
.

RCC

RTEMS-5 Cross Compiler (RCC)

2020 User's Manual

The most important thing we build is trust

RCC User's Manual

RCC-UM 1 www.cobhamaes.com/gaisler
September 2020, Version 1.3-rc9

RCC-UM
September 2020, Version 1.3-rc9

2 www.cobhamaes.com/gaisler

Table of Contents
1. Introduction .. 7

1.1. General .. 7
1.2. Installation on host platform .. 7

1.2.1. Host requirements ... 7
1.2.2. Installing RCC on Windows platforms .. 8
1.2.3. Installing on Linux platform ... 9

1.3. Contents of /opt/rcc-1.3-rc9 ... 10
1.4. RCC tools .. 10
1.5. Documentation .. 11
1.6. RCC source Git access ... 12
1.7. Changes since RCC-1.2 .. 12
1.8. Known limitations in this release .. 13
1.9. Support .. 13

2. Using RCC ... 14
2.1. General development flow ... 14
2.2. Compiler toolchain ... 14

2.2.1. sparc-gaisler-rtems5 toolchain BSP selection .. 14
2.2.2. Common compiler options .. 15
2.2.3. GNU GCC toolchain .. 15
2.2.4. LLVM Clang toolchain .. 16
2.2.5. Floating-point considerations ... 18
2.2.6. SPARC V8 instructions .. 18
2.2.7. LEON CASA instruction .. 18
2.2.8. LEON UMAC/SMAC instructions .. 18
2.2.9. LEON3/4/5 CPU counter .. 19
2.2.10. Enabling/Disabling Interrupt by use of Write Partial PSR instruction 19

2.3. RTEMS applications .. 19
2.4. Memory organisation .. 19
2.5. Board-support packages (BSPs) .. 20

2.5.1. LEON3 BSP ... 20
2.5.2. GR740 BSP .. 21
2.5.3. GR712RC BSP ... 22
2.5.4. UT699 BSP .. 22
2.5.5. UT699E/UT700 BSP ... 23
2.5.6. AT697F BSP .. 23

2.6. Driver Manager ... 23
2.6.1. Initialization ... 23
2.6.2. Configuration .. 23
2.6.3. Driver configuration ... 24
2.6.4. drvmgr command .. 25

2.7. Network configuration .. 27
2.8. PCI ... 27
2.9. LEON3 BSP multiprocessing configurations ... 27

2.9.1. Memory and device resource sharing .. 28
2.9.2. Interrupt considerations .. 28
2.9.3. Symmetric multiprocessing (SMP) configuration ... 28
2.9.4. Asymmetric multiprocessing (AMP) configuration .. 29
2.9.5. RTEMS SMP AMP example ... 31

2.10. Making boot-proms .. 31
3. Examples .. 32

3.1. Overview .. 32
3.2. Building ... 32

4. Execution and debugging ... 33
4.1. TSIM ... 33
4.2. GRMON .. 33

RCC-UM
September 2020, Version 1.3-rc9

3 www.cobhamaes.com/gaisler

4.3. GDB with GRMON and TSIM .. 34
4.4. Using DDD graphical front-end to gdb .. 35

I. Device drivers reference .. 36
5. GRLIB AMBA Plug&Play bus ... 37

5.1. Introduction .. 37
5.2. Overview .. 38
5.3. Initialization .. 38
5.4. Finding AMBAPP devices by Plug&Play ... 38
5.5. Allocating a device structure .. 39
5.6. Name database .. 39
5.7. Frequency of a device .. 39

6. Driver Manager .. 40
6.1. Introduction .. 40
6.2. Overview .. 40
6.3. Configuration .. 45
6.4. Initialization .. 47
6.5. Interrupt ... 47
6.6. Address translation ... 48
6.7. Function Interface .. 49

7. RMAP Stack ... 50
7.1. Introduction .. 50
7.2. Driver Interface ... 50
7.3. Logical and Path addressing .. 50
7.4. Zero-copy implementation ... 50
7.5. RMAP GRSPW driver .. 50
7.6. Thread-safe ... 51
7.7. User interface .. 51

8. SpaceWire Network model .. 54
8.1. Introduction .. 54
8.2. Overview .. 54
8.3. Requirements .. 54
8.4. Node Description ... 54
8.5. Read and write operation .. 54
8.6. Interrupt handling .. 55
8.7. Using the spacewire bus driver ... 55

9. AMBA over SpaceWire .. 56
9.1. Introduction .. 56
9.2. Overview .. 56
9.3. Requirements .. 56
9.4. Interrupt handling .. 56
9.5. Memory allocation on target .. 56
9.6. Differences between on-chip AMBA drivers ... 56

10. LEON PCI host bridge drivers .. 58
10.1. Introduction ... 58
10.2. Sources .. 58
10.3. Configuration .. 58
10.4. User interface .. 59

11. GRPCI2 DMA driver .. 61
11.1. Introduction ... 61
11.2. Software design overview .. 61
11.3. DMA user interface .. 63
11.4. API reference .. 69

12. GR-RASTA-ADCDAC PCI peripheral ... 71
13. GR-RASTA-IO PCI peripheral .. 72
14. GR-RASTA-TMTC PCI peripheral .. 73
15. GR-RASTA-SPW_ROUTER PCI Peripheral ... 74
16. GR-CPCI-LEON4-N2X PCI Peripheral .. 75

16.1. Driver registration .. 75

RCC-UM
September 2020, Version 1.3-rc9

4 www.cobhamaes.com/gaisler

16.2. Driver resource configuration ... 75
17. GR-CPCI-GR740 PCI Peripheral ... 76

17.1. Driver registration .. 76
17.2. Driver resource configuration ... 76

18. GRSPW Packet driver ... 77
18.1. Introduction ... 77
18.2. Software design overview .. 78
18.3. Device Interface ... 85
18.4. DMA interface ... 95
18.5. API reference ... 111

19. GRSPW GRLIB SpaceWire driver ... 114
19.1. Introduction ... 114
19.2. User interface .. 114
19.3. Receiver example ... 124

20. GRSPW ROUTER driver ... 125
20.1. Introduction ... 125
20.2. Software design overview .. 125
20.3. GRSPW ROUTER user interface .. 126
20.4. API reference ... 147

21. SPWTDP driver .. 150
21.1. Introduction ... 150
21.2. Software design overview .. 150
21.3. SPWTDP user interface ... 151
21.4. API reference ... 161

22. GR1553B GRLIB MIL-STD-1553B driver .. 163
22.1. Introduction ... 163
22.2. GR1553B Hardware .. 163
22.3. Software driver .. 163
22.4. Driver Registration ... 163
22.5. Examples .. 163

23. GR1553B remote terminal driver ... 164
23.1. Introduction ... 164
23.2. User Interface .. 164

24. GR1553B bus monitor driver .. 174
24.1. Introduction ... 174
24.2. User Interface .. 174

25. GR1553B bus controller driver .. 179
25.1. Introduction ... 179
25.2. BC Device Handling ... 180
25.3. Descriptor List Handling .. 182

26. B1553BRM GRLIB Actel Core1553BRM driver .. 194
26.1. Introduction ... 194
26.2. User Intrerface ... 194

27. B1553RT GRLIB Actel Core1553 RT driver ... 203
27.1. Introduction ... 203
27.2. User interface .. 203

28. GRCAN CAN driver ... 208
28.1. Introduction ... 208
28.2. User Interface .. 208

29. CAN_OC GRLIB Opencores CAN driver ... 217
29.1. Introduction ... 217
29.2. User interface .. 217

30. SatCAN driver (SatCAN) ... 224
30.1. Introduction ... 224
30.2. User interface .. 224

31. CAN_MUX driver (CAN_MUX) ... 232
31.1. Introduction ... 232
31.2. User interface .. 232

RCC-UM
September 2020, Version 1.3-rc9

5 www.cobhamaes.com/gaisler

32. GRASCS driver .. 234
32.1. Introduction ... 234
32.2. User interface .. 234
32.3. Examples code ... 237

33. APBUART console driver .. 239
33.1. Introduction ... 239
33.2. User interface .. 239

34. SPICTRL GRLIB SPI master driver ... 242
34.1. Introduction ... 242
34.2. User interface .. 242

35. I2CMST GRLIB I2C Master driver .. 246
35.1. Introduction ... 246
35.2. User interface .. 246

36. GPIO Library ... 247
36.1. Introduction ... 247
36.2. Driver interface .. 247
36.3. User interface .. 247

37. GRGPIO GRLIB GPIO driver ... 250
37.1. Introduction ... 250
37.2. User interface .. 250

38. GRADCDAC GRLIB ADC/DAC driver ... 253
38.1. Introduction ... 253
38.2. User interface .. 253

39. GRTC GRLIB CCSDS Telecommand driver .. 260
39.1. INTRODUCTION .. 260
39.2. User interface .. 260

40. GRTM GRLIB CCSDS Telemetry Driver ... 271
40.1. Introduction ... 271
40.2. User interface .. 271

41. GRCTM driver ... 280
41.1. Introduction ... 280

42. SPWCUC driver ... 283
42.1. Introduction ... 283
42.2. User interface .. 283

43. GRPWRX GRLIB PacketWire Receiver driver .. 287
43.1. Introduction ... 287
43.2. User interface .. 287

44. GRAES GRLIB AES DMA driver ... 294
44.1. Introduction ... 294
44.2. User interface .. 294

45. AHB Status register driver .. 301
45.1. Overview .. 301
45.2. Driver sources .. 301
45.3. Driver registration .. 301
45.4. Operation .. 301
45.5. User interface .. 301

46. L2CACHE driver .. 303
46.1. Introduction ... 303
46.2. Software design overview .. 303
46.3. L2CACHE user interface ... 304
46.4. API reference ... 316

47. GRIOMMU driver .. 318
47.1. Introduction ... 318
47.2. Software design overview .. 318
47.3. GRIOMMU user interface .. 319
47.4. API reference ... 329

48. L4STAT/L3STAT driver .. 331
48.1. Introduction ... 331

RCC-UM
September 2020, Version 1.3-rc9

6 www.cobhamaes.com/gaisler

48.2. Software design overview .. 331
48.3. L4STAT user interface .. 331
48.4. API reference ... 334

49. Memory Scrubber driver .. 336
49.1. Introduction ... 336
49.2. Software design overview .. 336
49.3. Memory scrubber user interface .. 337
49.4. API reference ... 343

RCC-UM
September 2020, Version 1.3-rc9

7 www.cobhamaes.com/gaisler

Chapter 1. Introduction

1.1. General

This document describes the RTEMS LEON/ERC32 GNU cross-compiler system (RCC). This chapter covers the
following topics:

• Overview
• Installing RCC
• Contents and directory structure of RCC
• Compiling and linking LEON and ERC32 RTEMS applications
• Debugging RTEMS application with GRMON, TSIM and GDB

RCC is a multi-platform development system based on the GNU family of freely available tools with additional
tools developed by RTEMS Community and Cobham Gaisler. RCC consists of the following packages:

• GCC-7.5.0 or LLVM/Clang-8.0.0 C/C++ compiler
• GNU binary utilities 2.29
• RTEMS-5.1 C/C++ real-time kernel, precompiled BSPs for LEON2/3/4 and ERC32
• Newlib-3.1.4 (cygwin-3_1_4-release-49-g7947581) standalone C-library
• GDB-8.2.1 SPARC cross-debugger

RCC includes precompiled BSPs for LEON2/3/4/5 and ERC32 in different configurations and some examples to
easily get started using RTEMS on LEON/ERC32. The precompiled BSPs:

• AT697F
• UT699
• UT700 (also used for UT699E)
• GR712RC
• GR712RC AMP configuration
• GR712RC SMP configuration
• GR740
• GR740 AMP configuration
• GR740 SMP configuration
• Generic LEON3
• Generic LEON3 soft-float (floating point software emulation)
• Generic LEON3 flat register window model
• Generic LEON3 SMP configuration

The ERC32 BSP is temporarily disabled but will be enabled in future releases.

1.2. Installation on host platform

1.2.1. Host requirements

RCC is provided for two host platforms: Linux/x86_64 and Windows/x86_64. The following are the platform
system requirements:

 Linux (GCC): Linux-2.6.x, glibc-2.11.1 (or higher)

 Linux (LLVM): Linux-3.x, glibc-2.18 (or higher)

 Windows (GCC/LLVM): MSYS base 2013.07.23 (or higher)

Starting with RCC-1.3-rc7 release, precompiled SPARC objects/libraries are built with the DWARF4 debugging
format supported by GDB-8.2.1 and GRMON-3.1 and TSIM3. DWARF3 or later is not supported by GDB-6.8,
hence source level debugging is not supported for TSIM2 and GRMON2 unless the user rebuilds RTEMS kernel
and Newlib with DWARF2 (-gdwarf-2 flag) updating the build scripts described in the following subsections.

In order to build samples and recompile the RTEMS kernel sources an MSYS environment and some specific
development tools are required. MSYS provides standard UNIX tools such as make, find, autoconf, etc. and

RCC-UM
September 2020, Version 1.3-rc9

8 www.cobhamaes.com/gaisler

MINGW provides GCC and BINUTILS built for Windows. The RTEMS-5 kernel source build system requires
specific versions of automake-1.12.6 and autoconf-2.69 to work properly. The following links provides all tools
neccessary and section Section 1.2.2.1 describes the Windows MSYS setup flow briefly.

• http://www.mingw.org
• http://sourceforge.net/projects/mingw/files/Installer/

• ftp://ftp.gnu.org/gnu/autoconf/
• ftp://ftp.gnu.org/gnu/automake/

1.2.2. Installing RCC on Windows platforms

The toolchain installation zip file (sparc-rtems-5-gcc-7.5.0-1.3-rc9-mingw.zip) must be extract-
ed to C:\opt creating the directory C:\opt\rcc-1.3-rc9. The toolchain executables can be invoked from
the command prompt by adding the executable directory to the PATH environment variable. The directory C:
\opt\rcc-1.3-rc9\bin can be added to the PATH variable by selecting "My Computer->Properties->Ad-
vanced->Environment Variables". Development often requires some basic utilities such as make, but is not re-
quired to compile. On Windows, the MSYS Base system can be installed to get a basic UNIX like development
environment (including make).

The RTEMS build procedure rely on the autoconf and automake utilities to create Makefiles from the RTEMS
sources. The MSYS Base system doesn't include the required version of autoconf and automake, instead they can
be compiled from sources as described below.

1.2.2.1. Installing MSYS

The MSYS package can be freely downloaded from http://www.mingw.org. It is available as an self extracting
installation application (msys-get-installer.exe). The following text assumes the MSYS has been successfully in-
stalled to C:\MINGW. The following tools, apart from the MSYS and MINGW base, are also required to be se-
lected for installation from within the MSYS installer:

• msys-findutils
• msys-m4
• msys-perl
• msys-coreutils-ext
• msys-patch

The directory where the toolchain is installed (C:\opt\rcc-1.3-rc9) must be found in /opt/rcc-1.3-
rc9 from the MSYS environment, this can done by adding an mount entry similar to one of the examples below
to the /etc/fstab file in the MSYS environment.

 C:/opt/rcc-1.3.x /opt/rcc-1.3.x

or

 C:/opt /opt

The path to the toolchain binaries (C:\opt\rcc-1.3-rc9\bin) must added to the MSYS PATH environment
variable. Below is an example of how to change the PATH variable in the MSYS shell.

 export PATH=/opt/rcc-1.3.x/bin:$PATH

The toolchain installation can be tested by compiling the samples included in the toolchain,

 $ cd /opt/rcc-1.3.x/src/samples
 $ make

1.2.2.2. Building Newlib from sources

RCC comes with the Newlib C library precompiled and its source code, thus this step is optional and in general
not needed. The libraries can be found in sparc-gaisler-rtems5/lib/TARGET where TARGET is a
directory named according to the multilib path of a specific target, see Section 2.2.3.3.

The source code is located in src/newlib and required during source level debugging and when rebuilding
newlib. Newlib can be (re)built from sources using the src/build-newlib.sh script. By default it will build
Newlib once for every multilib defined for the compiler used. The libraries will overwrite the pre-built libraries

http://www.mingw.org

RCC-UM
September 2020, Version 1.3-rc9

9 www.cobhamaes.com/gaisler

that comes with RCC. Additional target configurations can be added and or application specific compiler flags
can also be added to the script used when building newlib.

1.2.2.3. Installing RTEMS source

Installing the RTEMS kernel source code is optional but recommended when debugging applications. The
toolchain libraries are built with debugging symbols making it possible for GDB to find the source files. The RCC
RTEMS sources is assumed to be located in C:\opt\rcc-1.3-rc9\src\rcc-1.3-rc9. The RTEMS
sources (rtems-5-1.3-rc9-src.txz) can be installed by extracting the source distribution to C:\opt
\rcc-1.3-rc9\src creating the directory C:\opt\rcc-1.3-rc9\src\rcc-1.3-rc9.

Alternatively the sources can be obtained from the Git repository, see Section 1.6.

1.2.2.4. Building RTEMS from source

The RCC toolchain comes with pre-built RTEMS kernel for the most common LEON BSPs, thus this step is
optional.

The RTEMS build environment can be set up by following the Windows instructions available www.rtems.org
[http://www.rtems.org] and are briefly described here. In addition to the environment installed in Section 1.2.2.1
the RTEMS requires automake-1.12.6 and autoconf-2.69 to configure and build the RTEMS kernel. This section
describes how to install autoconf, automake and building the RTEMS SPARC BSPS from source.

As previously mentioned the auto-tools can be downloaded from the GNU project's FTP. RCC comes with the
tools and an install script found in the /opt/rcc-1.3-rc9/src/tools. The script is invoked from the
MSYS shell:

 $ cd /opt/rcc-1.3.x/src/tools
 $ sh autotools.sh
 $ exit

After installing automake and autoconf it may be required to restart the MSYS shell.

Once the tools has been installed and the MSYS shell has been restarted, the installed RTEMS sources can be
built manually or using the prepared Makefile available at /opt/rcc-1.3-rc9/src/build-rtems.sh.
See Section 2.2 for details on how to set the compiler options used when building a BSP. The build process is
divided in four steps, in the first step the make scripts are generated this step is called bootstrap. The bootstrapping
can be done with the make target boot as the examples shows below. The bootstrap step is only needed to be rerun
when adding or removing files from the source tree.

 $ cd /opt/rcc-1.3.x/src/rcc-1.3.x
 $./bootstrap -c
 $./bootstrap -H
 $./boostrap

The second step configures the RTEMS kernel and a build environment in /opt/rcc-1.3-rc9/src/build,

 $ cd /opt/rcc-1.3.x/src/build
 $../rcc-1.3.x/configure --target=sparc-gaisler-rtems5 --enable-rtemsbsp="BSPs" ..

The third and fourth steps compiles and installs the new kernel to /opt/rcc-1.3-rc9/sparc-gaisler-
rtems5

 $ make compile
 $ make install

1.2.3. Installing on Linux platform

The RCC directory tree is compiled to reside in the /opt/rcc-1.3-rc9 directory on all platforms. After
obtaining the XZ compressed tarfile with the binary distribution, uncompress and untar it in a suitable location -
if this is not /opt/rcc-1.3-rc9 then a link have to be created to point to the location of the RCC directory.
The distribution can be installed with the following commands:

 $ cd /opt
 $ tar -Jxf sparc-rtems-5-gcc-7.2.x-1.3.y-linux.txz

After the compiler is installed, add /opt/rcc-1.3-rc9/bin to the executables search path and /opt/
rcc-1.3-rc9/man to the man path.

http://www.rtems.org
http://www.rtems.org

RCC-UM
September 2020, Version 1.3-rc9

10 www.cobhamaes.com/gaisler

1.2.3.1. Building Newlib from sources

RCC comes with the Newlib C library precompiled and its source code, thus this step is optional and in general
not needed. The libraries can be found in sparc-gaisler-rtems5/lib/TARGET where TARGET is a
directory named according to the multilib path of a specific target, see Section 2.2.3.3.

The source code is located in src/newlib and required during source level debugging and when rebuilding
newlib. Newlib can be (re)built from sources using the src/build-newlib.sh script. By default it will build
Newlib once for every multilib defined for the compiler used. The libraries will overwrite the pre-built libraries
that comes with RCC. Additional target configurations can be added and or application specific compiler flags
can also be added to the script used when building newlib.

1.2.3.2. Installing RTEMS source

Installing the RTEMS kernel source code is optional but recommended when debugging applications. The
toolchain libraries are built with debugging symbols making it possible for GDB to find the source files. The RCC
RTEMS sources is assumed to be located in /opt/rcc-1.3-rc9/src/rcc-1.3-rc9. The RTEMS sources
(rtems-5-1.3-rc9-src.txz) can be installed by extracting the source distribution to /opt/rcc-1.3-
rc9/src. It can be done as follows.

 $ cd /opt/rcc-1.3.x/src
 $ tar -Jxf /path/to/rtems-5-1.3.x.txz

Alternatively the sources can be obtained from the Git repository, see Section 1.6.

1.2.3.3. Building RTEMS from sources

The RCC toolchain comes with pre-built RTEMS kernel for the most common LEON BSPs, thus this step is
optional.

The RTEMS libraries found in sparc-gaisler-rtems5/BSP can be built from the sources using the src/
build-rtems.sh. The RTEMS build environment requires that autoconf-2.69 and automake-1.12.6 are in-
stalled. The auto tools and an example installation script comes with RCC in the src/tools directory, it is
described in Section 1.2.2.4.

See Section 2.2.1 for details on how to set the BSP compiler options prior to building RTEMS.

Alternatively the sources can be obtained from the Git repository, see Section 1.6.

