE
	34.2.4.2.5 SET_TIMEOUT
	34.2.4.2.6 SET_CONFIG
	34.2.4.2.7 GET_CONFIG
	34.2.4.2.8 GET_STATS
	34.2.4.2.9 CLR_STATS
	34.2.4.2.10 GET_HW_IMPL
	34.2.4.2.11 GET_OCFREG
	34.2.4.2.12 RECLAIM
	34.2.4.2.13 SEND

	34.2.5 Transmission

	35 GRCTM DRIVER
	35.1 INTRODUCTION
	35.1.1 Examples

	35.2 User Interface
	35.2.1 Overview
	35.2.1.1 Accessing the GRCTM core
	35.2.1.2 Interrupt service

	35.2.2 Application Programming Interface
	35.2.2.1 Data structures

	36 SPWCUC DRIVER
	36.1 INTRODUCTION
	36.1.1 Examples

	36.2 User Interface
	36.2.1 Overview
	36.2.1.1 Accessing the SPWCUC core
	36.2.1.2 Interrupt service

	36.2.2 Application Programming Interface
	36.2.2.1 Data structures

	37 Gaisler Packetwire RX driver (GRPWRX)
	37.1 INTRODUCTION
	37.1.1 Software Driver
	37.1.2 Support

	37.2 User interface
	37.2.1 Driver registration
	37.2.2 Opening the device
	37.2.3 Closing the device
	37.2.4 I/O Control interface
	37.2.4.1 Data structures
	37.2.4.2 Configuration
	37.2.4.2.1 START
	37.2.4.2.2 STOP
	37.2.4.2.3 ISSTARTED
	37.2.4.2.4 SET_BLOCKING_MODE
	37.2.4.2.5 SET_TIMEOUT
	37.2.4.2.6 SET_CONFIG
	37.2.4.2.7 GET_CONFIG
	37.2.4.2.8 GET_STATS
	37.2.4.2.9 CLR_STATS
	37.2.4.2.10 GET_HW_IMPL
	37.2.4.2.11 RECLAIM
	37.2.4.2.12 RECV

	37.2.5 Reception

	38 Gaisler AES DMA driver (GRAES)
	38.1 INTRODUCTION
	38.1.1 Software Driver
	38.1.2 Support

	38.2 User interface
	38.2.1 Driver registration
	38.2.2 Opening the device
	38.2.3 Closing the device
	38.2.4 I/O Control interface
	38.2.4.1 Data structures
	38.2.4.2 Configuration
	38.2.4.2.1 START
	38.2.4.2.2 STOP
	38.2.4.2.3 ISSTARTED
	38.2.4.2.4 SET_BLOCKING_MODE
	38.2.4.2.5 SET_TIMEOUT
	38.2.4.2.6 SET_CONFIG
	38.2.4.2.7 GET_CONFIG
	38.2.4.2.8 GET_STATS
	38.2.4.2.9 CLR_STATS
	38.2.4.2.10 GET_HW_IMPL
	38.2.4.2.11 RECLAIM
	38.2.4.2.12 ENCRYPT

	38.2.5 De/encryption

	39 Support