1.3. Contents of /opt/rcc-1.3-rc9

The created RCC installation directory has the following sub-directories and files:

 bin Toolchain executables

 doc GNU, RCC and RTEMS documentation

 include Host includes

 info Info documents for GNU tools

 lib Libgcc, libstdc++, libgomp multi-libraries

 libexec Host toolchain executables

 make RTEMS make scripts

 man Man pages for GNU tools

 sparc-gaisler-rtems5/BSP RTEMS kernel and BSP target libraries, headers and linker scripts

 sparc-gaisler-rtems5/lib Newlib C/Math target specific libraries

 sparc-gaisler-rtems5/include Newlib C/Math common headers

 src Source code, examples and make scripts used to build RTEMS/Newlib from
source

1.4. RCC tools

The following tools are included in RCC under the bin/ directory:

RCC-UM
September 2020, Version 1.3-rc9

11 www.cobhamaes.com/gaisler

 sparc-gaisler-rtems5-addr2line Convert address to C/C++ line number

 sparc-gaisler-rtems5-ar Library archiver

 sparc-gaisler-rtems5-as Cross-assembler

 sparc-gaisler-rtems5-c++filt Utility to demangle C++ symbols

 sparc-gaisler-rtems5-elfedit Utility to update ELF header

 sparc-gaisler-rtems5-gdb GNU GDB C/C++ level Debugger

 sparc-gaisler-rtems5-gprof Profiling utility

 sparc-gaisler-rtems5-ld GNU linker

 sparc-gaisler-rtems5-nm Utility to print symbol table

 sparc-gaisler-rtems5-objcopy Utility to convert between binary formats

 sparc-gaisler-rtems5-objdump Utility to dump various parts of executables

 sparc-gaisler-rtems5-ranlib Library sorter

 sparc-gaisler-rtems5-readelf ELF file information utility

 sparc-gaisler-rtems5-size Utility to display segment sizes

 sparc-gaisler-rtems5-strings Utility to dump strings from executables

 sparc-gaisler-rtems5-strip Utility to remove symbol table

The following tools are specific for the GCC toolchain also found under the bin/ directory:

 sparc-gaisler-rtems5-c++ C++ cross-compiler

 sparc-gaisler-rtems5-cpp The C preprocessor

 sparc-gaisler-rtems5-g++ Same as sparc-gaisler-rtems5-c++

 sparc-gaisler-rtems5-gcc C/C++ cross-compiler

 sparc-gaisler-rtems5-gcov Coverage testing tool

The following tools are specific for the LLVM/Clang toolchain also found under the bin/ directory:

 sparc-gaisler-rtems5-clang clang C cross-compiler

 sparc-gaisler-rtems5-clang++ clang C++ cross-compiler

 sparc-gaisler-rtems5-cpp Same as sparc-gaisler-rtems5-clang

 llvm-objdump LLVM utility to dump various parts of executables information

 clang-format LLVM utility to format source code

The following tools included in RCC comes from the RTEMS tools project:

 rtems-bin2c Utility to convert binary file to C source array

 rtems-bsp-builder Testing utility for building BSPs in various configurations

 rtems-exeinfo RTEMS Executable Information display tool

 rtems-ld RTEMS linker utility

 rtems-ra Part of the RTEMS Linker

 rtems-rap Part of the RTEMS Linker, manages RAP files

 rtems-syms RTEMS Linker tool to generate symbol tables

 rtems-test RTEMS Tester command line tool

 rtems-tld Part of the RTEMS Linker vcreating traceable executables

1.5. Documentation

The GNU, RCC and RTEMS documentation are distributed together with the toolchain. It consists of API, user's
and tools manuals localted in the doc/ directory of the toolchain. The GRLIB drivers that Cobham Gaisler de-
velops are documented in the RCC Drivers user's manual found in the same directory.

RCC-UM
September 2020, Version 1.3-rc9

12 www.cobhamaes.com/gaisler

RCC specific documentation:

 rcc-drivers-1.3-rc9.pdf GRLIB device driver documentation

 rcc-1.3-rc9.pdf RCC User's Manual

GNU manuals:

 as.pdf Using as - the GNU assembler

 binutils.pdf The GNU binary utilities

 cpp.pdf The C Preprocessor

 gcc.pdf Using and porting GCC

 gdb.pdf Debugging with GDB

 gprof.pdf the GNU profiling utility

 ld.pdf The GNU linker

Newlib C library:

 libc.pdf Newlib C Library

 libm.pdf Newlib Math Library

RTEMS manuals:

 bsp_howto.pdf BSP and Device Driver Development Guide

 c_user.pdf RTEMS C User's Guide (this is the one you want!)

 cpu_supplement.pdf RTEMS SPARC CPU Application Supplement

 develenv.pdf RTEMS Development environment guide

 filesystem.pdf RTEMS Filesystem Design Guide

 itron.pdf RTEMS ITRON 3.0 User's Guide

 networking.pdf RTEMS Network Supplement

 new_chapters.pdf RTEMS Newly added features

 porting.pdf RTEMS Porting Guide

 posix1003-1.pdf RTEMS POSIX 1003.1 Compliance Guide

 posix_users.pdf RTEMS POSIX API User's Guide

 relnotes.pdf RTEMS Release Notes

 started.pdf Getting Started with RTEMS for C/C++ Users

The documents are all provided in PDF format, with searchable indexes.

1.6. RCC source Git access

The RCC RTEMS kernel sources is distributed from Cobham Gaisler homepage in a tar-file, the latest patches are
also available using Git revision control system. It is possible to browse the code at http://git.rtems.org/danielh/
rcc.git or checkout the repositoy issuing the below commands. The RCC sources are found in the rcc-1.3 branch.

 $ git clone git://git.rtems.org/danielh/rcc.git

1.7. Changes since RCC-1.2

This section lists some of the changes going from RCC-1.2 to RCC-1.3.

• Prebuilts BSPs are now available for UT699, GR712RC, UT700 and GR740 devices. The prebuilt BSPs are
using applicable work arounds and optimal ISA configuration.

• Starting with RCC-1.3, GCC uses same compiler flags as the mainline GCC. For example the -mv8 and the
-mtune=ut699 flags are no longer available.

• LLVM Clang toolchain was introduced with RCC-1.3-rc6 as an option alongside the GCC compiler for some
of the LEON targets.

http://git.rtems.org/danielh/rcc.git
http://git.rtems.org/danielh/rcc.git

RCC-UM
September 2020, Version 1.3-rc9

13 www.cobhamaes.com/gaisler

1.8. Known limitations in this release

This section lists known limitations in RCC-1.3 that will be addressed in future releases of RCC-1.3.

• ERC32 is not yet available as pre-built BSPs.
• The LEON3 multiprocessor BSP configuration (-qbsp=leon3_mp) is not yet available as pre-built (BSP

configuration exists, enable in build-rtems.sh).
• The LEON3 BSP configuration without driver manager (-qbsp=leon3_std) is not yet available as pre-

built.

1.9. Support

The RCC compiler system is provided freely without any warranties. Technical support can be obtained from
Cobham Gaisler through the purchase of a technical support contract. See www.gaisler.com for more details.

When contacting the support team at support@gaisler.com, please identify yourself in full, including company
affiliation and site name and address. Please identify exactly what product that is used, specifying if it is an IP core
(with full name of the library distribution archive file), component, software version, compiler version, operating
system version, debug tool version, simulator tool version, board version, etc.

www.gaisler.com

RCC-UM
September 2020, Version 1.3-rc9

14 www.cobhamaes.com/gaisler

Chapter 2. Using RCC

2.1. General development flow

Compilation and debugging of applications is typically done in the following steps:

1. Compile and link program with gcc specifying a precompiled BSP with -qbsp=BSP flag
2. Debug program using a simulator (gdb connected to TSIM/GRSIM)
3. Debug program on remote target (gdb connected to GRMON)
4. Create boot-prom for a standalone application with mkprom2

RCC supports multi-tasking real-time C/C++ programs based on the RTEMS kernel. Compiling and linking is
done in much the same manner as with a host-based gcc.

2.2. Compiler toolchain

2.2.1. sparc-gaisler-rtems5 toolchain BSP selection

The gcc and clang compiler frontends have been modified to support easy selection of a precompiled BSP or a
user built BSP using the flag: "-qbsp=BSP".

BSPs are compiled using a specific set of target compiler flags and RTEMS kernel configuration. For details about
the prebuilt BSPs please see Section 2.5. Below are the predefined RTEMS BSP variants available in RCC. Which
BSP is available depends on which compiler is being used, for LLVM/Clang some targets are disabled due to
missing support in compiler. Unless otherwise stated the RTEMS BSPs are configured single-core with driver
manager startup initialization.

Table 2.1. RCC -qbsp=BSP options per compiler toolchain. *) planned for future release

BSP -qbsp= GCC Clang Description

leon2 * generic LEON2 BSP (without driver manager startup initialization)

at697f Yes No generic LEON2 BSP with AT697F compiler flags (without driver manag-
er startup initialization)

erc32 * ERC32 BSP (without driver manager startup initialization).

leon3 Yes Yes generic LEON3/4/5 BSP (default if no other option given).

leon3std * * generic LEON3/4/5 BSP (without driver manager startup initialization).

leon3_sf Yes Yes generic LEON3/4/5 BSP, kernel built with soft-float

leon3_flat No No generic LEON3/4/5 BSP, kernel built with flat register window model.
Not prebuilt because RTEMS itself requires 8 register windows.

leon3_smp Yes Yes generic LEON3/4/5 BSP in RTEMS SMP configuration.

leon3_mp * * generic LEON3/4/5 BSP in RTEMS Multiprocessor config (AMP).

gr712rc Yes Yes GR712RC LEON3/4/5 BSP.

gr712rc_mp Yes Yes GR712RC LEON3/4/5 BSP in RTEMS Multiprocessor config (AMP).

gr712rc_smp Yes Yes GR712RC LEON3/4/5 BSP in RTEMS SMP configuration.

gr740 Yes Yes GR740 LEON3/4/5 BSP.

gr740_mp Yes Yes GR740 LEON3/4/5 BSP in RTEMS Multiprocessor config (AMP).

gr740_smp Yes Yes GR740 LEON3/4/5 BSP in RTEMS SMP configuration.

ut699 Yes UT699 LEON3/4/5 BSP.

ut700 Yes Yes UT700/UT699E LEON3/4/5 BSP.

qbsp=CUSTOM Yes Yes User defined BSP configuration and compiler flags matching the RTEMS
cfg-file in bsps/sparc/BSP/config/CUSTOM.cfg.

RCC-UM
September 2020, Version 1.3-rc9

15 www.cobhamaes.com/gaisler

The prebuilt BSPs are built using target specific optimizations and with specific errata work arounds enabled. It
is important that the same compiler flags are used in all build steps compiling kernel and application and when
linking the final binary (this selects the correct libgcc/libc/libm from the target specific multilibs).

The RTEMS BSP build configuration file is found relative the RTEMS source tree bsps/sparc/BSP/con-
fig/BSP.cfg. When setting custom build flags it is copied/renamed and updated to reflect the compiler flags
used when building a custom RTEMS kernel/BSP. The name of the configuration file is used as input to the
RTEMS configure script's --enable-rtemsbsps="CUSTOM". See Section 1.2 for build and installation in-
structions.

2.2.2. Common compiler options

Below are some SPARC/LEON specific and some other commonly used compiler options available on both GCC
and Clang. For compiler specific flags see GCC Section 2.2.3.1 and Clang Section 2.2.4.2

 -g generate debugging information - must be used for debugging with gdb.

 -msoft-float emulate floating-point - must be used if no FPU exists in the system.

 -mcpu=v8/none generate SPARC V8 mul/div instructions and SUN SPARC timings.

 -mflat Enables flat register window model. SAVE/RESTORE instructions will not be
generated by compiler. It is ABI compliant with the SPARC ABI.

 -O2 optimize code - should be used for optimum performance and combination of
small code size.

 -Os optimize code for size - should be used for minimum code size.

For a full explaination and listing of compiler options see respective compiler manual, referenced from Section 1.5.

2.2.3. GNU GCC toolchain

2.2.3.1. sparc-gaisler-rtems5-gcc specific options

The GCC mcpu= options determines the instruction set (ISA) generated by the compiler whereas the -mfix-
TARGET options determine target specific work arounds and compiler configurations. Below are the SPARC/
LEON specific and some other commonly used GCC options:

 -mcpu=v7/none generate SPARC V7 instructions. This ISA should be compilant with all LEON
targets. (default)

 -mcpu=v8 generate SPARC V8 mul/div instructions and SUN SPARC timings.

 -mcpu=leon generate SPARC V8 mul/div instructions and LEON timings.

 -mcpu=leon3 generate SPARC V8 mul/div and CAS/CASA instructions and LEON3 timings.

 -mcpu=leon3v7 generate SPARC V7 with CAS/CASA instructions and LEON3 timings.

 -mfix-ut699 Enables work arounds for the UT699, for example the UT699 floating-point erra-
ta, the UT699 data cache nullify errata and the LEON3FT B2BST errata.

 -mfix-ut700 Enables all work arounds for the UT700/UT699e.

 -mfix-gr712rc Enables all work arounds for the GR712RC (TN-0009, TN-0010, TN-0012 and
TN-0013).
Note: TN-0018 is worked around by run-time.

 -mfix-at697f Enables GCC compiler workarounds for AT697F errata.

For a full explaination and listing of GNU GCC options see the gcc manual (gcc.pdf) referenced from Sec-
tion 1.5.

2.2.3.2. LEON target GNU GCC compiler options

Below is a summary of commly used LEON chips and their specific compiler options.

 AT697F -mcpu=leon -mfix-at697f

RCC-UM
September 2020, Version 1.3-rc9

16 www.cobhamaes.com/gaisler

 GR712RC -mcpu=leon3 -mfix-gr712rc

 GR740 -mcpu=leon3

 UT699 -mcpu=leon -mfix-ut699

 UT700/UT699E -mcpu=leon3 -mfix-ut700

2.2.3.3. GCC multi-libs

Below is a summary of all prebuilt variants (multi-libs) of the libgcc/libc/libm available prebuilt in the RCC
toolchain. The compiler flags during linking selects which library variant will be linked in. It is possible using
either Map-file from the linker or GCC -v flag to verify that the correct libraries are used in the final executable.

Table 2.2. RCC multi-lib variants selected during linking (gcc)

Directory Compiler linker flags CPU FPU V8 CAS

. (none) SPARCv7 Y N N

soft -msoft-float SPARCv7 N N N

v8 -mcpu=v8 SPARCv8 Y Y N

leon -mcpu=leon LEON2, UT699 Y Y N

leon3 -mcpu=leon3 LEON3/4/5 Y Y Y

leon3v7 -mcpu=leon3v7 LEON3/4/5 Y N Y

leon3/mfix-gr712rc -mcpu=leon3 -mfix-gr712rc GR712RC Y Y Y

leon3/mfix-ut700 -mcpu=leon3 -mfix-ut700 UT699E, UT700 Y Y Y

leon3/flat -mcpu=leon -mflat LEON3/4/5 Y Y Y

leon/mfix-ut699 -mcpu=leon -mfix-ut699 UT699 Y Y N

leon/mfix-at697f -mcpu=leon -mfix-at697f AT697F Y Y N

soft/v8 -msoft-float -mcpu=v8 SPARCv8 N Y N

soft/leon3 -msoft-float -mcpu=leon3 LEON3/4/5 N Y Y

soft/leon3/flat -msoft-float -mcpu=leon
-mflat

LEON3/4/5 N Y Y

soft/leon3v7 -msoft-float -mcpu=leon3v7 LEON3/4/5 N N Y

soft/leon3/mfix-gr712rc -msoft-float -mcpu=leon3
-mfix-gr712rc

GR712RC N Y Y

soft/leon3/mfix-ut700 -msoft-float -mcpu=leon3
-mfix-ut700

UT699E, UT700 N Y Y

soft/leon/mfix-ut699 -msoft-float -mcpu=leon
-mfix-ut699

UT699 N Y N

soft/leon/mfix-at697f -msoft-float -mcpu=leon
-mfix-at697f

AT697 N Y N

2.2.4. LLVM Clang toolchain

2.2.4.1. Overview

The LLVM/Clang compiler toolchain is configured to use the LLVM internal assembler. Files with an .S (or
similar suffix) are passed through LLVM's internal assembler. However, if the sparc-gaisler-rtems5-as is used
the Binutils assembler tool will be used instead. The result should be the same however it is important to note that
two different assembler utilities are packaged with the LLVM/Clang toolchain.

Newlib and RTEMS kernel packages are compiled using the Clang compiler, however the compiler-rt package is
not being used in this toolchain. The following libraries are pre-built using GNU GCC compiler:

RCC-UM
September 2020, Version 1.3-rc9

17 www.cobhamaes.com/gaisler

• libgcc
• libstdc++-v3
• libatomic

2.2.4.2. sparc-gaisler-rtems5-clang specific options

The LLCM clang -mcpu= options determines the instruction set (ISA) other target specific options such as work
arounds and compiler configurations. SPARCv7 is not supported currently by Clang. Below are the SPARC/LEON
specific and some other commonly used LLVM/Clang options:

 -mcpu=leon3 generate SPARC V8 mul/div and CAS/CASA instructions and LEON3 timings.

 -mcpu=gr712rc Build for target for GR712RC. Enables all work arounds for the GR712RC
(TN-0009, TN-0010, TN-0012 and TN-0013).
Note: TN-0018 is worked around by run-time.

 -mcpu=gr740 Build for target for GR740.

 -mfix-ut700 Build for target for UT700 and UT699E. Enables all work arounds for the
UT700/UT699E that are applicable to the environment (TN-0009, TN-0010 and
TN-0013).
Note: TN-0018 is worked around by run-time.

 -Oz Clang optimize code for size more than Os - should be used for minimum code
size.

For a full explaination and listing of LLVM/Clang options see the Clang manual referenced from Section 1.5.

2.2.4.3. LEON target LLVM Clang compiler options

Below is a summary of commly used LEON chips and their specific compiler options.

 AT697F Not supported.

 GR712RC -mcpu=gr712rc

 GR740 -mcpu=gr740

 UT700/UT699E -mcpu=leon3 -mfix-ut700

 UT699 Not currently supported. Use -mcpu=leon3 for experimental use.

 SPARCv7 Not supported. (Only SPARCv8 target support)

2.2.4.4. Clang multi-libs

Below is a summary of all prebuilt variants (multi-libs) of the libgcc/libc/libm available prebuilt in the RCC
LLVM/Clang toolchain. The compiler flags during linking selects which library variant will be linked in. It is
possible using either Map-file from the linker or clang -v flag to verify that the correct libraries are used in
the final executable.

Table 2.3. RCC multi-lib variants selected during linking (clang)

Directory Compiler linker flags CPU FPU V8 CAS

. (none) SPARCv8 Y Y N

soft -msoft-float SPARCv8 N Y N

leon3 -mcpu=leon3 LEON3/4/5 Y Y Y

leon3/flat -mcpu=leon3 -mflat LEON3/4/5 Y Y Y

leon3/soft -msoft-float -mcpu=leon3 LEON3/4/5 N Y Y

leon3/soft/flat -msoft-float -mcpu=leon3
-mflat

LEON3/4/5 N Y Y

gr712rc -mcpu=gr712rc GR712RC Y Y Y

RCC-UM
September 2020, Version 1.3-rc9

18 www.cobhamaes.com/gaisler

Directory Compiler linker flags CPU FPU V8 CAS

gr712rc/soft -msoft-float -mcpu=gr712rc GR712RC N Y Y

gr740 -mcpu=gr740 GR740 Y Y Y

gr740/soft -msoft-float -mcpu=gr740 GR740 N Y Y

ut700 -mcpu=leon3 -mfix-ut700 UT700/699E Y Y Y

ut700/soft -msoft-float -mcpu=leon3
-mfix-ut700

UT700/699E N Y Y

2.2.5. Floating-point considerations

If the targeted processor has no floating-point (FP) hardware, then all code must be compiled (and linked) with
the -msoft-float option to enable floating-point emulation by SW. When running the program on the TSIM
simulator, the simulator should be started with the -nfp option (no floating-point) to disable the FPU.

RTEMS saves the FPU register file and FSR register cross context switches and disables the FPU temporarily
during interrupts to avoid that a faulty ISR trash the FPU state. If an ISR needs to use FPU it is responsible to save
and restore the FPU context itself using the RTEMS API. Due to the SPARC ABI the OS only needs to save the
FPU context on interrupts since the ABI states that FPU conext is clobbered on function calls.

When creating RTEMS classic tasks the RTEMS_FLOATING_POINT option must be set if the task will execute
FP instructions. Otherwise the CPU will generate a fp_disabled trap (trap type tt=0x04) on the first FP instruction
executed by the task.

The RTEMS Init() task is by default configured without the RTEMS_FLOATING_POINT option. To enable
RTEMS_FLOATING_POINT in the Init() task, the following configuration statement can be used:

#define CONFIGURE_INIT_TASK_ATTRIBUTES RTEMS_FLOATING_POINT

Note that the pre-built RTEMS BSPs that comes with RCC are built using the floating point instructions. This
means calling RTEMS kernel libraries may contains floating point instructions which requires the calling task to
have a floating point context (RTEMS_FLOATING_POINT) to avoid an exception. This also applies to the string
formatting functions of the C standard library, such as printf().

2.2.6. SPARC V8 instructions

LEON2/3/4/5 processors can be configured to implement the SPARC V8 multiply and divide instructions. De-
pending on the compiler options (see above sections) the compiler will either generate or not those instructions
or emulate them trough a SW library part of libgcc. Using the MUL/DIV improves performance significantly on
compute-intensive applications and floating-point emulation.

RTEMS saves the MUL/DIV (%y) register state cross context switches and on interrupts to protect against ISR
overwriting the MUL/DIV state.

2.2.7. LEON CASA instruction

Recent LEON3 and all LEON4/5 processors can be configured to implement the CASA instruction using the same
instruction definitions as SPARC V9. The instruction is used to implement atomic Compare-And-Swap (CAS)
operations. The compiler typically generates CAS instruction when compiling atomic C11/C++11 code otherwise
they are not generated. The spin-lock implementation of RTEMS SMP is implemented using C11 atomics. There-
fore RTEMS SMP requires CAS hardware support.

2.2.8. LEON UMAC/SMAC instructions

LEON2/3/4/5 models supports optionally the 32-bit multiply and accumulate (MAC). The compiler never issue
those instructions, they have to be coded in assembly. The GNU Binutils; and LLVM assembler supports the
LEON MAC instructions.

The RTEMS OS does not save the HW state of the MAC registers cross context switches.

RCC-UM
September 2020, Version 1.3-rc9

19 www.cobhamaes.com/gaisler

2.2.9. LEON3/4/5 CPU counter

Some of the LEON3/4/5 devices (GR740/GR716 for example) supports reading a CPU internal 56-bit or 32-
bit cycle counter, without accessing the bus. The counters are located in the special registers ASR22:23 and are
accessible using the rd instruction by assembly code.

The LLVM/Clang compiler also provides access to the cpu cycle counters by generating rd %asr22/23 in-
structions when calling the builin function __builtin_readcyclecounter().

The RTEMS OS uses the counters when available, otherwise it defaults to an ordinary timer. The LEON3 BSP
(bsp/leon.h) provides inline functions to allow the user application to access them easily (regardless of com-
piler being used):

static inline uint32_t leon3_up_counter_low(void)

static inline uint32_t leon3_up_counter_high(void);

2.2.10. Enabling/Disabling Interrupt by use of Write Partial PSR instruction

The SPARCv8 requires that the whole Processor Status Register is read or written. However with some of the
LEON3/4/5 devices (GR740/GR716 for example) it is now also possible to modify only parts of the PSR by
using the Partial Write Register instruction (pwr %psr). The instruction is compatible with the definition in the
SPARCv8e specification.

By modify only the PIL field of the PSR the code can execute with traps enable (PSR.ET=1) and still guarantuee
that the state of PSR is well defined even if traps do occur while modifying PSR. In SPARCv8 the read-modi-
fy-write operation takes several instructions and has to be carried out by trap handlers where traps are disabled. The
PWR allows users and run-times to shorten the time interrupt is disabled and allows more efficient critical sections.

The GNU Binutils and LLVM assembler supports the generating the instruction by means of assembly code.
Currently the RTEMS OS or BSP does not use this instruction.

2.3. RTEMS applications

To compile and link an RTEMS application, use sparc-gaisler-rtems5-gcc:

 $ sparc-gaisler-rtems5-gcc -g -O2 rtems-hello.c -o rtems-hello

RCC creates executables for LEON3/4/5 by default. To generate executables for another target/BSP add the -
qbsp=BSP switch during both the compile and link stages, see Section 2.2 for options. The load start address is
specified by the BSP. The default BSP load address is start of RAM, i.e. 0x40000000 LEON2/3/4/5 or 0x00000000
for GR740 or 0x2000000 for ERC32. Other load addresses can be specified through the use of the -Ttext option
(see GCC manual).

RCC uses the sources of RTEMS-5.1 with minor patches, and allows recompilation when user has modificatiions
or configuration changes to the BSP or the kernel. Install the RTEMS sources in /opt/rcc-1.3-rc9/src, and rebuild
and install with:

 $ cd /opt/rcc-1.3/src
 $ build-rtems.sh

2.4. Memory organisation

The resulting RTEMS executables are in ELF format and has three main segments; text, data and bss. The text
segment is by default at address 0x40000000 for LEON2/3/4/5, or 0x00000000 for GR740 or 0x2000000 for
ERC32, followed immediately by the data and bss segments. The GR740/LEON4 system has main memory at
0x00000000. The stack starts at top-of-ram and grows downwards.

RCC-UM
September 2020, Version 1.3-rc9

20 www.cobhamaes.com/gaisler

Figure 2.1. RCC RAM applications memory map

The SPARC trap table always occupies the first 4 Kbytes of the .text segment and is modified during run-time.

The LEON BSPs auto-detects end-of-ram by looking at the stack pointer provided by the bootloader or GRMON
at early boot. Hence the heap will be sized by the loader.

2.5. Board-support packages (BSPs)

RCC includes board support packages for LEON2, LEON3 and ERC32. LEON4 and LEON5 are supported by the
LEON3 BSP. BSPs provide interface between RTEMS and target hardware through initialization code specific to
the target processor and a number of device drivers. Console and timer drivers are supported for all processors.

LEON2 and ERC32 BSPs assume a default system resource configuration such as memory mapping of on-chip
devices and usage of interrupt resources. LEON3/4/5 systems are based on GRLIB Plug & Play configuration,
and are thereby highly configurable regarding memory mapping and interrupt routing. At start-up, the LEON3
BSP scans the system bus to obtain system configuration information. Device drivers support a number of devices
which are automatically recognized, initiated and handled by the device drivers. Plug and play makes it possible
to use the same BSP for GR712RC, UT699, UT699E/UT700 and GR740 but compiled with different flags.

See Section 2.2.1 on how to select which BSP and compiler flags Section 2.2.2.

See doc/rcc-drivers-1.3-rc9.pdf for GRLIB/LEON device driver API documentation.

2.5.1. LEON3 BSP

The LEON3 BSP includes two different console and timer drivers, 1) standard RTEMS drivers (-
qbsp=leon3std) and 2) drivers which rely on the driver manager. The latter drivers are possible to config-
ure from the project configuration using standard driver manager configuration options, for example which AP-
BUART device is mapped to /dev/console and which timer is used as system clock (configuration required
for AMP systems).

The APBUART console driver registers the first UART under name /dev/console, the second and third
UARTs get names /dev/console_b and dev/console_c and so on. The LEON3 BSP requires at least one
APBUART to implement system console and printk support.

The timer driver uses the General Purpose Timer (GPTIMER and GRTIMER). The driver handles GPTIMER
timer 0 and the lowest interrupt request line used by GPTIMER. GPT timer 0 and lowest request line should never
be used by an RTEMS application. If an application needs to use more timers GPT should be configured to have
two or more timers using separate request lines. Timer 0 interrupt can not be shared with other devices or GPT
timers 1-6.

For more information on how to configure a system based on GRLIB see GRLIB IP Library User's Manual.

The rest of the GRLIB/LEON device drivers are independent of the BSP but dependent on driver manager API for
initialization order etc. The RTEMS project configuration selects which drivers are linked in to final executable
image. Please see separate drivers documentation for details.

RCC-UM
September 2020, Version 1.3-rc9

21 www.cobhamaes.com/gaisler

2.5.1.1. Multi processing (ASMP and SMP) configurations

The LEON3 BSP supports the RTEMS SMP and ASMP configurations. See the multi-processing Section 2.9 for
more information.

2.5.2. GR740 BSP

GR740 systems are supported by the LEON3 Plug & Play BSP, a custom linker script, the drivers listed below,
specific compiler flags and the LEON3 BSP GR740 initialization code. At start-up for example, the RTEMS
counter API initialization code checks the timers/counters present in HW and selects the best option. For the GR740
the best counter is the ASR22:23 up-counter which is selected for optimum performance. This is an example of
how the LEON3 BSP is adapted to the GR740 by use of Plug & Play probing.

Both SMP and uni-processor GR740 configurations are supported by RTEMS. See Section 2.2 how to select BSP
and set compiler flags for the GR740 (-qbsp=gr740 or -qbsp=gr740_smp).

Table 2.4. GR740 BSP device driver support in RCC, paths relative SPARC BSPs shared directory

Hardware device Documented
in section

SMP Comments

MMU (LEON) N/A N/A RTEMS does not support MMU. A static MMU setup ex-
ample is available in the RCC examples.

FPU (LEON) N/A Yes RTEMS and toolchain supports both FPU emulation (-
msoft-float) and FPU configuration. RCC does not provide
pre-built BSP for FPU emulated configuration.

IRQ Controller N/A Yes Static CPU affinity mapping through weak array.

L2-Cache 46 Yes L2 cache is typically setup before entering RTEMS by the
boot loader. L2 cache maintainence and EDAC error and
configurations such as MTRR regions can be setup using
the device driver.

SDRAM N/A N/A No memory controller driver support available.

PROM and I/O N/A N/A No memory controller driver support available.

SDRAM scrubber 49 No No specific SMP support, single task API.

I/O MMU 47 Yes Only the bit-vector protection mode is support.

SpaceWire router 20 Yes Router configuration and maintainence. The SpaceWire
AMBA (DMA) ports are supported by the driver below.

SpaceWire AMBA 18 Yes The GRSPW packet driver replaces the older spw/
grspw.c driver.

SpaceWire TDP 21 Yes SpaceWire TDP driver API is SMP/Thread safe by use of
semaphores.

Ethernet GBit 2.7 Yes The GRETH driver located in libbsp/sparc/
shared/net/greth.c supports SMP. One RX/TX dae-
mon task will be created per GRETH interface.

PCI host 2.8, 10 Yes AMBA-to-PCI host bridge driver. Uses PCI Library to au-
tomatically configure PCI resources using Plug & Play
techinques.

PCI peripheral 17 Yes AMBA-to-PCI peripheral bridge driver. Used when an
RTEMS PCI host system is accessing the GR740 over PCI
as a peripheral device. For example two GR740 connected
together over PCI.

PCI DMA 11 Yes The PCI DMA engine is only supported in host mode. This
driver has not been tested with the GR740 acting as a pe-
ripheral.

1553B BC 25 Yes

RCC-UM
September 2020, Version 1.3-rc9

22 www.cobhamaes.com/gaisler

Hardware device Documented
in section

SMP Comments

1553B BM 24 Yes

1553B RT 23 No GR1553B RT mode driver is not currently SMP safe. Sin-
gle-core configuration only or SMP mode by using IRQ and
Task CPU affinity configuration.

CAN 2.0B 28 Yes

UART N/A Yes Used for console and data communication. Supports
interrupt and polling mode by driver resource config-
uration. The (default) Driver Manager driver is locat-
ed in uart/apbuart_cons.c and the non-Driver
Manager APBUART device driver is located in uart/
apbuart_termios.c.

SPI Master 34 No Interfaced through RTEMS SPI layer. SPI driver does not
itself implement SMP locking but does not use Interrupt
processing.

SPI Slave N/A No No driver support for SPI slave mode.

Timer N/A Yes The GPTIMER driver (timer/gptimer.c) supports all
five timer cores. Latch/set functionlity not supported. One
timer instance is used by the RTEMS System Clock. The
RTEMS clock API uses the CPU upcounter (ASR22:23)
and the SMP implementation takes another timer instance.
The remaining timers are available through the Timer Li-
brary API (TLIB) (include/tlib.h).

Temperature sensor N/A N/A No driver support currently available.

Clock Gating Unit N/A N/A No driver support currently available.

Statistics unit 48 No No specific SMP support, single task API.

Pad/PLL control N/A N/A No driver support currently available.

AHB Status 45 Yes Example AMBA error reponse interrupt handler. User
needs to install hook to handle errors.

GPIO 37, 36 No No specific SMP support.

GRGPREG N/A N/A No device driver available. Application expected to perform
raw register access against GRGPREG.

2.5.3. GR712RC BSP

GR712RC systems are supported by the LEON3 Plug & Play BSP, specific compiler flags and specific GR712RC
device drivers.

Prebuilt version of both SMP and uni-processor GR712RC configurations are available in RCC. See Section 2.2
how to select BSP and set compiler flags for the GR712RC (-qbsp=gr712rc or -qbsp=gr712rc_smp).

IRQ14 is the default interrupt for servicing multi processing (ASMP and SMP) IPIs. The 1553, Ethernet and
Telecommand I/O also generates IRQ14 which will be in conflict is used simulatneously. If one of these I/O will
generate interrupts it is required to move the IPI to another IRQ, see Section 2.9.2.2 on how to setup the IPI
configuration.

2.5.4. UT699 BSP

UT699 systems are supported by the LEON3 Plug & Play BSP, specific compiler flags and BSP/driver adaptations
that works around errata (forces cache miss when accessing DMA areas).

See Section 2.2 how to select BSP and set compiler flags for the UT699 (-qbsp=ut699).

RCC-UM
September 2020, Version 1.3-rc9

23 www.cobhamaes.com/gaisler

2.5.5. UT699E/UT700 BSP

UT699E/UT700 systems are supported by the LEON3 Plug & Play BSP, specific compiler flags and drivers. The
same build settings are always used for UT699E and UT700.

See Section 2.2 how to select BSP and set compiler flags for the UT699E/UT700 (-qbsp=ut700).

2.5.6. AT697F BSP

AT697 systems are supported by the LEON2 BSP, specific compiler flags and drivers. The AT697 PCI support
requires the driver manager and the PCI library to set up PCI peripherals.

See Section 2.2 how to select BSP and set compiler flags for the AT697 (-qbsp=at697f).

2.6. Driver Manager

The LEON3 BSP uses an optional Driver Manger that handles drivers and devices on the AMBA and PCI Plug
& Play buses. The drivers are automatically assigned to one or more hardware devices. The Driver Manager is
either initilized by the user from the Init() thread after RTEMS has started up, or during startup of RTEMS. The
precompiled LEON3 BSP has by default (see Section 2.2.1) the driver manager enabled (--enable-drvmgr
was given to RTEMS configure during compile-time) that means that no extra initialization calls from Init() is
needed, however which drivers to be included must be configured uniquely per project. By default the Timer and
UART drivers are included for system clock and console. One can use -qbsp=leon3std to avoid using the
driver manager. In most cases the GPTIMER and the APBUART drivers are required by the application.

If the driver manager was configured to be initialized by the BSP, the RTEMS_DRVMGR_STARTUP define is
defined. If not configured the define is not set and the user can choose to initialize the driver manager manually
from for example the Init() task or not use it at all.

LEON2 systems are divided into two different systems, standard LEON2 systems and GRLIB-LEON2 systems
where the AMBA Plug & Play bus is available. Both systems can use the LEON2 hardcoded bus with the Driver
Manager, however it's primary intention is to provide a root bus for a second bus supporting Plug & Play. For
example a GRLIB-LEON2 system has hardcoded peripherals (the standard LEON2 peripherals) and GRLIB cores
attached available from the AMBA Plug & Play information, the setup for a system like that would be a LEON2
hardcoded bus and a LEON2 AMBA Plug & Play sub bus. Once the AMBA Plug & Play bus is initialized all
device and their drivers can be used the same way as in LEON3/4/5 systems.

For AT697 PCI systems the driver manager can be used to scan the PCI bus. If, for example, a RASTA PCI
peripheral board is found with GRLIB devices the GRLIB device drivers can be reused on the LEON2/AT697
system to provide I/O accesses similar to any LEON3/4/5 system with the same I/O interfaces.

The ERC32 BSP does not support the driver manager.

2.6.1. Initialization

Before the driver manager is initialized one must register a root bus driver so that the driver man-
ager knows which bus to start search for devices at. For a LEON3 system this means calling
ambapp_grlib_root_register() with a configuration structure. The driver manager itself must also be
initialized by calling drvmgr_init() before any driver relying on the driver manager can be accessed. The
manager then calls each individual driver's register function one by one for initialization and registration. The
driver functions are typically named DRIVER_register().

As described previously this step is taken care of by the BSP when --enable-drvmgr was used at RTEMS
configuration/build time.

2.6.2. Configuration

The driver manager is configured by defining the array drvmgr_drivers, it contains one function pointer
per driver that is responsible to register one or more drivers. The drvmgr_drivers can be set up by defining
CONFIGURE_INIT, selecting the appropriate drivers and including drvmgr/drvmgr_confdefs.h. The ap-
proach is similar to configuring a standard RTEMS project using rtems/confdefs.h. Below is an example
how to select drivers.

RCC-UM
September 2020, Version 1.3-rc9

24 www.cobhamaes.com/gaisler

 #include <rtems.h>
 #define CONFIGURE_INIT
 #include <bsp.h>

 /* Standard RTEMS setup */
 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
 #define CONFIGURE_MAXIMUM_DRIVERS
 #include <rtems/confdefs.h> 32

 /* Driver manager setup */
 #if defined(RTEMS_DRVMGR_STARTUP)
 /* if --enable-drvmgr was given to configure (-qbsp=leon3, ..) include GPTIMER and APBUART drivers
 * that rely on the driver manager
 */
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
 #endif

 /* Select additional drivers */
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRETH
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRCAN
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_OCCAN
 #define CONFIGURE_DRIVER_AMBAPP_MCTRL
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_PCIF
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRPCI
 #define CONFIGURE_DRIVER_PCI_GR_RASTA_IO
 #define CONFIGURE_DRIVER_PCI_GR_RASTA_TMTC
 #define CONFIGURE_DRIVER_PCI_GR_701

 #include <drvmgr/drvmgr_confdefs.h>

By default the BSP automatically includes the timer and console drivers when the driver manager
is initialized on startup, whereas when using the standard built BSP (-qbsp=leon3std) the timer and
console drivers are included based on the CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER and
CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER. However it is possible to remove the BSP default
drivers using #undef after including bsp.h from the RTEMS project configuration.

2.6.3. Driver configuration

Device drivers are configured per device using driver resources. The driver manager provides driver with an API
to easily extract the information using a common way for all driver to configure a device. Driver resources are
described by an array of different data types which are assigned names for flexibility. The name is searched for
by the driver once initialized, if resource name is found the resource value replaces the default value internal to
the driver. The resources are provided by the bus driver. It is up to the bus driver how the resources are assigned
to the bus. The LEON BSPs bus drivers use a default weak array (grlib_drv_resources on the LEON3
BSP) that can be overridden by the project configuration without any function calls. The driver parameters are
documented separately for each driver in the drivers manual. The example below sets up GRSPW0 and GRSPW1
descriptor count driver resources for the AMBA Plug & Play bus on two different GR-RASTA-IO PCI boards
and the root bus.

 /* ROOT AMBA PnP Bus: GRSPW0 and GRSPW1 resources */
 struct drvmgr_key grlib_grspw01_res[] =
 {
 {"txDesc", DRVMGR_KT_INT, {(unsigned int)32}},
 {"rxDesc", DRVMGR_KT_INT, {(unsigned int)32}},
 DRVMGR_KEY_EMPTY
 };

 /* If RTEMS_DRVMGR_STARTUP is defined we override the "weak defaults" that
 * is defined by the LEON3 BSP.
 */
 struct drvmgr_bus_res grlib_drv_resources =
 {
 .next = NULL,
 .resource = {
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 0, &grlib_grspw01_res[0]},
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 1, &grlib_grspw01_res[0]},
 DRVMGR_RES_EMPTY
 },
 };

 #ifndef RTEMS_DRVMGR_STARTUP
 struct grlib_config grlib_bus_config = {

RCC-UM
September 2020, Version 1.3-rc9

25 www.cobhamaes.com/gaisler

 &ambapp_plb,/* AMBAPP bus setup */
 &grlib_drv_resources,/* Driver configuration */
 };
 #endif

 /* GR-RASTA-IO 0: GRSPW0 resources */
 struct drvmgr_key rastaio0_grspw0_res[] = {
 {"txDesc", DRVMGR_KT_INT, {(unsigned int)8}},
 {"rxDesc", DRVMGR_KT_INT, {(unsigned int)32}},
 DRVMGR_KEY_EMPTY
 };

/* GR-RASTA-IO 1: GRSPW1 resources */
 struct drvmgr_key rastaio0_grspw0_res[] = {
 {"txDesc", DRVMGR_KT_INT, {(unsigned int)16}},
 {"rxDesc", DRVMGR_KT_INT, {(unsigned int)16}},
 DRVMGR_KEY_EMPTY
 };

 /* GR-RASTA-IO 1: GRSPW0 and GRPSW1 resources use same configuration */
 struct drvmgr_key rastaio1_grspw01_res[] = {
 {"txDesc", DRVMGR_KT_INT, {(unsigned int)16}},
 {"rxDesc", DRVMGR_KT_INT, {(unsigned int)64}},
 DRVMGR_KEY_EMPTY
 };

 /*** Driver resources for GR-RASTA-IO 0 AMBA PnP bus ***/
 struct drvmgr_bus_res gr_rasta_io0_res = {
 .next = NULL,
 .resource = {
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 0, &rastaio0_grspw0_res[0]},
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 1, &rastaio0_grspw1_res[0]},
 DRVMGR_RES_EMPTY
 },
 };

 /*** Driver resources for GR-RASTA-IO 1 AMBA PnP bus ***/
 struct drvmgr_bus_res gr_rasta_io1_res = {
 .next = NULL,
 .resource = {
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 0, &rastaio1_grspw01_res[0]},
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 1, &rastaio1_grspw01_res[0]},
 DRVMGR_RES_EMPTY
 },
 };

 /* Tell GR-RASTA-IO driver about the bus resources.
 * Resources for one GR-RASTA-IO board are available.
 * AMBAPP->PCI->GR-RASTA-IO->AMBAPP bus resources
 *
 * The resources will be used by the drivers for the
 * cores found on the GR-RASTA-IO->AMBAPP bus.
 *
 * The "weak defaults" are overriden here.
 */
 struct drvmgr_bus_res *gr_rasta_io_resources[] = {
 &gr_rasta_io0_res,/* GR-RASTA-IO board 1 resources */
 &gr_rasta_io1_res,/* GR-RASTA-IO board 2 resources */
 NULL, /* End of table */
 };

 rtems_task Init(rtems_task_argument argument)
 {
 /* Manual driver manager initialization only required when driver manager not initialized during
 * startup (-qleon2, -qleon3std)
 */
 #ifndef RTEMS_DRVMGR_STARTUP
 /* Register GRLIB root bus (LEON3/4) */
 ambapp_grlib_root_register(&grlib_bus_config);

 /* Initialize Driver Manager */
 drvmgr_init();
 #endif

 ...

2.6.4. drvmgr command

The RTEMS shell comes with a number of commands, the drvmgr command can be used to extract information
about the current setup and hardware. Please see the rtems-shell.c sample application that comes with RCC.
The rtems-shell on a GR712RC ASIC:

RCC-UM
September 2020, Version 1.3-rc9

26 www.cobhamaes.com/gaisler

Creating /etc/passwd and group with three useable accounts
root/pwd , test/pwd, rtems/NO PASSWORD

RTEMS SHELL (Ver.1.0-FRC):dev/console. Oct 3 2011. ’help’ to list commands.
[/] # drvmgr --help
 usage:
 drvmgr buses List bus specfic information on all buses
 drvmgr devs List general and driver specfic information
 about all devices
 drvmgr drvs List driver specfic information on all drivers
 drvmgr info [ID] List general and driver specfic information
 about all devices or one device, bus or driver
 drvmgr mem Dynamically memory usage
 drvmgr parent ID Short info about parent bus of a device
 drvmgr remove ID Remove a device or a bus
 drvmgr res ID List Resources of a device or bus
 drvmgr short [ID] Short info about all devices/buses or one
 device/bus
 drvmgr topo Show bus topology with all devices
 drvmgr tr ID OPT ADR Translate hw(0)/cpu(1) (OPT bit0) address ADR
 down(0)/up(1) streams (OPT bit1) for device
 drvmgr --help

[/] # drvmgr topo
 --- BUS TOPOLOGY ---
 |-> DEV 0x400fd3a0 GRLIB AMBA PnP
 |-> DEV 0x400fd450 GAISLER_LEON3FT
 |-> DEV 0x400fd4a8 GAISLER_LEON3FT
 |-> DEV 0x400fd500 GAISLER_AHBJTAG
 |-> DEV 0x400fd558 GAISLER_ETHMAC
 |-> DEV 0x400fd5b0 GAISLER_SATCAN
 |-> DEV 0x400fd608 GAISLER_SPW2
 |-> DEV 0x400fd660 GAISLER_SPW2
 |-> DEV 0x400fd6b8 GAISLER_SPW2
 |-> DEV 0x400fd710 GAISLER_SPW2
 |-> DEV 0x400fd768 GAISLER_SPW2
 |-> DEV 0x400fd7c0 GAISLER_SPW2
 |-> DEV 0x400fd818 GAISLER_B1553BRM
 |-> DEV 0x400fd870 GAISLER_GRTC
 |-> DEV 0x400fd8c8 GAISLER_GRTM
 |-> DEV 0x400fd920 GAISLER_SLINK
 |-> DEV 0x400fd978 GAISLER_FTMCTRL
 |-> DEV 0x400fd9d0 GAISLER_APBMST
 |-> DEV 0x400fd928 GAISLER_LEON3DSU
 |-> DEV 0x400fd980 GAISLER_APBMST
 |-> DEV 0x400fdb30 GAISLER_CANAHB
 |-> DEV 0x400fdad8 GAISLER_CANAHB
 |-> DEV 0x400fdb88 GAISLER_FTAHBRAM
 |-> DEV 0x400fdbe0 GAISLER_APBUART
 |-> DEV 0x400fdc38 GAISLER_IRQMP
 |-> DEV 0x400fdc90 GAISLER_GPTIMER
 |-> DEV 0x400fdce8 GAISLER_SPICTRL
 |-> DEV 0x400fdd40 GAISLER_CANMUX
 |-> DEV 0x400fdd98 NO_NAME
 |-> DEV 0x400fddf0 GAISLER_ASCS
 |-> DEV 0x400fde48 GAISLER_GPIO
 |-> DEV 0x400fdea0 GAISLER_GPIO
 |-> DEV 0x400fdef8 GAISLER_I2CMST
 |-> DEV 0x400fdf50 GAISLER_CLKGATE
 |-> DEV 0x400fdfa8 GAISLER_AHBSTAT
 |-> DEV 0x400fe000 GAISLER_APBUART
 |-> DEV 0x400fe058 GAISLER_APBUART
 |-> DEV 0x400fe0b0 GAISLER_APBUART
 |-> DEV 0x400fe108 GAISLER_APBUART
 |-> DEV 0x400fe160 GAISLER_APBUART
 |-> DEV 0x400fe1b8 GAISLER_GRTIMER

[/] # drvmgr info 0x400fdbe0
 -- DEVICE 0x400fdbe0 --
 PARENT BUS: 0x400fd408
 NAME: GAISLER_APBUART
 STATE: 0x00000100
 INIT LEVEL: 4
 ERROR: 0
 MINOR BUS: 0
 MINOR DRV: 0
 DRIVER: 0x400a2198 (APBUART_DRV)
 PRIVATE: 0x400fe210
 --- DEVICE INFO FROM BUS DRIVER ---
 AMBA PnP DEVICE
 VENDOR ID: 0x0001 (VENDOR_GAISLER)
 DEVICE ID: 0x000c (GAISLER_APBUART)
 IRQ: 2

RCC-UM
September 2020, Version 1.3-rc9

27 www.cobhamaes.com/gaisler

 VERSION: 0x1
 ambapp_core: 0x400fdc1c
 interfaces: APBSLV
 APBSLV FREQ: 80000kHz
 apb: 0x80000100-0x800001ff
 --- DEVICE INFO FROM DEVICE DRIVER ---
 UART Mode: TERMIOS_POLLED
 STATUS REG: 0x100082
 CTRL REG: 0x80000803
 SCALER REG: 0x103 baud rate 38610

2.7. Network configuration

The LEON2/3 BSPs support three network devices: the Cobham Gaisler GRETH MAC, GRETH_GBIT MAC
and the LAN91C111 (note: 91C111 only in single-core configuration). The GRETH driver comes in two editions,
one that needs the driver manager (in libbsp) to operate and the standard driver (in libchip). The driver man-
ager dependent GRETH driver adds the network interface automatically to the rtems_bsdnet_config net-
work interface configuration using network_interface_add() function. It also supports SMP. The drivers
under libchip/ directory does not support SMP currently. Since the LAN91C111 chip is supported over the I/
O bus it cannot be found by Plug & Play so it has to be manually set up by either hardcoding an entry in the
rtems_bsdnet_config interface list or dynamically registered by calling network_interface_add().
The LAN91C111 attach routine is defined by RTEMS_BSP_NETWORK_DRIVER_ATTACH_SMC91111 in
bsp.h. The standard GRETH device is setup in a similar way, see bsp.h.

See src/samples/rtems-ttcp.c for a sample networking application.

2.8. PCI

Cobham Gaisler provides a PCI Library together with RTEMS located in cpukit/libpci in the soruces. The doc-
umentation for the PCI Library is located in the RTEMS documentation doc/usr/libpci.t and available
prebuilt into PDF named c_user.pdf, see Section 1.5.

All the LEON PCI host bridge drivers have been written using the driver manger and the PCI library is initialized
using the PCI bus layer for the driver manager. Even if the PCI Library does not require the driver manger the
PCI host drivers does.

The RTEMS shell has been extended with a pci command can be used to extract information about the current setup
and hardware. Please see the rtems-shell.c sample application that comes with RCC. A non-PCI system:

reating /etc/passwd and group with three useable accounts
root/pwd , test/pwd, rtems/NO PASSWORD

RTEMS SHELL (Ver.1.0-FRC):dev/console. Oct 3 2011. ’help’ to list commands.
 [/] # pci --help
 usage:
 pci ls [bus:dev:fun|PCIID] List one or all devices
 pci r{8|16|32} bus:dev:fun OFS Configuration space read
 pci r{8|16|32} PCIID OFS Configuration space read
 access by PCIID
 pci w{8|16|32} bus:dev:fun OFS D Configuration space write
 pci w{8|16|32} PCIID OFS D Configuration space write
 access by PCIID
 pci pciid bus:dev:fun Print PCIID for bus:dev:fun
 pci pciid PCIID Print bus:dev:fun for PCIID
 pci pcfg Print current PCI config for
 static configuration library
 pci getdev {PCIID|bus:dev:fun} Get PCI Device from RAM tree
 pci infodev DEV_ADR Info about a PCI RAM Device
 pci --help

[/] # pci
 SYSTEM: UNKNOWN / UNINITIALIZED
 CFG LIBRARY: AUTO
 NO. PCI BUSES: 0 buses
 PCI ENDIAN: Little
 MACHINE ENDIAN: Big

2.9. LEON3 BSP multiprocessing configurations

RTEMS supports uni-processor, asymmetric multiprocessing (ASMP) and Symmetric multiprocessing (SMP)
configurations. The LEON3 BSP support all three modes. The ASMP mode can be accomplished in one of two
possible setups:

RCC-UM
September 2020, Version 1.3-rc9

28 www.cobhamaes.com/gaisler

• Uni-processor configuration and custom synchonization/communication protocols between CPUs imple-
mented by user. (-qbsp=BSP)

• RTEMS ASMP configuration where RTEMS services are used to synchonize and communicate between the
CPU nodes. For example using global objects like global semaphores and global tasks and Inter Processor
Communication services implemented on top the shared memory (SHM) driver. (-qbsp=BSP_mp)

Note that in a multi-processor system with more than two CPUs RTEMS supports running SMP configuration on
two or more processor in parallel with another OS instance on a different set of processors. This means SMP and
ASMP can cooexist in the same system.

2.9.1. Memory and device resource sharing

An ASMP application typically assigns different hardware resources to different operating system instances with-
out overlap at compile-time. For example UART0/IRQ2 is used by CPU0 and UART1/IRQ3 by CPU1. In uni-
processor and ASMP configuration the resource sharing between operating system instances are configured using
the driver manager or by using the default configuration. Linker scripts or linker arguments are typically used to
separate address spaces between ASMP CPUs.

In SMP configuration RTEMS has typically access to all resources. Instead it uses locks and scheduler to share/
protect resources between processors during run-time. This means that no specific driver manager configuration
releated to resource sharing is needed for SMP.

2.9.2. Interrupt considerations

2.9.2.1. Interrupt Controller IRQ(A)MP

The GRLIB IRQ(A)MP interrupt controller has extended ASMP support which allows for assigning individual
isolated interrupt controllers on a processor basis. An individual isolated interrupt controller is also referred to as an
internal interrupt controller in the IRQ(A)MP documentation. For an RTEMS SMP application running in an AMP
setting, it is recommended to dedicate one of the virtual interrupt controllers to RTEMS SMP. RTEMS will detect
which interrupt controller its processor is assigned to by probing the IRQ(A)MP Asymmetric multiprocessing
control register and the Interrupt controller select registers.

In SMP configuration, RTEMS assumes that the boot loader (MKPROM or GRMON) has assigned all the proces-
sor part of the SMP system to the same (internal) interrupt controller. For example, the GR740 has a IRQ(A)MP
with four internal controllers but only one is used wqhen RTEMS SMP control all four CPUs.

2.9.2.2. Inter processor interrupt (IPI)

When RTEMS AMP/SMP requests to notify another CPU an interrupt is generated on the target CPU by writing
the interrupt controller's registers. The ISR handling IPI requests are typically associated with a "free" interrupt
number, i.e. not used for I/O interrupts. The interrupt is by default the highest interrupt number available, IRQ14.
It is recommended to change to a dedicated IRQ if other (I/O) interrupt sources is also generating IRQ14.

The IPI interrupt is configurable on project compile time by overriding the weak variable LEON3_mp_irq with
a custom IRQ number. For example include this code in the project to handle IPIs on IRQ11 on all RTEMS CPUs:

 const unsigned char LEON3_mp_irq = 11;

2.9.2.3. Interrupt affinity (SMP only)

By default the boot CPU handles all interrupts (except for IPI and per-cpu iimer) in SMP configuration, thus
normally CPU0 handles all I/O interrupts. The LEON3 BSP uses a static interrupt affinity configuration table
to select which CPU will service a particular IRQ. LEON3_irq_to_cpu is a weak variable which translates
IRQ[I] to CPU[J]. It allows the user to override the default BSP behaviour during compile time. The table is used
when registering a new interrupt handler.

2.9.3. Symmetric multiprocessing (SMP) configuration

2.9.3.1. Processor selection

RTEMS SMP allows for a wide range of processor configuration arrangements in a multiproces-
sor system. By default, an SMP application will execute on the processors with index 0 up to

RCC-UM
September 2020, Version 1.3-rc9

29 www.cobhamaes.com/gaisler

CONFIGURE_MAXIMUM_PROCESSORS-1, where CONFIGURE_MAXIMUM_PROCESSORS is a preprocessor
define which can be provided to the compiler using the -D option. The boot processor is normally CPU 0, but
there is no restriction on this: the first processor reaching the kernel entry point is assigned as the boot processor.

An RTEMS SMP application can be configured at compile time to assign different schedulers to specific sets
of processors. This is described in detail in the RTEMS Classic API Guide 5 in the sections named Scheduling
concepts and Scheduler algorithm Configuration. In this RCC User's Manual we will assume usage of the the
default scheduler. Processor assignments will be setup using a scheduler assignment table.

Processors are assigned to the application (scheduler) with the scheduler assignment table, specified us-
ing the CONFIGURE_SCHEDULER_ASSIGNMENTS preprocessor define. The define shall contain a list of
RTEMS_SCHEDULER_ASSIGN(index, attr) and RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER en-
tries. There is one entry for each processor in the range 0 to CONFIGURE_MAXIMUM_PROCESSORS-1.

The following example will assign RTEMS SMP to CPU1 and CPU2. CPU0 and CPU3 will not be used in the
RTEMS SMP instance and can run operating system(s).

 #define CONFIGURE_MAXIMUM_PROCESSORS 4
 /* RTEMS SMP on CPU[1,2]. Something else on CPU[0,3]. */
 #define CONFIGURE_SCHEDULER_ASSIGNMENTS \
 RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER, \
 RTEMS_SCHEDULER_ASSIGN(0, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), \
 RTEMS_SCHEDULER_ASSIGN(0, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), \
 RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER

For RTEMS_SCHEDULER_ASSIGN(index, attr), the index parame-
ter selects one of the optionally configured schedulers, and the at-
tr parameter is set to RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY or
RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL. A processor is not used in the application if its en-
try in the list is RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER.

2.9.4. Asymmetric multiprocessing (AMP) configuration

RTEMS supports asymmetric multiprocessing (AMP), the LEON3 BSP supports AMP in two different setups.
Either the RTEMS kernel is compiled with multiprocessing support (-qbsp=BSP_mp) or the user setup custom
resource sharing with driver manager resources (-qbsp=BSP), the difference is that RTEMS provide multiprocess-
ing objects and communication channels in the former case and in the latter case the user is responsible for all
synchronization itself which in many cases are sufficient. All nodes in a asymmetric multiprocessor system exe-
cutes thier own program image. Messages are passed between the nodes containing synchronization information,
for example take global semaphore A. Messages are sent over memory using the Shared Memory Support Driver
in the LEON3 BSP, and interrupts are used to alert the receiving CPU.

The kernel must be compiled with multiprocessing support in order for the RTEMS AMP support to be avail-
able, the toolchain includes a precompiled LEON3 MP kernel in rcc-1.3-rc9/sparc-gaisler-rtems5/
leon3_mp, it is the LEON3 BSP compiled with multiprocessing support. The MP kernel is selected when the -
qbsp=BSP_mp argument is given to sparc-gaisler-rtems5-gcc.

Since each CPU executes its own program image, a memory area has to be allocated for each CPU's program image
and stack. This is achieved by linking each CPU's RTEMS program at the start addresses of the CPU's memory
area and setting stack pointer to the top of the memory area. E.g. for two CPU system, the application running
on CPU 0 could run in memory area 0x40100000 - 0x401fffff, while CPU 1 runs in memory area 0x4020000 -
0x402fffff. Shared Memory Support Driver allocates 4 KB buffer at address 0x40000000 for message passing
(this area can not be used for applications).

Each CPU requires its own set of standard peripherals such as UARTs and timers. In an MP system the BSP will
automatically allocate UART 1 and GPT 0 timer 1 to CPU 0, UART 2 and GPT 0 timer 2 to CPU 1 and so on.
When the default configuration does not meet the requirements or hardware setup a custom resource allocation
can be setup using the driver manager, see below.

The shared memory driver's default memory layout configuration can be overidden without recompiling the kernel.
The default settings are set in the variable weak variable BSP_shm_cfgtbl, it can be overridden by defining
BSP_shm_cfgtbl once in the project as in the below example. The parameters that has an effect in changing
is the fields base and length.

RCC-UM
September 2020, Version 1.3-rc9

30 www.cobhamaes.com/gaisler

 /* Override default SHM configuration */
 shm_config_table BSP_shm_cfgtbl = {
 .base = (void *)0x40000000,
 .length = 0x00010000
 };

Hardware resource allocation is done by the BSP for UART, IRQ controller and System Clock Timer. Devices
which has a driver that is implemented using the driver manager can be ignored by a specific CPU by assigning the
keys value NULL in the driver resouces. The driver manager simply ignores the device when a NULL resource is
detect. An example is given below where CPU0 is assigned GRGPIO0 and CPU1 GRGPIO1. GPTIMER driver
have options that limit number of timers and which timer is used for system clock, the system console and debug
output can be selected to a specific UART with the APBUART driver.

CPU0 Application:

 struct rtems_drvmgr_drv_res grlib_drv_resources[] =
 {
 {DRIVER_AMBAPP_GAISLER_GRGPIO_ID, 1, NULL} /* Used by CPU1 */
 };

CPU1 Application:

 struct rtems_drvmgr_drv_res grlib_drv_resources[] =
 {
 {DRIVER_AMBAPP_GAISLER_GRGPIO_ID, 0, NULL}, /* Used by CPU0 */
 {DRIVER_AMBAPP_GAISLER_GRGPIO_ID, 1, &grlib_drv_res_grgpio1[0]}
 };

Following example shows how to run RTEMS MP application on a two CPU system using GRMON. CPU 0
executes image node1.exe in address space 0x6000000 - 0x600fffff while CPU 1 executes image node2.exe in
address space 0x60100000 - 0x601fffff.

GRMON LEON debug monitor v1.1.22

Copyright (C) 2004,2005 Gaisler Research - all rights reserved.
For latest updates, go to http://www.gaisler.com
Comments or bug-reports to support@gaisler.com
...

grlib> lo node1.exe
section: .text at 0x60000000, size 143616 bytes
section: .data at 0x60023100, size 3200 bytes
total size: 146816 bytes (174.4 kbit/s)
read 852 symbols
entry point: 0x60000000
grlib> lo node2.exe
section: .text at 0x60100000, size 143616 bytes
section: .data at 0x60123100, size 3200 bytes
total size: 146816 bytes (172.7 kbit/s)
read 852 symbols
entry point: 0x60100000
grlib> cpu act 0
active cpu: 0
grlib> ep 0x60000000
entry point: 0x60000000
grlib> stack 0x600fff00
 stack pointer: 0x600fff00
grlib> cpu act 1
active cpu: 1
grlib> ep 0x60100000
entry point: 0x60100000
grlib> stack 0x601fff00
 stack pointer: 0x601fff00
grlib> cpu act 0
active cpu: 0
grlib> run

RTEMS MP applications can not be run directly in GRSIM (using load and run commands). Instead a boot image
containing several RTEMS MP applications should be created and simulated.

2.9.4.1. MP testsuite

The MP testsuite is located in the sources under testsuite/mptests, it requires modifications to the make scripts in
order to select a unique image RAM location. The default shared memory area is at 0x40000000-0x40000fff, the
two images for node1 and node2 needs to be located on a unique address and the heap/stack must also fit. The
argument -Wl,- Ttext,0x40001000 for node1 and -Wl,-Ttext,0x40200000 for node2 can be added to the link stage,

RCC-UM
September 2020, Version 1.3-rc9

31 www.cobhamaes.com/gaisler

and the entry point (0x40001000 and 0x40200000) and stacks (0x401ffff0 and 0x403ffff0) must also be set by
the loader (GRMON or mkprom for example). Depending on where the RAM memory is located and how much
memory is available the parameters may vary.

2.9.5. RTEMS SMP AMP example

An AMP demonstration including RTEMS SMP targeting GR740 is distributed with RCC and is installed in the di-
rectory src/samples/gr740/ampdemo. The demonstration consists of two applications: one single-proces-
sor RTEMS application and one RTEMS SMP application. Two different AMP configurations are demonstrated:

ampdemo-smp0

CPU0, CPU1 and CPU2 execute an RTEMS SMP application. CPU3 is started from the RTEMS SMP
application and executes an independent single-processor application.

ampdemo-sp0

CPU0 executes a single-processor application. CPU0 starts (wakes up) CPU1 which together with CPU2
and CPU3 execute an RTEMS SMP application.

The purpose of the example is to demonstrate how RTEMS SMP can be used to start other operating system
instances aswell as itself being a slave instance in an AMP setting. Initialization of the interrupt controller by
means of GRMON commands is also demonstrated: this is typically performed by a boot loader when the system
is deployed. The preparation script configures a set of hardware breakpoints to assert that the operating system
instances do not interfer with each others GPTIMER and APBUART and.

More information on how to run the RTEMS SMP AMP example is provided in src/samples/gr740/am-
pdemo/README.

2.10. Making boot-proms

RTEMS applications are linked to run from beginning of RAM. To make a boot-PROM that will run from the
PROM on a standalone target, use the mkprom2 utility freely available from www.gaisler.com. The mkprom
utility is documented in a separate document that is distributed together with the mkprom2 utility. Mkprom will
create a compressed boot image that will load the application into RAM, initiate various processor registers, and
finally start the application. Mkprom will set all target dependent parameters, such as memory sizes, wait-states,
baudrate, and system clock. The applications do not set these parameters themselves, and thus do not need to be
re-linked for different board architectures.

The example below creates a LEON3 boot-prom for a system with 1 Mbyte RAM, one waitstate during write, 3
waitstates for rom access, and 40 MHz system clock. For more details see the mkprom manual

 $ mkprom2 -ramsz 1024 -ramwws 1 -romws 3 -freq 40 hello.exe

Note that mkprom creates binaries for LEON2/3/4 and for ERC32, select processor type with the mkprom options
-leon3, -leon2 or -erc32 flag. To create an SRECORD file for a prom programmer, use objcopy:

 $ sparc-gaisler-rtems5-objcopy -O srec hello.exe hello.srec

RCC-UM
September 2020, Version 1.3-rc9

32 www.cobhamaes.com/gaisler

Chapter 3. Examples

3.1. Overview

There is a samples collection distributed within the RCC under rcc-1.3-rc9/src/samples. It contains
some general RTEMS examples and some more specific LEON or boards specific examples.

3.2. Building

Following example compiles the famous "hello world" program and creates a boot-prom in SRECORD format:

 $ sparc-gaisler-rtems5-gcc -qbsp=leon3 -mcpu=leon3 -O2 rtems-hello.c -o rtems-hello
 $ mkprom2 -leon3 -freq 40 -dump -baud 38400 -ramsize 1024 -rmw rtems-hello
 $ sparc-gaisler-rtems5-objcopy -O srec rtems-hello rtems-hello.srec

Several example C programs can be found in /opt/rcc-1.3-rc9/src/samples. This folder also includes
a Makefile that can be used to build the examples. Building the examples for a predefined BSP configuration
is done by calling "make <bsp-target>". Calling make (without a target) will compile all the examples
for all the pre-built BSPs. The CPU compiler flags are set to the same as when building the RTEMS BSP. The
executables will be stored bin/<bsp-target>. Valid bsp-targets are the same listed in Section 2.2.1 leon3,
leon3_smp, gr712rc, gr712rc_smp, .. etc. Below is an example building for GR712RC

bash$ make gr712rc
make BSP=gr712rc ODIR=bin/gr712rc gr712rc_build
make[1]: Entering directory '/home/daniel/git/rtems/build-1.3/src/samples'
sparc-gaisler-rtems5-gcc -Wall -g -O2 -Werror -I./ -mcpu=leon3 -mfix-gr712rc \
 -qbsp=gr712rc -DBRM_BM_TEST rtems-brm.c brm_lib.c -o bin/gr712rc/rtems-brm_bm
sparc-gaisler-rtems5-gcc -Wall -g -O2 -Werror -I./ -mcpu=leon3 -mfix-gr712rc \
 -qbsp=gr712rc rtems-brm.c brm_lib.c -o bin/gr712rc/rtems-brm_rt
sparc-gaisler-rtems5-gcc -Wall -g -O2 -Werror -I./ -mcpu=leon3 -mfix-gr712rc \
 -qbsp=gr712rc -DBRM_BC_TEST rtems-brm.c brm_lib.c -o bin/gr712rc/rtems-brm_bc
sparc-gaisler-rtems5-gcc -Wall -g -O2 -Werror -I./ -mcpu=leon3 -mfix-gr712rc \
 -qbsp=gr712rc -DTASK_TX -DTASK_RX rtems-occan.c occan_lib.c -o bin/gr712rc/rtems-occan
sparc-gaisler-rtems5-gcc -Wall -g -O2 -Werror -I./ -mcpu=leon3 -mfix-gr712rc \
 -qbsp=gr712rc -DMULTI_BOARD -DTASK_TX rtems-occan.c occan_lib.c -o bin/gr712rc/rtems-occan_tx
...
make[1]: Leaving directory '/opt/rcc-1.3-rc2/src/samples'

It is also possible to build a single example by calling make <example> or to build a prom image by calling
make <example>.mkprom. In this case the executables will be stored in the root samples directory. When
building individual examples it is possible to control the behaviour by setting the following variables.

BSP

By setting the BSP variable to one of the bsp-targets, then the hardware specific compilation flags for that
cpu-target will be added when compiling and the matchin -qbsp=BSP flag will be added.

CFLAGS

Override common compilation flags
CPUFLAGS

Override the hardware specific compilation flags
MKPROMFLAGS

Override mkprom2 flags
ODIR

Executables output directory. By default bin/BSP/.

Below is the command line for building only the hello-world example using the BSP option to make the
binary target a GR712RC system:

src/samples$ make BSP=gr712rc CFLAGS="-O0 -g" rtems-hello
sparc-gaisler-rtems5-gcc -O0 -g -I./ -mcpu=leon3 -mfix-gr712rc -qbsp=gr712rc \
 rtems-hello.c -o rtems-hello

RCC-UM
September 2020, Version 1.3-rc9

33 www.cobhamaes.com/gaisler

Chapter 4. Execution and debugging

Applications built by RCC can be debugged on the TSIM LEON/ERC32 simulator, or on target hardware using
the GRMON debug monitor (LEON only). Both TSIM and GRMON can be connected to the GNU debugger
(gdb) for full source-level debugging.

4.1. TSIM

The TSIM simulator can emulate a full ERC32 and LEON2/3 system with on-chip peripherals and external mem-
ories. For full details on how to use TSIM, see the TSIM User's Manual. Below is a simple example that shows
how the ‘hello world’ program is run in the simulator:

$ tsim-leon3 rtems-hello

 TSIM/LEON3 SPARC simulator, version 2.0.4a (professional version)

 Copyright (C) 2001, Gaisler Research - all rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to support@gaisler.com

using 64-bit time
serial port A on stdin/stdout
allocated 4096 K RAM memory, in 1 bank(s)
allocated 2048 K ROM memory
icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
section: .text, addr: 0x40000000, size 92096 bytes
section: .data, addr: 0x400167c0, size 2752 bytes
read 463 symbols
tsim> go
resuming at 0x40000000
Hello World

Program exited normally.
tsim>

4.2. GRMON

GRMON is used to download, run and debug LEON2/3 software on target hardware. For full details on how to use
GRMON, see the GRMON User' Manual. Below is a simple example that shows how the "hello world" program
is downloaded and run:

$ grmon -u -jtag

 GRMON LEON debug monitor v1.1.11

 Copyright (C) 2004,2005 Gaisler Research - all rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to support@gaisler.com

 using JTAG cable on parallel port
 JTAG chain: xc3s1500 xcf04s xcf04s

 initialising
 detected frequency: 41 MHz
 GRLIB build version: 1347

 Component Aeroflex Gaisler
 LEON3 SPARC V8 Processor Aeroflex Gaisler
 AHB Debug UART Aeroflex Gaisler
 AHB Debug JTAG TAP Aeroflex Gaisler
 GR Ethernet MAC Aeroflex Gaisler
 LEON2 Memory Controller European Space Agency
 AHB/APB Bridge Aeroflex Gaisler
 LEON3 Debug Support Unit Aeroflex Gaisler
 Nuhorizons Spartan3 I/O interfac Aeroflex Gaisler
 OC CAN controller Aeroflex Gaisler
 Generic APB UART Aeroflex Gaisler
 Multi-processor Interrupt Ctrl Aeroflex Gaisler
 Modular Timer Unit Aeroflex Gaisler

 Use command ’info sys’ to print a detailed report of attached cores

grlib> lo rtems-hello
section: .text at 0x40000000, size 92096 bytes
section: .data at 0x400167c0, size 2752 bytes

RCC-UM
September 2020, Version 1.3-rc9

34 www.cobhamaes.com/gaisler

total size: 94848 bytes (339.7 kbit/s)
read 463 symbols
entry point: 0x40000000
grlib> run
Hello World
grlib>

Note that the program was started from address 0x40000000, the default start address.

GRMON can also be used to program the boot-PROM image created by sparc-rtems-mkprom into the target’s
flash PROM.

grmon[grlib]> flash unlock all
grmon[grlib]> flash erase all
Erase in progress
Block @ 0x00000000 : code = 0x00800080 OK
Block @ 0x00004000 : code = 0x00800080 OK
 ...
grmon[grlib]> flash load prom.out
section: .text at 0x0, size 54272 bytes
total size: 54272 bytes (93.2 kbit/s)
read 45 symbols
grmon[grlib]> flash lock all

When boot-PROM is run (i.e. after reset) it will initialize various LEON registers, unpack the application to the
RAM and start the application. The output on console when running “hello world” from PROM is shown below:

MkProm LEON3 boot loader v1.2
Copyright Gaisler Research - all right reserved

system clock : 40.0 MHz
baud rate : 38352 baud
prom : 512 K, (2/2) ws (r/w)
sram : 1024 K, 1 bank(s), 0/0 ws (r/w)

decompressing .text
decompressing .data

starting rtems-hello

Hello World

The application must be re-loaded with the load command before it is possible to re-execute it.

When running multiple RTEMS programs on a multiprocessing system, entry point and stack pointer have to be
set up individually for each CPU. E.g. when running app1.exe (link address 0x40100000) on CPU0 and app2.exe
(link address 0x40200000) on CPU1:

grlib> lo app1.exe
grlib> lo app1.exe
grlib> cpu act 0
grlib> ep 0x40100000
grlib> stack 0x401fff00
grlib> cpu act 1
grlib> ep 0x40200000
grlib> stack 0x402fff00
grlib> cpu act 0
grlib> run

4.3. GDB with GRMON and TSIM

To perform source-level debugging with gdb, start TSIM or GRMON with -gdb or enter the gdb command at the
prompt. Then, attach gdb by giving command "tar extended-remote localhost:2222" to gdb when connecting to
GRMON or "tar extended-remote localhost:1234" when connecting to TSIM. Note that RTEMS applications do
not have a user-defined main() function necessarily as ordinary C-programs. Instead, put a breakpoint on Init(),
which is the default user-defined start-up function.

jupiter> sparc-rtems-gdb rtems-hello
GNU gdb 6.7.1
Copyright (C) 2007 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-rtems".
(gdb) tar extended-remote localhost:2222
Remote debugging using localhost:2222

RCC-UM
September 2020, Version 1.3-rc9

35 www.cobhamaes.com/gaisler

(gdb) load
Loading section .text, size 0x164e0 lma 0x40000000
Loading section .jcr, size 0x4 lma 0x400164e0
Loading section .data, size 0xaa8 lma 0x400164e8
Start address 0x40000000, load size 94092
Transfer rate: 57902 bits/sec, 277 bytes/write.
(gdb) break Init
Breakpoint 2 at 0x400011f8: file rtems-hello.c, line 33.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /opt/rtems-4.10/src/samples/rtems-hello

Breakpoint 2, Init (ignored=0) at rtems-hello.c:33
33 printf("Hello World\n");
(gdb) cont
Continuing.
Hello World
Program exited with code 0363.

The application must be re-loaded with the load command before it is possible to re-execute it.

4.4. Using DDD graphical front-end to gdb

DDD is a graphical front-end to gdb, and can be used regardless of target. The DDD graphical debugger is freely
available from http://www.gnu.org/software/ddd. To start DDD with the sparc-gaisler-rtems5-gdb debugger do:

ddd --debugger sparc-gaisler-rtems5-gdb

The required gdb commands to connect to a target can be entered in the command window. See the GDB and
DDD manuals for how to set the default settings. If you have problems with getting DDD to run, run it with --
check-configuration to probe for necessary libraries etc. DDD has many advanced features, see the on-line manual
under the 'Help' menu.

On windows/cygwin hosts, DDD must be started from an xterm shell. First launch the cygwin X-server by issuing
'startx' in a cygwin shell, and the launch DDD in the newly created xterm shell.

RCC-UM
September 2020, Version 1.3-rc9

36 www.cobhamaes.com/gaisler

Device drivers reference
The following sections describes most of the LEON4, LEON3 and LEON2 device drivers included in the Cobham
Gaisler RCC RTEMS distribution. Each driver is described in a separate chapter.

Most of the drivers for GRLIB cores relies on the RTEMS Driver Manager for a number of services. The manager
is responsible for creating device instances representing a hardware device and then unite them with a device
driver supporting the hardware. The driver manager is documented in a separate chapter, please see Chapter 6.
Device drivers not supporting the Driver Manager uses typically a initialization routine called by the application.

RCC samples and a common makefile can be found under /opt/rcc-1.3-rc9/src/samples in the dis-
tribution. The I/O examples are often composed of a transmitting task and a receiving task communicating to one
another. The tasks are either intended to run on the same board requiring two cores, or run on different boards
requiring multiple boards with one core each, or both. The tasks use the console to print their progress and status.

RCC-UM
September 2020, Version 1.3-rc9

37 www.cobhamaes.com/gaisler

Chapter 5. GRLIB AMBA Plug&Play bus

5.1. Introduction

The AMBA bus that GRLIB is built upon supports Plug&Play probing of device information. This section gives an
overview of the AMBA Plug&Play (AMBAPP) routines that comes with the RCC distribution. Systems without
on-chip AMBA Play&Play support (AT697 for example) may use the library when accessing remote GRLIB
systems over SpaceWire or PCI.

The AMBAPP Layer is used by the AMBAPP Bus driver used to interface the AMBAPP bus to the driver manager.
Note that the AMBAPP Bus is not documented here.

5.1.1. AMBA Plug&Play terms and names

Throughout this document some software terms and names are frequently used, below is table that summarizes
some of them.

Table 5.1. AMBA Layer terms and names

Term Description

AMBAPP, AMBA PnP AMBA Plug&Play bus. See AHBCTRL and APBCTRL in GRIP documentation.

AMBA AMBA bus without Plug&Play information, typically used in LEON2 designs

device AMBA AHB Master, AHB Slave or APB Slave interface. The ambapp_dev struc-
ture describe any of the interfaces.

core A AMBA IP core often consists of multiple AMBA interfaces but not more than
one interface of the same type. The ambapp_core structure is used to describe a
AMBA core as a unit with up to three interfaces all of different type.

bus All AMBA AHB and APB buses in a system in one ambapp_bus structure. See
scanning.

ambapp_plb The processor local AMBA PnP bus in LEON3 BSP, RAM description of first
Plug&Play bus at 0xFFF00000.

scanning Process where the AMBA PnP bus is searched for all AMBA interfaces and a de-
scription is created in RAM, the RAM copy makes it easier to access the PnP in-
formation rather than accessing directly.

depth Number of levels of AHB-AHB bridges from topmost AHB bus.

5.1.2. Sources

The sources of the driver manager is found according to the table below.

Table 5.2. AMBAPP Layer Sources

Path Description

ambapp.h Include path of AMBAPP layer header-file definitions

ambapp_ids.h Vendor and Device IDs auto generated from GRLIB devices.vhd

libbsp/sparc/shared/amba Path within RTEMS sources to AMBAPP sources

ambapp.c Scanning routine ambapp_scan() and function to iterate over all devices
ambapp_for_each()

ambapp_alloc.c Mark ownership of devices

ambapp_count.c Helper function to get number of devices found in Plug & Play

ambapp_depth.c Function to get bus depth of a device

ambapp_find_by_idx.c Helper function ambapp_find_by_idx() used as input to
ambapp_for_each() to search for a matching device by index.

RCC-UM
September 2020, Version 1.3-rc9

38 www.cobhamaes.com/gaisler

Path Description

ambapp_freq.c Functions to initialize AMBAPP bus frequency and get the frequency of a device

ambapp_names.c Vendor and device ID name database

ambapp_old.c Old AMBAPP interface, reimplemented on top of ambapp.c. Deprecated.

ambapp_parent.c Get device parent bridge by searching the device tree

ambapp_show.c Print AMBAPP bus RAM description information onto terminal, for debugging

5.2. Overview

The AMBAPP layer provides functions for device drivers to access the AMBA Plug&Play information in an easy
way by reading a RAM description rather than accessing the Plug&Play ROM information directly. It is also
beneficial to have a RAM description for remote systems over SpaceWire or PCI where scanning often must be
performed once at initialization.

The AMBAPP interface is defined in ambapp.h and vendor/device IDs in ambapp_ids.h.

5.3. Initialization

Before accessing the AMBAPP interface one must initialize the ambapp_bus RAM description by scan-
ning the AMBA Plug&Play information for all buses, bridges and devices. The bus is scanned by calling
ambapp_scan() with prototype as listed below, the RAM description will be written to abus. The function
takes an optional access function memfunc called when the AMBA library read the PnP information, the abus
argument is passed along to memfunc which makes it possible for the caller to have a custom argument to mem-
func. If addresses found in the Plug&Play information must be translated (as with AMBA-over-PCI for example)
the mmaps array must point to address translation information. The scanning routine starts scanning at (ioarea |
0x000ff00), the default Plug&Play area is located at 0xFFF0000.

int ambapp_scan(
 struct ambapp_bus *abus,
 unsigned int ioarea,
 ambapp_memcpy_t memfunc,
 struct ambapp_mmap *mmaps
);

A bus and device tree is created in abus during initialization, cores (struct ambapp_core) are not created by the
layer. The AMBAPP layer is used from the AMBAPP Bus driver in the driver manager, it creates AMBAPP cores
by finding AMBA devices that comes from the same IP core.

The frequency of the AMBAPP bus can not be read from the Plug&Play information, however how different AM-
BA AHB buses frequency relates to each can be found at respective AHB-AHB bridge. In order for the frequency
function ambapp_freq_get() to report a correct frequency the user is required to register the frequency of
one AMBAPP device calling the ambapp_freq_init() function, prototype listed below. The LEON3 BSP
determines the frequency by assuming that the first GPTIMER clock frequency has been initialized to 1MHz by
boot loader, the BSP registers the frequency of the GPTIMER APB device.

/* Initialize the frequency [Hz] of all AHB Buses from knowing the
 * frequency of one particular APB/AHB Device.
 */
void ambapp_freq_init(
 struct ambapp_bus *abus,
 struct ambapp_dev *dev,
 unsigned int freq);

/* Returns the frequency [Hz] of a AHB/APB device */
unsigned int ambapp_freq_get(
 struct ambapp_bus *abus,
 struct ambapp_dev *dev);

5.4. Finding AMBAPP devices by Plug&Play

After the Plug&Play information has been scanned the user can search for AMBA devices in the RAM descrip-
tion without accessing the Plug&Play ROM by calling ambapp_for_each(), see prototype below. The us-
er provided function is called every time the search options matches a AMBA device in the device tree. The

RCC-UM
September 2020, Version 1.3-rc9

39 www.cobhamaes.com/gaisler

ambapp_for_each() function can search for a any combination of [VENDOR, DEVICE] ID, device types (AHB
MST, AHB SLV and/or APB SLV), free or allocated devices. If a VENDOR/DEVICE ID of -1 is given the func-
tion will match any vendors/devices.

/* Iterates through all AMBA devices previously found, it calls func
 * once for every device that match the search arguments.
 *
 * SEARCH OPTIONS
 * All search options must be fulfilled, type of devices searched (options)
 * and AMBA Plug&Play ID [VENDOR,DEVICE], before func() is called. The options
 * can be use to search only for AMBA APB or AHB Slaves or AHB Masters for
 * example. Note that when VENDOR=-1 or DEVICE=-1 it will match any vendor or
 * device ID, this means setting both VENDOR and DEVICE to -1 will result in
 * calling all devices matches the options argument.
 *
 * \param abus AMBAPP Bus to search
 * \param options Search options, see OPTIONS_* above
 * \param vendor AMBAPP VENDOR ID to search for
 * \param device AMBAPP DEVICE ID to search for
 * \param func Function called for every device matching search options
 * \param arg Optional argument passed on to func
 *
 * func return value affects the search, returning a non-zero value will
 * stop the search and ambapp_for_each will return immediately returning the
 * same non-zero value.
 *
 * Return Values
 * 0 - all devices was scanned
 * non-zero - stopped by user function returning the non-zero value
 */

int ambapp_for_each(
 struct ambapp_bus *abus,
 unsigned int options,
 int vendor,
 int device,
 ambapp_func_t func,
 void *arg);

5.5. Allocating a device structure

A device can be marked allocated so that other parts of the code knows that the device has been taken, this feature
is not used by the LEON BSPs. The ambapp_dev.owner field is set to a non-zero value to mark that the device is
allocated, use ambapp_alloc_dev() and ambapp_free_dev() to set allocation mark.

5.6. Name database

In ambapp_names.c AMBA Plug&Play vendor and device names are stored in a name database. The names
are taken from device.vhd in GRLIB distribution. Names can be requested by calling appropriate function
listed below.

/* Get Device Name from AMBA PnP name database */
char *ambapp_device_id2str(int vendor, int id);

/* Get Vendor Name from AMBA PnP name database */
char *ambapp_vendor_id2str(int vendor);

/* Set together VENDOR_DEVICE Name from AMBA PnP name database. Return length
 * of C-string stored in buf not including string termination '\0'.
 */
int ambapp_vendev_id2str(int vendor, int id, char *buf);

5.7. Frequency of a device

As described in the initialization section every AHB bus may have a unique bus frequency, APB buses always
have the same frequency as the AHB bus it is situated on. Since a core may consist of a AHB master, AHB slave
and a APB slave interface the frequencies of the different interfaces may vary. The AMBAPP layer provides a
function ambapp_freq_get() that returns the frequency in Hz of a single device interface.

/* Returns the frequency [Hz] of a AHB/APB device */
unsigned int ambapp_freq_get(
 struct ambapp_bus *abus,
 struct ambapp_dev *dev);

RCC-UM
September 2020, Version 1.3-rc9

40 www.cobhamaes.com/gaisler

Chapter 6. Driver Manager

6.1. Introduction

This section describes the Driver Manager available in RCC-1.3 distribution. The sources are located in cpuk-
it/libdrvmgr in the RTEMS source release. The driver manager is used to simplify the handling of buses,
devices, bus drivers, device driver, configuration of device instances and providing a common programming in-
terface where possible for drivers regardless of bus architecture.

6.1.1. Driver manager terms and names

Throughout this document some terms and names are frequently used, below is table that summarizes some of
them.

Table 6.1. Driver Manager terms and names

Term Description

Bus Describes a bus with child devices.

Device Describes a hardware device situated on a bus, bus driver.

Bridge device A device with a child bus.

Bus drives Software that handles a bus, implements the bus.

Device driver Software that handles hardware devices.

Root device Topmost device in driver manager tree, has no parent bus.

Root bus Topmost bus, the root device exports, has no parent bus.

Register bus Process where the driver manager is informed about the existence of a new bus.

Register device Process where the driver manager is informed about the existence of a new device.

Register driver Before driver manager initialization, drivers are added into a internal driver list.

Unite device and driver Process where the driver manager finds a device driver for a device.

Separate device and
driver

Process where a device driver is requested to never use the device any more, for ex-
ample before a device is removed.

Unregister bus or de-
vice

Inform driver manager about that a bus or device (and all child buses/devices) should
be removed from the device tree and related drivers be informed.

Init level The device driver and bus driver initialization process is performed in multiple stages,
called initialization levels.

6.1.2. Sources

The sources of the driver manager is found according to the table below.

Table 6.2. Driver Manager Sources

Path Description

cpukit/libdrvmgr Path within RTEMS sources. Driver manager sources

drvmgr/drvmgr.h Include path of driver manager definitions

drvmgr/drvmgr_confdefs.h Include patch of driver configuration

6.2. Overview

The driver manager works with the concepts bus, bus driver, device, device driver and driver resources. Since
everything is tied together somehow it is quite difficult to start describing the driver manager, instead each com-
ponent is described in a separate section below and the following text assumes that the reader has knowledge of
respective component.

The driver manager manages all buses and devices in a system by using a tree structure. The root of the tree starts
with the root device created by the root bus driver. The root device creates a bus which is called the root bus, it

RCC-UM
September 2020, Version 1.3-rc9

41 www.cobhamaes.com/gaisler

is an ordinary bus without a parent bus. All buses have a linked list of devices which are situated directly on the
bus, if a device is a bridge to another bus that device registers a child bus and the bus pointer in the device is set
appropriately. At the moment of writing a bridge device can only have one child bus. During the boot process the
device/bus tree is created either dynamically by bus drivers reading plug and play or from hard coded information.

The BSP or user must register a root bus driver in order for the driver manager to create and initialize the root
device. The function drvmgr_root_drv_register() must be called before the driver manager initialization
process starts. Buses and devices are initialized in a four step process called levels (1, 2, 3, 4). The driver manager
guarantees that the bus is always initialized before to the same or higher level than devices on that bus, that the
devices are initialized in the same order as they are registered in, and that child buses are initialized after all devices
on the parent bus are initialized to the level. If a bus or device fails to initialize the children (devices or child
bus) are never initialized further, instead they are put on a inactive list for later inspection. Dependencies between
buses and devices are hence easily managed by the fact that drivers are not allowed to access certain APIs until
a certain level is reached.

Drivers are registered before the driver manager initialization starts with drvmgr_drv_register(), the man-
ager keeps a list of drivers which is accessed to find a suitable driver for a device. Every time a new device is reg-
istered by the bus driver the driver manager searches the driver list for a suitable driver, the bus is asked (bus.ops-
>unite) if the driver is compatible with the device, if so the manager unites the driver with its device and inserts
the device into the initialization procedure. The driver's initialization routines will be called for all its devices at
every level. If a driver was not found, the device is never initialized.

The driver manager is either initialized by the BSP during startup or manually by the user from the Init task
where interrupt is enabled. The BSP initialization is enabled by passing –drvmgr to configure when building the
RTEMS kernel, in that case RTEMS_DRVMGR_STARTUP is defined in [system.h]. When custom initialization
is selected interrupt is enabled during the driver manager initialization and drivers initialized during RTEMS boot
(system clock timer and system console UART for example) can not rely on the driver manager.

When the driver manager is initialized during boot, the rtems_initialize_device_drivers() function
puts the manager into level 1 before RTEMS I/O drivers are initialized, so that drivers relying on the manager for
device discovery are able to register devices to the I/O subsystem in time. At time of initialization most of RTEMS
APIs are available for drivers, for example malloc() is available.

6.2.1. Bus and bus driver

A bus driver is responsible to make the driver manager aware of hardware devices, simply called devices, by
scanning Plug & Play information or by any other approach. It finds, creates and registers devices in a deterministic
order. The manager help bus drivers with new devices, insertion into the device tree and device numbering for
example. Each device is described in a bus architecture independent way and with bus specific device information
like register addresses, interrupt numbers and bus frequency information. Drivers targeting devices on the bus
must know how to extract valuable information from the specific information.

All buses have a linked list of devices which are situated directly on the bus (bus.children), if a device is a bridge
to another bus that device registers another device (dev.bus), a bus does maintain a list of child buses.

/*! Bus information. Describes a bus. */
struct drvmgr_bus {
 int obj_type; /*!< DRVMGR_OBJ_BUS */
 unsigned char bus_type; /*!< Type of bus */
 unsigned char depth; /*!< Bus level distance from root bus */
 struct drvmgr_bus *next; /*!< Next Bus */
 struct drvmgr_dev *dev; /*!< Bridge device */
 void *priv; /*!< BUS driver Private */
 struct drvmgr_dev *children;/*!< devices on this bus */
 struct drvmgr_bus_ops *ops; /*!< Bus operations of bus driver */
 struct drvmgr_func *funcs; /*!< Extra operations */
 int dev_cnt; /*!< Number of devices this bus has */
 struct drvmgr_bus_res *reslist; /*!< Bus resources, head of a linked
 list of resources. */
 struct drvmgr_map_entry *maps_up; /*!< Map Translation, array of
 address spaces upstreams to CPU */
 struct drvmgr_map_entry *maps_down; /*!< Map Translation, array of
 address spaces downstreams to Hardware */
 /* Bus status */
 int level; /*!< Initialization Level of Bus */

RCC-UM
September 2020, Version 1.3-rc9

42 www.cobhamaes.com/gaisler

 int state; /*!< Init State of Bus, BUS_STATE_* */
 int error; /*!< Return code from bus.ops->initN() */
};

A device driver can be configured per device instance using driver resources, the resources are managed per bus
as a linked list of bus resources (bus.reslist). A bus resource is an array of driver resources assigned by the bus
driver. The resources are described in a separate section below.

Bus bridges often interfaces parts of an address space onto the child bus and vice versa. For example in a LEON
system one linear region of the PCI memory space may be accessed through the PCI Host's PCI Window from
the processor's AMBA memory space side. The bus.maps_up and bus.maps_down fields can be used to
describe the bridge address regions used to access buses in upstreams or downstreams direction. The driver man-
ager provides address translation functions that is implemented using the region descriptions.

Every bus driver implements a number of functions that provide an interface to the driver manager, device drivers
or to the user. The function interface is listed below. Every bus has number of init functions similar to device
drivers where the bus is responsible for finding, creating, low level initialization and registration of new devices.
If a bus driver require some feature from the parent bus that is available in a certain level the bus can assume that
the parent bus and all its devices has already reached a higher level or the same as the bus is requested to enter.

/*! Bus operations */
struct drvmgr_bus_ops {
 /* Functions used internally within driver manager */
 int (*init[DRVMGR_LEVEL_MAX])(struct drvmgr_bus *);
 int (*remove)(struct drvmgr_bus *);
 int (*unite)(struct drvmgr_drv *, struct drvmgr_dev *);

 /* Functions called indirectly from drivers */
 int (*int_register)(struct drvmgr_dev *, int index, const char *info,
drvmgr_isr isr, void *arg);
 int (*int_unregister)(struct drvmgr_dev *, int index, drvmgr_isr isr,
void *arg);
 int (*int_clear)(struct drvmgr_dev *, int index);
 int (*int_mask)(struct drvmgr_dev *, int index);
 int (*int_unmask)(struct drvmgr_dev *, int index);
 int (*get_params)(struct drvmgr_dev *, struct drvmgr_bus_params *);
 int (*freq_get)(struct drvmgr_dev*, int, unsigned int*);

 /*! Function called to request information about a device. The bus
 * driver interpret the bus-specific information about the device.
 */
 void (*info_dev)(struct drvmgr_dev *, void (*print)(void *p, char *str),
void *p);
};

If a bus supports interrupt it can hide the actual implementation in the bus driver by implementing all or some
of the int_* routines listed in the table below. Device drivers are accessing interrupts using the generic interrupt
functions of the driver manager. The index determines which interrupt number the device requests, for example
0 means the first interrupt of the device, 1 the second interrupt of the device and so on, it is possible for the bus
driver to determine the absolute interrupt number usually by looking at the bus specific device information. If a
negative interrupt number is given it is considered to be an absolute interrupt number and should not be translated,
for example an index of -3 means IRQ3 on the AMBA bus or INTC# of the PCI bus.

Table 6.3. Interrupt backend inteface of driver manager

Operation Description

int_register Register an interrupt service routine (ISR) and unmask(enable) appropriate interrupt
source

int_unregister Unregister ISR and mask interrupt source

int_clear Manual interrupt source acknowledge at the interrupt controller

int_mask Manual mask (disable) interrupt source at interrupt controller

int_unmask Manual unmask (enable) interrupt source at interrupt controller

6.2.1.1. Bus specific device information

A bus provide a bus dependent way to describe devices on that bus (register address for example). The information
is created by the bus driver from plug & play or hardcoded information. The information may for example be

RCC-UM
September 2020, Version 1.3-rc9

43 www.cobhamaes.com/gaisler

used by the bus driver to unite a device with a suitable device driver and by a device driver to get information
about a certain device instance.

Each bus has its own device properties, for example a PCI device have up to 6 BARs or variable size and a GRLIB
AMBA AHB device has up to four different AHB areas of variable length. This kind of information is hidden by
the bus driver into the bus specific area that device drivers targeting the bus type can access.

6.2.2. Root driver

The driver that is responsible for initialization of the root device and root bus. The driver manager needs to know
what driver should handle the root (often CPU local) bus. The root bus driver is registered by the BSP (--drvmgr
option) or by the user before the driver manager is initialized. One can say it is the starting point of finding the
system's all devices.

6.2.3. Device driver

Driver for one or multiple hardware devices, simply called devices here. It uses the driver manager services pro-
vided. The driver holds information to identify supported hardware device, it tells the driver manager what kind
of bus is supported and bus specific information so that the bus driver can pinpoint devices supported by driver.
The bus specific information may for example be a plug & play Vendor and Device ID used to identify certain
hardware.

/*! Information about a device driver */
struct drvmgr_drv {
 int obj_type; /*!< DRVMGR_OBJ_DRV */
 struct drvmgr_drv *next; /*!< Next Driver */
 struct drvmgr_dev *dev; /*!< Devices using this driver */
 uint64_t drv_id; /*!< Unique Driver ID */
 char *name; /*!< Name of Driver */
 int bus_type; /*!< Type of Bus this driver supports */
 struct drvmgr_drv_ops *ops; /*!< Driver operations */
 struct drvmgr_func *funcs; /*!< Extra Operations */
 unsigned int dev_cnt; /*!< Number of devices in dev */
 unsigned int dev_priv_size; /*!< If non-zero DRVMGR will allocate
 memory for dev->priv */
};

Every driver must be assigned a unique driver ID by the developer, the bus driver provides a macro to generate
the ID. The ID is used to identify driver resources to a specific driver, only the driver knows how the resources
are interpreted. The driver provides operations executed per device in drv.ops that is called by the driver manager
at certain events such as device initialization and removal.

The driver manager manages a list of devices assigned to the driver order according to driver minor number. The
driver minor number is assigned as the lowest free number starting at 0. A device driver can lookup a device
pointer from knowing the minor number. The number of devices currently present is counted in drv.dev_cnt.

The driver manager can optionally allocate zeroed memory for the device private data structure and place a pointer
in dev.priv, this is done by setting [drv.dev_priv_size]to a non-zero value.

The driver information above does not contain a bus specific device information needed to detect suitable devices.
Bus drivers provide extended driver structures containing this additional bus specific information, for example the
PCI bus has a pointer to an array of PCI device identifications:

struct pci_dev_id_match {
 uint16_t vendor;
 uint16_t device;
 uint16_t subvendor;
 uint16_t subdevice;
 uint32_t class; /* 24 lower bits */
 uint32_t class_mask; /* 24 lower bits */
};

struct pci_drv_info {
 struct drvmgr_drv general; /* General bus info */
 /* PCI specific bus information */
 struct pci_dev_id_match *ids; /* Supported hardware */
};

RCC-UM
September 2020, Version 1.3-rc9

44 www.cobhamaes.com/gaisler

6.2.4. Device

Represents a hardware device found by the bus driver, in this document called device. A device is found, created
and registered by the bus driver, once registered the driver manager will insert it into the bus device tree, assign
a bus minor number (depending on the registration order) and tries to find driver that supports the hardware. If a
suitable driver is found it will unite the device with the driver. In the process of uniting the manager will assign
insert the device into the driver's device list, give a driver minor number to the device (lowest free number),
optionally allocate zeroed memory for driver private, queue the device for initialization.

The bus driver must have given the device a bus specific description in dev.businfo if before registering it. The
driver can use the information to get register addresses, interrupt number etc.

During the first level of initialization the device driver may register a child bus, in that case the bus will be queued
for initialization.

/*! Device information */
struct drvmgr_dev {
 int obj_type; /*!< DRVMGR_OBJ_DEV */
 struct drvmgr_dev *next; /*!< Next device */
 struct drvmgr_dev *next_in_bus;/*!< Next device on the same bus */
 struct drvmgr_dev *next_in_drv;/*!< Next device using the same driver*/

 struct drvmgr_drv *drv; /*!< The driver owning this device */
 struct drvmgr_bus *parent; /*!< Bus that this device resides on */
 short minor_drv;/*!< Device number within driver */
 short minor_bus;/*!< Device number on bus (for device
 separation) */
 char *name; /*!< Name of Device Hardware */
 void *priv; /*!< Driver private device structure */
 void *businfo; /*!< Host bus specific information */
 struct drvmgr_bus *bus; /*!< Bus, set only if this is a bridge */

/* Device Status */
unsigned int state; /*!< State of device, see DEV_STATE_* */
int level; /*!< Init Level */
int error; /*!< Error state returned by driver */
};

6.2.5. Driver resources

A driver resource is a read-only configuration option used by a driver for a certain device instance. The resource
may be an integer with value 65 called "numberTxDescriptors". The driver resources are grouped together in
arrays targeting one device instance, the arrays are grouped together into a bus resource. It is up to the bus driver
to install the bus resource, some bus drivers may use a predefined bus resource or it may provide an interface for
the user to provide its own configuration. Below is the

/* Key Data Types */
#define KEY_TYPE_NONE 0
#define KEY_TYPE_INT 1
#define KEY_TYPE_STRING 2
#define KEY_TYPE_POINTER 3

/*! Union of different values */
union drvmgr_key_value {
 unsigned int i; /*!< Key data type UNSIGNED INTEGER */
 char *str; /*!< Key data type STRING */
 void *ptr; /*!< Key data type ADDRESS/POINTER */
};

/* One key. One Value. Holding information relevant to the driver. */
struct drvmgr_key {
 char *key_name;/* Name of key */
 int key_type; /* How to interpret key_value */
 union drvmgr_key_value key_value;/* The value or pointer to value */
};

A driver resource targets a device driver instance, not a device instance even this is in practise the same thing
since there is only one driver for a device. Instead of using a bus specific device ID to identify a device instance
a driver ID together with a instance minor number is used to target the driver instance. Below is a typical driver
resource array with two configuration options:

/* GRSPW0 and GRSPW1 resources */
struct drvmgr_key grlib_grspw_0n1_res[] =
{

RCC-UM
September 2020, Version 1.3-rc9

45 www.cobhamaes.com/gaisler

 {"txDesc", KEY_TYPE_INT, {(unsigned int)16}},
 {"rxDesc", KEY_TYPE_INT, {(unsigned int)32}},
 KEY_EMPTY
};

It is up to the driver to interpret the options, one should refer to the driver documentation for configuration options
available and their format.

A bus resource in an array of device resources (driver resource arrays), the bus resource is assigned to the bus in
a bus driver dependent way. In the below example the LEON3 BSP root bus is configured by simply defining a
bus resource named [grlib_drv_resource], since the LEON3 root bus driver's defaults have been declared weak
it can be overridden by the user project. In the example the GRSPW0 and GRSPW1 cores are configured with
the same driver resources.

/* If RTEMS_DRVMGR_STARTUP is defined we override the "weak defaults"
 * that is defined by the LEON3 BSP.
 */
struct drvmgr_bus_res grlib_drv_resources = {
 .next = NULL,
 .resource = {
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 0, &grlib_grspw_0n1_res[0]},
 {DRIVER_AMBAPP_GAISLER_GRSPW_ID, 1, &grlib_grspw_0n1_res[0]},
 RES_EMPTY /* Mark end of device resource array */
 }
};

6.2.6. Driver interface

Device drivers normally request a resource by name and type. The function drvmgr_dev_key_get() returns
a pointer to a resource value for a specific device, see below prototype.

extern union drvmgr_key_value *drvmgr_dev_key_get(
 struct drvmgr_dev *dev,
 char *key_name,
 int key_type);

6.3. Configuration

The driver manager is configured by selecting drivers that will be registered to the manage, by registering a root
bus driver prior to driver manager initialization and drivers may optionally be configured by using driver resources,
see previous section.

The root bus device driver is registered by calling drvmgr_root_drv_register(), this must be done before
the driver manager is initialized. When the BSP initializes the manager during the RTEMS boot process, nothing
need to be done by user. For example calling ambapp_grlib_root_register() registers the GRLIB AM-
BA Plug & Play Bus as the root bus driver and also assigns the bus resources for the root bus.

Table 6.4. Root device driver entry points for LEON systems

System Root driver

LEON3 ambapp_bus_grlib.c, register by calling
ambapp_grlib_root_register().

LEON2 leon2_amba_bus.c, register by calling leon2_root_register().

GRLIB-LEON2 leon2_amba_bus.c, register by calling leon2_root_register(). Add
LEON2_AMBA_AMBAPP_ID to the bus so that the GRLIB AMBA plug & play is
found.

The drivers are selected by defining the array drvmgr_drivers, it contains one function pointer per driver that is
responsible to register one or more drivers. The array is processed by _DRV_Manager_initialization()
during startup or when calling drvmgr_init() from the Init task. .The drvmgr_drivers can be set up by defin-
ing CONFIGURE_INIT, selecting the appropriate drivers and including drvmgr/drvmgr_confdefs.h. This
approach is similar to configuring a standard RTEMS project using rtems/confdefs.h. Below is an exam-
ple how to select drivers. It is also possible to define up to ten drivers in the project by using the predefined
CONFIGURE_DRIVER_CUSTOM macros.

#include <rtems.h>
#include <bsp.h>

RCC-UM
September 2020, Version 1.3-rc9

46 www.cobhamaes.com/gaisler

#define CONFIGURE_INIT

/* Standard RTEMS set up */
#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_MAXIMUM_DRIVERS 32

#include <rtems/confdefs.h>

/* Driver manager set up */
#if defined(RTEMS_DRVMGR_STARTUP)/* if --drvmgr was given to configure */
 /* Add Timer and UART Driver for this example */
 #ifdef CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_GPTIMER
 #endif
 #ifdef CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
 #define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
 #endif
#endif
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRETH
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRSPW
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRCAN
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_OCCAN
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_B1553BRM
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_APBUART
#define CONFIGURE_DRIVER_AMBAPP_MCTRL
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_PCIF
#define CONFIGURE_DRIVER_AMBAPP_GAISLER_GRPCI
#define CONFIGURE_DRIVER_PCI_GR_RASTA_IO
#define CONFIGURE_DRIVER_PCI_GR_RASTA_TMTC
#define CONFIGURE_DRIVER_PCI_GR_701

#include <drvmgr/drvmgr_confdefs.h>

6.3.1. Available LEON drivers

Below is a list of available drivers in the LEON3 BSP and the define that must be set before including
[drvmgr_confdefs.h] to include the driver in the project. All drivers are preceded with CONFIGURE_DRIVER_.

Table 6.5. LEON device drivers available

Hardware Define to include driver

GPTIMER AMBAPP_GAISLER_GPTIMER

APBUART AMBAPP_GAISLER_APBUART

GRETH AMBAPP_GAISLER_GRETH

GRSPW AMBAPP_GAISLER_GRSPW

GRCAN AMBAPP_GAISLER_GRCAN

OCCAN AMBAPP_GAISLER_OCCAN

GR1553B AMBAPP_GAISLER_GR1553B

GR1553B RT AMBAPP_GAISLER_GR1553BRT

GR1553B BM AMBAPP_GAISLER_GR1553BBM

GR1553B BC AMBAPP_GAISLER_GR1553BBC

B1553BRM AMBAPP_GAISLER_B1553BRM

B1553RT AMBAPP_GAISLER_B1553RT

GRTM AMBAPP_GAISLER_GRTM

GRTC AMBAPP_GAISLER_GRTC

PCIF PCI Host AMBAPP_GAISLER_PCIF

GRPCI PCI Host AMBAPP_GAISLER_GRPCI

GRPCI2 PCI Host AMBAPP_GAISLER_GRPCI2

FTMCTRL and MCTRL AMBAPP_MCTRL

RCC-UM
September 2020, Version 1.3-rc9

47 www.cobhamaes.com/gaisler

Hardware Define to include driver

SPICTRL AMBAPP_GAISLER_SPICTRL

I2CMST AMBAPP_GAISLER_I2CMST

GRGPIO AMBAPP_GAISLER_GRGPIO

GRPWM AMBAPP_GAISLER_GRPWM

GRADCDAC AMBAPP_GAISLER_GRADCDAC

SPWCUC AMBAPP_GAISLER_SPWCUC

GRCTM AMBAPP_GAISLER_GRCTM

SPW_ROUTER AMBAPP_GAISLER_SPW_ROUTER

AHBSTAT AMBAPP_GAISLER_AHBSTAT

GRAES AMBAPP_GAISLER_GRAES

GRPWRX AMBAPP_GAISLER_GRPWRX

L2CACHE AMBAPP_GAISLER_L2CACHE

GRIOMMU AMBAPP_GAISLER_GRIOMMU

AT697 PCI Host LEON2_AT697PCI

GRLIB-LEON2 AMBA PnP LEON2_AMBAPP

GR-RASTA-ADCDAC PCI_GR_RASTA_ADCDAC

GR-RASTA-IO PCI peripheral PCI_GR_RASTA_IO

GR-RASTA-TMTC PCI peripheral PCI_GR_RASTA_TMTC

GR-701 PCI peripheral PCI_GR_701

GR-TMTC-1553 PCI peripheral PCI_GR_TMTC_1553

GR-RASTA-SPW-ROUTER PCI peripheral PCI_GR_RASTA_SPW_ROUTER

GR-LEON4-N2X PCI peripheral PCI_GR_LEON4_N2X

GR-CPCI-GR740 PCI peripheral PCI_GR_CPCI_GR740

6.4. Initialization

As described in the overview the driver manager the initialization of the driver manager is determined how the
RTEMS kernel has been built. When –drvmgr has been used when configuring the kernel the manager is initialized
by the BSP and RTEMS boot code, otherwise the driver manager is optional and may be initialized by the user
calling drvmgr_init() after the root bus driver has been registered.

6.4.1. LEON3/4 BSP

In the RCC distribution the LEON3 BSP has been precompiled twice, once where the BSP initialized the driver
manager (-qleon3, -qleon3mp) and once for custom initialization or no driver manager (-qleon3std). Please see
RCC User's Manual for additional information about the gcc flags. Two different driver versions for the GPTIMER,
APBUART and GRETH hardware is provided within the LEON3 BSP to support both initialization approaches.

6.5. Interrupt

The Driver manager provides a shared interrupt service. The device driver calls the driver manager which in turn
rely on the bus driver to satisfy the request, that way the manager can maintain one interrupt interface regardless
of bus.

For shared interrupt sources all registered interrupt handlers are called upon interrupt. The driver must itself detect
if the IRQ was actually generated by its device and then decide to handle it or not.

The index of the interrupt functions determines which interrupt number the device requests, for example 0 means
the first interrupt of the device, 1 the second interrupt of the device and so on, it is possible for the bus driver to

RCC-UM
September 2020, Version 1.3-rc9

48 www.cobhamaes.com/gaisler

determine the absolute interrupt number usually by looking at the bus specific device information. If a negative
interrupt number is given it is considered to be an absolute interrupt number and should not be translated, for
example an index of -3 means IRQ3 on the AMBA bus or INTC# of the PCI bus.

Table 6.6. Driver interrupt interface

Operation Description

drvmgr_interrupt_register Register an interrupt service routine (ISR) and unmas (enable) appropriate in-
terrupt source

drvmgr_interrupt_unregister Unregister ISR and mask interrupt source

drvmgr_interrupt_clear Manual interrupt source acknowledge at the interrupt controller

drvmgr_interrupt_mask Manual mask (disable) interrupt source at interrupt controller

drvmgr_interrupt_unmask Manual unmask (enable) interrupt source at interrupt controller

The interrupt service route (ISR) must be of the format determined by [drvmgr_isr]. The argument is user defined
per ISR and IRQ index.

/* Interrupt Service Routine (ISR) */
typedef void (*drvmgr_isr)(void *arg);

extern int drvmgr_interrupt_register(
 struct drvmgr_dev *dev,
 int index,
 const char *info,
 drvmgr_isr isr,
 void *arg);

extern int drvmgr_interrupt_unregister(
 struct drvmgr_dev *dev,
 int index,
 drvmgr_isr isr,
 void *arg);

extern int drvmgr_interrupt_clear(
 struct drvmgr_dev *dev,
 int index);

extern int drvmgr_interrupt_unmask(
 struct drvmgr_dev *dev,
 int index);

extern int drvmgr_interrupt_mask(
 struct drvmgr_dev *dev,
 int index);

6.6. Address translation

As described in the overview address regions can be translated between buses. It requires the bridge bus driver
to set up address maps in at least one direction. If a bus does not support DMA for example, it might be that it
is only the CPU that can access the bus but the bus can not access the CPU bus, hence the address translation
will be unidirectional.

The translation software can translate addresses in up to four different ways using drvmgr_translate(), as
listed in the table below. The function will return 0 if no map matches the translation requested, the length until
the end of the matching map or 0xffffffff if no translation was needed. If a bridge has no map, the addresses are
translated 1:1 (not changed) and 0xffffffff will be returned.

The drvmgr_translate_check() function can be called instead, it has the same functionality but verifies
that the address range specified by the user is accessible. If not, the function will call printk() with an error
message.

extern int drvmgr_translate(
 struct drvmgr_dev *dev,
 int options,
 void *src_address,
 void **dst_address);

RCC-UM
September 2020, Version 1.3-rc9

49 www.cobhamaes.com/gaisler

Table 6.7. Translate options to drvmgr_translate()

Options argument Translate direction Example usage

CPUMEM_TO_DMA Translate a CPU RAM address to an
address that DMA unit can access

The CPU has a buffer in RAM, it
translates the address to the PCI bus so
that PCI devices can access it through
the host's PCI target BAR

CPUMEM_FROM_DMA Translate a CPU RAM address that a
DMA unit can access into a an address
that the CPU can access

The CPU reads out the the DMA ad-
dress from a descriptor that the hard-
ware use to access to CPU RAM, it
can then translate it into the memory
address the CPU can access since the
memory is located at the CPU bus

DMAMEM_TO_CPU Translate DMA unit local memory to
an address that the CPU can access

PCI target BAR2 value (PCI bus ad-
dress) is translated into an address
which the CPU access (CPU bus ad-
dress) in order to get to BAR2

DMAMEM_FROM_CPU Translate DMA unit local memory ad-
dress that the CPU can access, into an
address that the DMA unit can access

6.7. Function Interface

The driver manager provides an interface where device drivers and bus drivers can provide functions that can be
looked up by knowing an associated function ID. The functions can be used to provide additional bus support over
the driver manager structure, or a device driver can provide a function that the bus driver use.

For example some buses may require special access methods in order to access the hardware registers. Depending
on the bus driver (bus architecture for example) is must be performed differently, the driver can request a function
pointer to a WRITE_U32 function in to implement register accesses.

The drvmgr/drvmgr.h header file defines a number of read/write function ID numbers that drivers can use to
get access routines on buses which define such operations.

RCC-UM
September 2020, Version 1.3-rc9

50 www.cobhamaes.com/gaisler

Chapter 7. RMAP Stack

7.1. Introduction

This section describes the RMAP stack function interface available for RTEMS. The RMAP stack provide a simple
interface that can generate RMAP commands and transmit them over SpaceWire by relying on the RMAP stack
driver layer. Read, read-modify-write and write with acknowledge or verification will block the caller until the
transaction is completed. The features of the RMAP stack is summarized below:

• header and data CRC generation, if not generated by hardware
• logical addressing
• path addressing
• generate all read and write types defined by the RMAP specification.
• thread safe if requested
• driver layer to support multiple SpaceWire hardware
• driver for GRSPW driver
• zero-copy API

The two interfaces the RMAP stack implements can be found in the rmap header file (rmap.h), it contains def-
initions of all necessary data structures, bit masks, procedures and functions used when accessing the function
interface.

This document describes the user interface, but not the driver interface.

7.1.1. Examples

The SpaceWire bus driver can be seen as an example, it can be found under rtems-4.10/c/src/lib/libb-
sp/sparc/shared/drvmgr/spw_bus.c.

7.2. Driver Interface

The driver interface is not described in this document.

7.3. Logical and Path addressing

The RMAP stack is by default configured to do logical addressing, however a custom callback function may be
used to implement path addressing. The stack will call the function twice (one for distination path and one for
return path) when the RMAP header is generated, the function is responsible to write the address path bytes directly
into the header at the specified location.

7.4. Zero-copy implementation

The RMAP stack is zero-copy meaning that the data of the transfer is not copied, this improves performance. Note
that when the RMAP driver does not support CRC generation the RMAP stack will write the data CRC after the
input data, this means that the caller is responsible to reserve one byte of space when writing data. The RMAP
stack will not write the data CRC after the data in cases where the RMAP driver that support CRC generation.

Note that even though the RMAP stack is zero-copy the RMAP driver may not be zero-copy, lowering the per-
formance.

To get true zero-copy from user to SpaceWire transfer one can instead use the asynchonous RMAP layer part of
the RMAP stack and interface that to the GRSPW Packet Driver.

7.5. RMAP GRSPW driver

A driver for the RTEMS GRSPW driver is provided with the RMAP stack, the driver automatically check if the
GRSPW hardware has support for CRC generation.

The GRSPW driver is named rmap_drv_grspw.c.

RCC-UM
September 2020, Version 1.3-rc9

51 www.cobhamaes.com/gaisler

7.6. Thread-safe

The RMAP stack can be configured to be thread safe, when entering the stack an internal semaphore will be
obtained guaranteeing that multiple threads of execution can enter simultaneously. It is not needed when only one
task is using the RMAP stack or if the RMAP driver itself is thread-safe.

A task may be blocked waiting for another task to complete the RMAP operation, when the RMAP stack is
configured thread-safe.

7.7. User interface

The location of the RMAP stack is indicated in Table 7.1. All paths are given relative the RTEMS kernel source
root.

Table 7.1. RMAP stack source location

Source description Location

Interface implementation c/src/lib/libbsp/sparc/shared/spw/rmap.c

Interface declaration c/src/lib/libbsp/sparc/shared/include/rmap.h

7.7.1. Data structures

The [rmap_config] data structure is used to configure the RMAP stack, as an argument to rmap_init(). The
data structure is defined in rmap.h.

typedef int (*rmap_route_t)(
 void *cookie,
 int dir,
 int srcadr,
 int dstadr,
 void *buf,
 int *len
);

struct rmap_config {
 rmap_route_t route_func;
 int tid_msb;
 int spw_adr;
 struct rmap_drv *drv;
 int max_rx_len;
 int max_tx_len;
 int thread_safe;
}

Table 7.2. rmap_config members

Member Description

route_func Function is a callback, called when the RMAP stack is about to generate the addressing
to the target node address. It can be used to implement path addressing. Set the function
pointer to NULL to make the stack use logical addressing.

tid_msb Control the eight most significant bits in the TID field in the RMAP header. Set to -1
for normal operation, the RMAP stack will use all bits in TID for sequence counting.
This option can be used when multiple RMAP stacks or other parts of the software sends
RMAP commands but not using the RMAP stack. This requires, of course, a thread-safe
RMAP driver.

spw_adr The SpW Address of the SpW interface used.

drv RMAP driver used for transmission.

max_rx_len Maximum data length of received packets, this must match the RMAP driver's configura-
tion.

max_tx_len Maximum data length of transmitted packets, this must match the RMAP driver's configu-
ration.

RCC-UM
September 2020, Version 1.3-rc9

52 www.cobhamaes.com/gaisler

Member Description

thread_safe Set this to non-zero to enable the RMAP stack to create a semaphore used to protect the
RMAP stack and the RMAP driver from multiple tasks entering the transfer function(s) of
the stack at the same time.

A RMAP command is described the rmap_command structure, the type decide which parts of the union data is
used when generating the RMAP header. In order to simplify for the caller three data structures avoiding the
union are provided, they are named rmap_command_write, rmap_command_read, rmap_command_rmw.
They can be used instead of rmap_command as argument to the function interface.

struct rmap_command {
 char type;
 unsigned char dstadr;
 unsigned char dstkey;
 unsigned char status;
 unsigned short tid;
 unsigned long long address;
 union {
 struct {
 unsigned int length;
 unsigned char *data;
 } write;
 struct {
 unsigned int length;
 unsigned int datalength;
 unsigned int *data;
 } read;
 struct {
 unsigned int length;
 unsigned int data;
 unsigned int mask;
 unsigned int oldlength;
 unsigned int olddata;
 } read_m_write;
 } data;
}

Table 7.3. rmap_command members

Member Description

type Type of RMAP transfer, Read/Write/Read-Modify-Write/Acked Write etc., see
RMAP_CMD_*.

dstadr Destination address of SpaceWire Node that the RMAP command should be execute upon.

dstkey SpaceWire destination key of target node

status Output from stack: Error/Status response. Zero if no response is successful

tid Output from stack: TID assigned to packet header

address 40-bit address that the operation targets

data A union of different input and output arguements depending on the type of command.

7.7.2. Function interface description

The table below sumarize all available functions in the RMAP stack.

Table 7.4. RMAP stack function prototypes

Prototype Name

void *rmap_init(struct rmap_config *config)

int rmap_ioctl(void *cookie, int command, void *arg)

int rmap_send(void *cookie, struct rmap_command *cmd)

int rmap_write(void *cookie, void *dst, void *buf , int length, int dstadr, int dstkey)

int rmap_read(void *cookie, void *src, void *buf , int length, int dstadr, int dstkey)

RCC-UM
September 2020, Version 1.3-rc9

53 www.cobhamaes.com/gaisler

Prototype Name

unsigned char rmap_crc_calc(unsigned char *data , unsigned int len)

7.7.2.1. rmap_init

The RMAP stack must be initialized before other function may be called. Calling rmap_init initializes the RMAP
stack. During the initialization the RMAP stack is configured as described by the rmap_config data structure,
see the data structures section.

If successful, rmap_init will return a non-zero value later used as input argument (cookie) in other RMAP stack
functions. The cookie is needed in order to support multiple RMAP stacks in parallel, the cookie identify a certain
stack.

If the RMAP stack fail to initialize zero is returned.

The rmap_config structure is described in Section 7.7.1.

7.7.2.2. rmap_ioctl

Set run-time options such as blocking, time out, get configuration and operating the stack such as starting and
stopping the communication link.

This function is not thread-safe.

If successful zero is returned.

7.7.2.3. rmap_send

Execute a command by sending the command, then wait for the response if a response is expected. This function
will block until the response is received or if the timeout is expired. The timeout functionality may not be supported
by the RMAP driver.

Note that when the RMAP stack is in non-blocking mode the stack will not wait for the response, however if the
response is available the response is handled. If the response wasn't received -2 is returned.

Note that if the RMAP driver does not support CRC generation a byte will be written after the data provided by
the user, please see zero-copy section.

If an error occurs -1 is returned. On success 0 is returned. Note that even though the RMAP request failed the
RMAP stack may return zero, the RMAP status indicates the error response of the target, see the rmap_command
structure in the data structures section.

7.7.2.4. rmap_crc_calc

This function is a help function used by the RMAP stack to calculate the CRC of the header and data when CRC
generation is not provided by the RMAP driver.

7.7.2.5. rmap_write and rmap_read

The read and write functions are example functions that implement the most common read and write operations.
The function will call rmap_send to execute the read and write request.

RCC-UM
September 2020, Version 1.3-rc9

54 www.cobhamaes.com/gaisler

Chapter 8. SpaceWire Network model

8.1. Introduction

This document describes the SpaceWire bus driver used to write device drivers for a SpaceWire Node accessed
over SpaceWire with RMAP.

8.2. Overview

In order to provide a standardized way of writing drivers for Nodes on a SpaceWire network and to improve code
reuse a Bus driver for a SpaceWire network as been written. The bus driver is written using the concepts of the
Driver Manager.

The SpaceWire Bus driver provides services to the nodes in the network, some of the services are listed below:

• Read/Write access to target (using the RMAP protocol)
• Interrupt handling
• Per node resources

The hardware topology is organized by the driver manager's bus and device trees, the SpaceWire bus driver is
attached to the SpaceWire core providing the actual SpaceWire interface in order to maintain the hardware topol-
ogy. It is important that the on-chip devices and drivers are loaded and initialized before the SpaceWire network
as the SpaceWire network depends on the on-chip devices. The bus driver initialization is controlled and started
by the user after the driver manager has initialized the on-chip bus.

The SpaceWire driver requires the SpaceWire RMAP stack to perform read and write access to the SpaceWire
Target Nodes.

The driver support Logical SpaceWire Addressing only at this point.

8.3. Requirements

The SpaceWire network must be Logical addressed and the SpaceWire bus driver requires the RMAP stack for
target node access.

8.4. Node Description

The SpaceWire bus driver is a driver for the devices on the SpaceWire bus, in this particular case a device is called
a SpaceWire Node, a node is described by the data structure spw_node. Each node has a Node ID, a name, and a
list of optional keys. A SpaceWire node has the following configurable elements:

• Node ID (connected to driver)
• Node Name
• SpaceWire Destination key
• SpaceWire Node Address
• IRQ setup (up to four IRQs)

8.4.1. The Node ID

The Node ID identifies a type of target, not a certain Node. The Node ID in combination with the node index on
the bus creates a Unique identifier. The Node ID is used to identify a driver that can handle the node. The node
index is taken from the index in the Node table.

The NodeIDs are defined in spw_bus_ids.h.

8.5. Read and write operation

A SpaceWire target Node's memory and registers are accessed using RMAP commands. The RMAP protocol is
implemented by the RMAP stack in a separate module.

The driver manager provide read and write operations to registers and memory for drivers, the SpaceWire Bus
driver implements them for the SpaceWire bus. A node driver calls the standard read and write operations which

RCC-UM
September 2020, Version 1.3-rc9

55 www.cobhamaes.com/gaisler

are translated into a SpaceWire bus read/write which is implemented using the RMAP stack. All operations are
blocking until data is available, the return value indicates it the transfer was successful or not.

8.6. Interrupt handling

The RMAP protocol does not support interrupt handling, this is instead implemented by an separate interrupt
line, the interrupt handling is an optional feature per SpaceWire node. Each SpaceWire node may have up to four
interrupts connected to interrupt capable GPIO pins.

The user must setup a Virtual Interrupt Table, the table entries provide a way for the bus driver to translate a
Virtual IRQ number to a GPIO pin. The GPIO pin is used to connect to the IRQ and receive the interrupt. In the
node description a node may for example define it's IRQ1 to be connected to the SpaceWire bus Virtual IRQ 2,
which in turn is connected to GPIO5.

Setting up and controlling interrupts for node drivers are similar to a on-chip device driver, however the interrupt
service routine must take more things in to account. The ISR is expected to read and write to the node's registers
over the SpaceWire bus, that would require that SpaceWire bus is not busy and that the SpaceWire request is
executed very fast, non of these assumptions can be made. The ISR can thus not execute in interrupt context,
instead a high priority ISR task is managed by the SpaceWire bus driver. This way the ISR can access the node
over SpaceWire, however extra care must be taken in the node driver to avoid conflicts and races when the ISR
is executing as a task, instead of locking interrupt as in tradition drivers one may use a semaphore to protect the
critical regions.

8.7. Using the spacewire bus driver

The SpaceWire bus is registered to the driver manager for each SpaceWire network by calling the
spw_bus_register() function with a configuration description. The configuration describe the nodes on the
network, IRQ setup, driver resources

The SpaceWire bus is attached to a on-chip GRSPW driver, the core that provides access to the SpaceWire bus
via the RMAP stack.

There is an example of how to configure and use the SpaceWire bus driver in config_spw_bus.c.

SpaceWire Node drivers must set the bus type to DRVMGR_BUS_TYPE_SPW_RMAP and define an array with
all devices nodes that are supported by the driver. The AMBA PnP RMAP may be considered as an example
node driver.

RCC-UM
September 2020, Version 1.3-rc9

56 www.cobhamaes.com/gaisler

Chapter 9. AMBA over SpaceWire

9.1. Introduction

This document describes the AMBA Plug&Play bus driver used to write device drivers for AMBA cores accessed
over SpaceWire. The driver rely on the SpaceWire network bus driver.

9.2. Overview

The AMBA Plug&Play bus driver for the SpaceWire network is a generic driver for all GRLIB systems by using
the Plug&Play functionality provided by GRLIB systems. The address of the Plug&Play area start address is
configurable. The driver is a driver for a SpaceWire Node on a SpaceWire Network.

The system is accessed using RMAP commands and interrupt handling is performed when the IRQMP core is
found.

The services provided to device drivers on the AMBA bus accessed over SpaceWire are listed below:

• AMBA Plug&Play scanning over SpaceWire
• Interrupt management (driver for IRQMP)
• Read and Write registers and memory over SpaceWire
• Memory allocating (ambapp_rmap_partition_memalign())
• Driver resources

9.3. Requirements

The SpaceWire bus driver is required.

9.4. Interrupt handling

See the interrupt service routine of the AMBA Plug&Play bus is executed on the SpaceWire bus driver's ISR task.
See the SpaceWire Bus driver's documentation about the constraints of the interrupt handling.

9.5. Memory allocation on target

Two functions are provided by the AMBA RMAP driver to simplify memory allocation of target memory,
ambapp_rmap_partition_create() and ambapp_rmap_partition_memalign().

A partition symbolize a memory area with certain properties. For example, partition 0 might be SRAM and parti-
tion 1 might be on-chip RAM. A memory controller driver typically registers a partition after it has initialized the
memory controller and perhaps washed the memory, other drivers may then request memory from a certain par-
tition. The partition number that a driver request memory from may be configured from driver resources making
it possible for the user to easily control which parts of the memory is used. For example a descriptor table may
be required to be located in on-chip RAM.

Drivers request memory with memory alignment requirements by calling
ambapp_rmap_partition_memalign(). The device structure is passed along when creating partitions and
when allocating memory, making it possible for the AMBA RMAP bus driver to allocate memory from the same
bus.

9.6. Differences between on-chip AMBA drivers

There some differences when writing drivers for a remote target accessed over SpaceWire using the AMBA RMAP
driver, this section identifies the most common differences.

• Read and Write access (memory and registers) must be through functions rather than direct, functions are
provided

• Error handling of failed read/write accesses, this may also be handled on a global level (by the SpaceWire
bus driver)

• Memory allocation of target memory

RCC-UM
September 2020, Version 1.3-rc9

57 www.cobhamaes.com/gaisler

• ISR may block (executed in task context)
• Lock out ISR method is different
• Drivers must set bus type to DRVMGR_BUS_TYPE_AMBAPP_RMAP

RCC-UM
September 2020, Version 1.3-rc9

58 www.cobhamaes.com/gaisler

Chapter 10. LEON PCI host bridge drivers

10.1. Introduction

This section describes PCI Host support in RTEMS for SPARC/LEON processors. The supported PCI Host hard-
ware are listed below

• GRLIB GRPCI2
• GRLIB GRPCI
• GRLIB PCIF
• AT697 PCI

The PCI drivers require the Driver Manager and PCI Library available in the RCC distribution. The PCI Library
documentation is available in the doc/user directory in the RCC kernel source distribution. Note that the PCI
Library is not available in the official RTEMS distribution.

The GRPCI2 core can support a DMA interface that has its own driver explained in Chapter 11.

10.1.1. Examples

There is a simple example available that initializes the PCI Bus, lists the PCI configuration and demonstrates how
to write a PCI device driver. The example is part of the RCC distribution, it can be found under /opt/rtems-5/
src/samples/rtems-pci.c. The rtems-shell.c sample found in the same directory also demonstrates
PCI with RTEMS, note that there is a pci command which can be used to get information about the PCI set up.

10.2. Sources

The drivers can be found in the RTEMS SPARC BSP shared directory and in the LEON2 BSP. See table below.

Table 10.1. PCI driver source location

Location Description

.../libbsp/sparc/leon2/pci/at697_pci.c AT967 PCI

.../libbsp/sparc/shared/pci/grpci2.c GRPCI2

.../libbsp/sparc/shared/pci/grpci.c GRPCI

.../libbsp/sparc/shared/pci/pcif.c GRLIB PCIF, ACTEL PCI AMBA wrapper

cpukit/libpci PCI Library

cpukit/libpci/pci_bus.* PCI Bus driver for driver manager

doc/user/libpci.t PCI Library documentation

10.3. Configuration

The PCI interrupt assignment can be configured to override the Plug & Play information. The PCI driver is con-
figured using any combination of the driver resources in the table below, see samples or driver manager documen-
tation how driver resources are assigned.

Table 10.2. PCI Host driver parameter description

Name Type Parameter Description

INTA# INT Select system IRQ for PCI interrupt pin INTA#

INTB# INT Select system IRQ for PCI interrupt pin INTB#

INTC# INT Select system IRQ for PCI interrupt pin INTC#

INTD# INT Select system IRQ for PCI interrupt pin INTD#

10.3.1. GRPCI

GRLIB designs using the GRPCI PCI Host bridge has in addition to the INTX# configuration options the below
options.

RCC-UM
September 2020, Version 1.3-rc9

59 www.cobhamaes.com/gaisler

Name Type Parameter Description

tgtbar1 INT PCI target Base Address Register (BAR) 0 (defaults is 0x40000000)

byteTwisting INT Enable (1) or Disable (0=default) PCI bytes twisting

10.3.2. GRPCI2

GRLIB designs using the GRPCI2 PCI Host bridge has in addition to the INTX# configuration options the below
options.

The GRPCI2 host has up to 6 BARs, each with a configurable size. The driver uses only the first BAR by default,
it is set to start of RTEMS RAM memory and 256MBytes. The tgtBarCfg option is an address to an array of 6
struct grpci2_pcibar_cfg descriptions, each describing one BAR's size and PCI address and AMBA
address the PCI access is translated into. Thus, the programmer has full flexibility of where DMA capable PCI
targets should access. A size of 0 disables the BAR, see grpci2.h for the structure definition.

Name Type Parameter Description

tgtBarCfg INT PCI target Base Address Registers (BAR) configuration

byteTwisting INT Enable (1) or Disable (0=default) PCI bytes twisting

10.3.3. AT697

The AT697 PCI Host driver has additional configuration parameters to set up interrupts which is routed through
GPIO pins. The GPIO registers will be configured, and when a PCI target driver enables/disables IRQ the system
IRQ will be unmasked/masked.

Name Type Parameter Description

INTA#_PIO INT Select PIO pin connected to PCI interrupt pin INTA#

INTB#_PIO INT Select PIO pin connected to PCI interrupt pin INTB#

INTC#_PIO INT Select PIO pin connected to PCI interrupt pin INTC#

INTD#_PIO INT Select PIO pin connected to PCI interrupt pin INTD#

The two AT697 PCI target BARs are configurable from driver resources as below. A PCI target BAR determines
at which PCI address the AT697 AMBA space is accessed on, the AT697 has two 16Mbytes base address registers.
The default value is set to 0x40000000 (base of SRAM) and 0x60000000 (base of SDRAM).

Name Type Parameter Description

tgtbar2 INT PCI target Base Address Register (BAR) 0

tgtbar2 INT PCI target Base Address Register (BAR) 1

10.4. User interface

The PCI drivers are not accessed directly instead the user calls the PCI Library that translates into a call to the
active PCI host driver. When the drivers are initialized they register a backend to the PCI library, all PCI devices
are initialized using the PCI configuration library, then a PCI Bus is registered which is implemented on top of
the PCI Library. That way the PCI Bus is independent of PCI host driver. The driver manager will find all PCI
devices and assign a suitable driver for them, and so on.

Please see the PCI Library documentation.

10.4.1. PCI address space

The PCI Library supports the following PCI address spaces:

• 16-bit I/O Space (IO)
• non-prefetchable memory space (MEMIO)
• prefetchable memory space (MEM)

RCC-UM
September 2020, Version 1.3-rc9

60 www.cobhamaes.com/gaisler

• configuration space (CFG)

On LEON hardware the address spaces are accessed over dedicated AHB areas as ordinary AMBA memory ac-
cesses and it will be transformed into appropriate PCI access type depending on which AHB area (window) was
accessed and of which AMBA access type (burst, single access). Note that LEON hardware have only one memory
window which can do both MEM and MEMIO access types, so the PCI Library is configured with one MEMIO
Window. No special instructions are required to access I/O or configuration space. The location of the PCI Win-
dows are determined by looking at AMBA plug and play information for the PCI Host core. The AT697 PCI MEM
Window is defined to 0xA0000000-0xF0000000.

The PCI Library is informed about the PCI windows location and size. PCI BARs are allocated within the MEM,
MEMIO and I/O windows.

10.4.2. PCI interrupt

For every PCI target board found by the PCI Library the PCI driver is asked to provide a system IRQ for the
target's PCI Interrupt pin number. The interrupt is normally taken from AMBA Plug & Play interrupt number
assigned to the PCI Host hardware itself. However it can be overridden using driver resources as described in
section Section 10.4.

After the PCI Library has allocated memory for all targets BARs and assigned IRQ. The PCI bus driver can access
the IRQ number from configuration space and connect a PCI Target driver with its system interrupt source. The
PCI target drivers use the Driver Manager interrupt register routine.

When a PCI target driver enable interrupt using the Driver Manager interrupt enable routine, the system IRQ for the
PCI target is unmasked. AT697 PCI interrupt is not routed through the PCI core but through user selectable GPIO.
Enabling IRQ will only cause the system IRQ to be unmasked, the PCI driver will not change GPIO parameters,
this is required by the user to set up. PCI is level triggered.

PCI interrupts must be acknowledge after being handled to ensure that the interrupt handler is not executed twice.
The Driver Manager interrupt clear routine can be used to clear the pending bit in the LEON interrupt controlled
after the interrupt has been handled by the PCI target Driver.

When the LEON takes the PCI IRQ the LEON IRQ controller is acknowledged, however the PCI target is still
driving the IRQ line causing the LEON IRQ controller being set once again. This is because PCI is level triggered
(level is still low), the other IRQs on the LEON is edge triggered. The solution is to acknowledge the LEON IRQ
controller after the PCI target has stop driving the PCI IRQ line, only then will the driver be able to stop the last
already handled IRQ to occur. This must be done in the PCI ISR of the target device driver after the hardware
causing the IRQ has been acknowledge.

10.4.3. PCI endianess

The PCI bus is defined little-endian whereas the SPARC and AMBA bus are defined big-endian, this imposes a
problem where the CPU has to byte-swap the data in PCI accesses. The GRPCI and GRPCI2 host controllers has
support for doing byte-swapping in hardware for us,, it is enabled/disabled using the byteTwisting configuration
option. The AT697 PCI and PCIF does not have this option, the software defaults to the PCI bus being non-
standard big-endian instead. Please see more information about this in hardware manuals and the PCI Library
documentation.

RCC-UM
September 2020, Version 1.3-rc9

61 www.cobhamaes.com/gaisler

Chapter 11. GRPCI2 DMA driver

11.1. Introduction

This section describes GRPCI2 DMA driver for SPARC/LEON processors.

The GRPCI2 DMA driver is part of the GRPCI2 driver and is available if the GRPCI2 core support the DMA.
See Chapter 10 for more details on the GRPCI2 driver.

11.1.1. Hardware Support

The GRPCI2 DMA core hardware interface is documented in the GRIP Core User's manual. Below is a list of
the major hardware features it supports:

• Multiple DMA channels
• Interrupt handling
• Multi-processor SMP support

11.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
tree rtems-5/c/src/lib/libbsp/sparc.

Table 11.1. GRPCI2 DMA driver source location

Location Description

shared/include/grpci2dma.h GRPCI2 DMA user interface definition

.../libbsp/sparc/shared/pci/grpci2dma.c GRPCI2 DMA driver implementation

11.1.3. Examples

There is a simple example available that uses the DMA to transfer a memory block between a host and a periph-
eral board. The example is part of the RCC distribution, it can be found under /opt/rtems-5/src/sam-
ples/pci/pci_demo/test.c.

11.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing a IO system device. The API is designed for multi-threadding allowing
multiple threads to operate on the same or different DMA channel interfaces independently. Also the driver is
SMP-safe, allowing to use the same or different channels concurrently (see Section 11.2.6).

11.2.1. Driver usage

In order to use the driver the first thing to do is to open a GRPCI2 DMA channel (see Section 11.3.2). The allocation
of the channel can be done either by the user or managed internally on the driver. When a channel is open, an id
is assigned to the channel which is later used for any operation involving the channel.

Once a channel is open, the user needs data descriptor to begin preparing transfers for the DMA. There are helper
functions that allow to allocate data descriptors (see Section 11.3.6), otherwise the user must take care of the
allocation, repecting size and alignment requirements of the descriptors (see Section 11.2.5).

When data descriptors are available, the user can prepare transfers with helper functions that prepare the data
descriptors for the user-defined transfers (see Section 11.3.7).

After the data descriptors are prepared, these can be pushed to a channel with a given channel id (see Section 11.3.8)

As soon as a that channel is started (or if it was already started) the DMA will start processing any pushed data
descriptors on the channel (see Section 11.3.3).

RCC-UM
September 2020, Version 1.3-rc9

62 www.cobhamaes.com/gaisler

There are two options to check whether a transfer is finished or not. The first one is checking the status of the
data descriptors that are part of the transfer (see Section 11.3.9). The second one is to enable interrupts for one
(or many) of the data descriptors so that a user-defined ISR is executed when the data descriptor is completed
(see Section 11.3.5). In this case, the user must provide the user-defined ISR before starting the DMA (see Sec-
tion 11.3.4).

The user can keep pushing as many transfers as needed for the channel. If at some point the user wants to cancel
an ongoing transfer, it has to stop the channel (see Section 11.3.3). Stopping a channel effectively cancels the
ongoing transfers on that channel. After that, any pushed transfers will not be handled until the channel is started
again (see Section 11.3.3).

When the user has finished using the channel, he should close it (see Section 11.3.2). Closing a channel will stop
it if there were any ongoing transfers.

11.2.2. Driver resource configuration

A GRPCI2 DMA device may implement up to eight DMA channels.

There is no limit to the number of data descriptors.

11.2.3. Initialization

During early initialization when the operating system boots the GRPCI2 driver, which registers the DMA driver
if there is harware support for it. The GRPCI2 DMA driver performs some basic software initialization. The
following steps are performed:

• GRPCI2 DMA registers are initialized to a state where most are zero.
• DMA is stopped.
• IRQ status is cleared.
• IRQ generation disabled.
• Status Register cleared.
• Driver semaphore is created.
• One semaphore per channel is created.

11.2.4. DMA control

The DMA is not controlled directly by the user, rather the user uses the software channel interface. The driver
provides a call to 'grpci2dma_active()' that returns the state of the DMA core.

11.2.5. DMA buffer handling

The driver is designed with zero-copy in mind. There are helper functions distributed together with the driver
that do buffer allocation and handling. Otherwise the user is responsible for setting up channel and data buffers
on its own,

The driver provides a call to grpci2dma_open(pointer), which uses a channel descriptor pointer as input
when opening a channel. If a NULL pointer is given, the driver will take care of the channel descriptor allocation
and deallocation, otherwise it is the user responsibility to allocate and deallocate the channel descriptors used.

The driver uses data descriptor buffers as input when doing transfers. The driver provides calls to
grpci2dma_data_new() and grpci2dma_data_delete() to allocate/deallocate descriptors. Other-
wise is the user responsibility to allocate and deallocate the data descriptors used.

Both, channel and data descriptors have a certain allignment and size requirements. The following table describes
the macros required to do proper allcoation.

• GRPCI2DMA_BD_CHAN_SIZE - Size of a channel descriptor (in bytes).
• GRPCI2DMA_BD_DATA_SIZE - Size of a data descriptor (in bytes).
• GRPCI2DMA_BD_CHAN_ALIGN - Alignment of a channel descriptor (in bytes).
• GRPCI2DMA_BD_DATA_ALIGN - Alignment of a data descriptor (in bytes).

RCC-UM
September 2020, Version 1.3-rc9

63 www.cobhamaes.com/gaisler

Since the driver offers the possibility for the user to allocate the buffer descriptor, it is the user's responsibility
to handle potential cache effects.

11.2.6. SMP Support

The driver has been designed to be SMP safe. This means that multiple tasks can access the same or different
channels at the same time. Driver data structures and interrupt handling routines are protected by a semaphore.
Each channel and its data structure has its own semaphore. GRPCI2 DMA control registers are protected by spin-
locks when SMP is enabled.

11.3. DMA user interface

The GRPCI2 DMA driver internally uses channels to manage the DMA. The channel operations are found in the
header file and can be used by the user as well. The user application typically opens its own channel, prepares data
buffers with the transfer that the user wants to perform and just pushes the data buffers to the channel.

11.3.1. Return values

 GRPCI2DMA_ERR_OK
 GRPCI2DMA_ERR_WRONGPTR
 GRPCI2DMA_ERR_NOINIT
 GRPCI2DMA_ERR_TOOMANY
 GRPCI2DMA_ERR_ERROR
 GRPCI2DMA_ERR_STOPDMA
 GRPCI2DMA_ERR_NOTFOUND

All the driver function calls return the following values when an error occurred:

• GRPCI2DMA_ERR_OK - Successful execution.
• GRPCI2DMA_ERR_WRONGPTR - Wrong input parameter. One of the input values checks failed.
• GRPCI2DMA_ERR_NOINIT - Driver not initialized.
• GRPCI2DMA_ERR_TOOMANY - Maximum number of descriptor exceeded.
• GRPCI2DMA_ERR_STOPDMA - Cannot stop DMA.
• GRPCI2DMA_ERR_NOTFOUND - Descriptor not found.
• GRPCI2DMA_ERR_ERROR - Internal error. Can have different causes.

Some functions also return a positive value upon successful execution, such as the channel id number or the
number of descriptors used.

11.3.2. Opening/closing a channel

 int grpci2dma_open(void * chanptr)
 int grpci2dma_close(int chan_id)

The driver uses the open function to open a channel and return the assigned id. If a chanptr is provided (i.e.
not NULL) the driver uses the memory pointed by the pointer as channel descriptor. Otherwise the driver allocates
memory for the descriptor. The pointer must be aligned, as described in Section 11.2.5.

The driver uses the close function to close a channel with the given id. If a chanptr was provided when opening
the channel, then the user should take care of deallocating the descriptor, otherwise is managed internally on the
driver.

The open function returns a possitive number which is the assigned id of the channel. Otherwise, open and close
functions return a negative value if something went wrong, as explained in Section 11.3.1.

Table 11.2. grpci2dma_open function declaration

Proto int grpci2dma_open(void * chanptr)

About Opens a GRPCI2DMA channel. The channel is later identified by the returned value. The returned
value is used as input argument to all functions operating on the channel. See Section 11.3.2.

RCC-UM
September 2020, Version 1.3-rc9

64 www.cobhamaes.com/gaisler

chanptr [IN] PointerParam

The driver uses the memory pointed by the pointer as channel descriptor. If a NULL pointer is giv-
en, the driver allocates memory for the descriptor. The pointer must be aligned, as described in Sec-
tion 11.2.5.

Return int. If positive or zero, represents the assigned id of the channel. Otherwise, returns a negative value
if something went wrong, as explained in Section 11.3.1.

Table 11.3. grpci2dma_close function declaration

Proto int grpci2dma_close(int chan_id)

About Closes a GRPCI2DMA channel. The channel is identified by chan_id. See Section 11.3.2.

chan_id [IN] IntegerParam

Channel identification number. Number returned by the open function (see Section 11.3.2).

Return int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 11.3.1.

11.3.3. Starting/stopping a channel

 int grpci2dma_start(int chan_id, int options)
 int grpci2dma_stop(int chan_id)

The driver uses these function to start and stop the channel with the given chan_id. Once a channel is started or
stopped, it will remain in that state until the channel is either stoped or started again (or closed).

When starting a channel, if there were transfers pushed on the channel the DMA will start transferring them as
soon as possible. Otherwise, the channel will remain active, which means that any future incomming transfers will
be transferred as soon as possible by the DMA.

When stopping a channel, if there were unfinished transfers pushed on the channel the DMA will not finish them
and remove then from the actual channel. It is the user responsibility to take care of the non-finished transfers.
Any future pushed transfers on the stopped channel will not be transferred until the channel is started again.

The options parameter defines the maximum number of data descriptors to be executed before moving to next
channel (up to 65536).

These functions return a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs GRPCI2DMA_ERR_OK when successful.

Table 11.4. grpci2dma_start function declaration

Proto int grpci2dma_start(voint chan_id, int options)

About Starts a GRPCI2DMA channel. The channel is identified by chan_id. See Section 11.3.3.

chan_id [IN] IntegerParam

Channel identification number. Number returned by the open function (see Section 11.3.2).

options [IN] IntegerParam

Defines the maximum number of data descriptors to be executed before moving to next channel (up to
65536). If 0 is given, the maximum is used as default (65536).

Return int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 11.3.1.

Table 11.5. grpci2dma_stop function declaration

Proto int grpci2dma_stop(voint chan_id)

About Stops a GRPCI2DMA channel. The channel is identified by chan_id. See Section 11.3.3.

RCC-UM
September 2020, Version 1.3-rc9

65 www.cobhamaes.com/gaisler

chan_id [IN] IntegerParam

Channel identification number. Number returned by the open function (see Section 11.3.2).

Return int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 11.3.1.

11.3.4. Registering an ISR for a channel

 typedef void (*grpci2dma_isr_t)(void *userarg, int chan_id, unsigned int dmastatus)
 int grpci2dma_isr_register(int chan_id, grpci2dma_isr_t userisr, void *userarg)

The driver uses this functions to register an user ISR for a channel with the given chan_id. The user provide
the ISR and the argument to pass when called in the userisr and userarg parameters. The ISR will be called
when a data descriptor with enabled interrupts from that channel is processed. The ISR has three parameters,
the user provided argument, the channel id that generated the ISR and the error status of the DMA core, which
corresponds with the bits 7 to 11 on the DMA control register as described on the GRIP manual.

This functions returns a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs GRPCI2DMA_ERR_OK when successful.

Table 11.6. grpci2dma_isr_register function declaration

Proto int grpci2dma_isr_register(int chan_id, grpci2dma_isr_t userisr,
void *userarg)

About Registers an ISR for a GRPCI2DMA channel. The channel is identified by chan_id. See Sec-
tion 11.3.4.

chan_id [IN] IntegerParam

Channel identification number. Number returned by the open function (see Section 11.3.2).

userisr [IN] PointerParam

The ISR function pointer.

userarg [IN] PointerParam

The ISR argument pointer.

Return int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 11.3.1.

11.3.5. Enabling interrupts for data descriptors

 int grpci2dma_interrupt_enable(void *databd, int bdindex, int bdmax, int options)

The driver uses this function to enable interrupts on one or all of the range of data descriptors in a buffer. The data
descriptor buffer is pointed by databd, and bdindex and bdmax indicate where the range starts and where
it finishes (bdindex <= index < bdmax. The options parameter can be GRPCI2DMA_OPTIONS_ONE or
GRPCI2DMA_OPTIONS_ALL that decide if to enable interrupts on only the descriptor pointed by bdindex or
in all the descriptors in the range starting from the one pointed by bdindex up to bdmax - 1.

This functions returns a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs GRPCI2DMA_ERR_OK when successful.

Table 11.7. grpci2dma_interrupt_enable function declaration

Proto int grpci2dma_interrupt_enable(void *databd, int bdindex, int bdmax,
int options)

About Enable interrupt for one or a range of GRPCI2DMA data descriptors. See Section 11.3.5.

databd [IN] PointerParam

Pointer to the data descriptor buffer.

RCC-UM
September 2020, Version 1.3-rc9

66 www.cobhamaes.com/gaisler

bdindex [IN] IntegerParam

Indicates the index of the data descriptor in the data buffer in which the range starts. This means that
index >= bdindex.

bdmax [IN] IntegerParam

Indicates the index of data descriptor in the data buffer which is no longer part of the range. This
means that index < bdmax.

options [IN] Integer

Value Description

GRPCI2DMA_OPTIONS_ALL Enable interrupts on all data descriptors in the range.

Param

GRPCI2DMA_OPTIONS_ONE Enable interrupts on the first data descriptor in the range.

Return int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 11.3.1.

11.3.6. Allocating data descriptors

 void * grpci2dma_data_new(int number)
 void grpci2dma_data_delete(void * databd)

The driver provides these functions to help the user allocating data buffer descriptors. The number parameter
defines how many descriptors to allocate in the buffer. The new function returns a pointer to the data descriptor
buffer or a NULL pointer if something went wrong. To deallocate a data descriptor buffer provide the data de-
scriptor buffer pointer provided by the new function to the delete function.

Table 11.8. grpci2dma_data_new function declaration

Proto void * grpci2dma_data_new(int number)

About Allocates GRPCI2DMA data descriptors. The number of data descriptors is indicated by number.
See Section 11.3.6.

number [IN] IntegerParam

Number of consecutive data descriptors to allocate.

Return void *. Pointer to the first allocated data descriptor. If a NULL pointer is returned, something went
wrong.

Table 11.9. grpci2dma_data_delete function declaration

Proto void grpci2dma_data_delete(void * databd)

About Deallocates GRPCI2DMA data descriptors. See Section 11.3.6.

databd [IN] PointerParam

Pointer to the first allocated data descriptor.

Return None.

11.3.7. Prepare a transfer

 int grpci2dma_prepare(uint32_t pci_start, uint32_t ahb_start, int dir,
 int endianness, int size, void * databd, int bdindex, int bdmax, int block_size)

The driver uses this function to prepare data descriptor buffers with user defined transfers. The transfer is defined
by the following parameters:

• pci_start: PCI start address.
• ahb_start: AHB start address.
• dir: Direction of the transfer. Can either be from AHB to PCI (GRPCI2DMA_AHBTOPCI) or from PCI

to AHB (GRPCI2DMA_PCITOAHB).

RCC-UM
September 2020, Version 1.3-rc9

67 www.cobhamaes.com/gaisler

• endianness: Endianness of the transfer. Can either be little endian (GRPCI2DMA_LITTLEENDIAN) or
big endian (GRPCI2DMA_BIGENDIAN).

• size: Size in bytes of the transfer. Must be a multiple of 4 bytes (32-bit).

The data descriptor buffer is pointed by databd, and contains up to bdmax descriptors. The driver will use only
use the descriptors starting from index bdindex up to bdmax-1. The block_size parameter indicates the
size in bytes for each PCI transaction (or block). Each PCI transaction is guaranteed to be smaller than this value.
If a 0 block size is given, the maximum is used by default, which is 256 KiB.

This function returns a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs the actual number of descriptors used for the transfer, denoted by bdsize. This means that the
descriptors from bdindex up to bdindex + bdsize - 1 are used for the transfer. So a subsequent call to
this function to prepare another transfer could use the same data descriptor buffer with a new bdindex=bdsize.

Table 11.10. grpci2dma_prepare function declaration

Proto int grpci2dma_prepare(uint32_t pci_start, uint32_t ahb_start, int
dir, int endianness, int size, void * databd, int bdindex, int bd-
max, int block_size)

About Prepare a given range of GRPCI2DMA data descriptors in a buffer with a user-defined transfer. The
function returns the number of data descriptors used. See Section 11.3.7.

pci_start [IN] IntegerParam

Indicates the start address of the transfer in the PCI address map.

ahb_start [IN] IntegerParam

Indicates the start address of the transfer in the AHB (on-chip) address map.

dir [IN] Integer

Direction of the transfer.

Value Description

GRPCI2DMA_AHBTOPCI AHB (on-chip) to PCI.

Param

GRPCI2DMA_PCITOAHB PCI to AHB (on-chip).

endianness [IN] Integer

Endianness of the transfer.

Value Description

GRPCI2DMA_BIGENDIAN Big endian.

Param

GRPCI2DMA_LITTLEENDIAN Little endian.

size [IN] IntegerParam

Size of the transfer in bytes. Must be a multiple of 4-bytes (32-bit).

databd [IN] PointerParam

Pointer to the data descriptor buffer.

bdindex [IN] IntegerParam

Indicates the index of the data descriptor in the data buffer in which the range starts. This means that
index >= bdindex.

bdmax [IN] IntegerParam

Indicates the index of data descriptor in the data buffer which is no longer part of the range. This
means that index < bdmax.

block_size [IN] IntegerParam

Indicates the size in bytes for each PCI transaction (or block). Each PCI transaction is guaranteed to
be smaller than this value. If a 0 block size is given, the maximum is used by default, which is 256
KiB.

RCC-UM
September 2020, Version 1.3-rc9

68 www.cobhamaes.com/gaisler

Return int. If positive or zero, represents the actual number of descriptors used for the transfer, denoted by
bdsize. This means that the descriptors from bdindex up to bdindex + bdsize - 1 are
used for the transfer. Otherwise, returns a negative value if something went wrong, as explained in
Section 11.3.1.

11.3.8. Push a transfer into a channel

 int grpci2dma_push(int chan_id, void * databd, int bdindex, int bdsize)

The driver uses this function to push a transfer to a channel with the given chan_id. The transfer has been
prepared before with the prepare function and is given by the data descriptor buffer pointed by databd, starting
at index bdindex and consisting of bdsize descriptors. This means that the descriptors from bdindex up to
bdindex + bdsize - 1 are pushed to the channel.

This function can be called anytime after channel is open. It can be called when the channel is stopped, started
or even with ongoing transfers.

This function returns a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs GRPCI2DMA_ERR_OK when successful.

Table 11.11. grpci2dma_push function declaration

Proto int grpci2dma_push(int chan_id, void * databd, int bdindex, int bd-
size)

About Push a given range of prepared GRPCI2DMA data descriptors in a buffer (a transfer) to a
GRPCI2DMA channel so that they can be processed by the DMA whenever the channel is started.
The channel is identified by chan_id. See Section 11.3.8.

chan_id [IN] IntegerParam

Channel identification number. Number returned by the open function (see Section 11.3.2).

databd [IN] PointerParam

Pointer to the data descriptor buffer.

bdindex [IN] IntegerParam

Indicates the index of the data descriptor in the data buffer in which the range starts. This means that
index >= bdindex.

bdsize [IN] IntegerParam

Indicates the number of descriptors in the range used for the transfer. This means that the descriptors
from bdindex up to bdindex + bdsize - 1 are pushed into the channel.

Return int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 11.3.1.

11.3.9. Get the status of a transfer

 int grpci2dma_status(void * databd, int bdindex, int bdsize)

The driver uses this functions to check the status of a range of data descriptors in a buffer. The data descriptor
buffer is pointed by databd, The driver will check only bdsize descriptors starting from bdindex.

There are three possible states a data descriptor can be:

• GRPCI2DMA_BD_STATUS_ERR - Error status. Something went wrong when performing the transfer.
• GRPCI2DMA_BD_STATUS_ENABLED - Transfer enabled. The data descriptors have been prepared to be

transfered but not yet transfered.
• GRPCI2DMA_BD_STATUS_DISABLED - Transfer disabled. The data descriptors have been disabled. It

means that the DMA finished sending this transfer.

RCC-UM
September 2020, Version 1.3-rc9

69 www.cobhamaes.com/gaisler

When the status of more than one data descriptor is checked, for instance when checking the status of a transfer
composed of multiple data descriptors, the function works as follows: if at least one of the data descriptors is on
error or enabled status, the return value is error or enabled respectively. Otherwise if all of the descriptors are in
disabled status the return value is disabled.

This functions returns a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs the data descriptor status as explained before.

Table 11.12. grpci2dma_status function declaration

Proto int grpci2dma_status(void * databd, int bdindex, int bdsize)

About Status of a given range of GRPCI2DMA data descriptors in a buffer (a transfer). See Section 11.3.9.

databd [IN] PointerParam

Pointer to the data descriptor buffer.

bdindex [IN] IntegerParam

Indicates the index of the data descriptor in the data buffer in which the range starts. This means that
index >= bdindex.

bdsize [IN] IntegerParam

Indicates the number of descriptors in the range used for the transfer. This means that the descriptors
from bdindex up to bdindex + bdsize - 1 are pushed into the channel.

int. When succesfull returns the status of the range of data descriptors. When the status of more than
one data descriptor is checked, the function works as follows: if at least one of the data descriptors
is on error or enabled status, the return value is error or enabled respectively. Otherwise if all of the
descriptors are in disabled status the return value is disabled. Otherwise, returns a negative value if
something went wrong, as explained in Section 11.3.1.

Value Description

GRPCI2DMA_BD_STATUS_ERR Error status. Something went wrong when performing
the transfer.

GRPCI2DMA_BD_STATUS_ENABLED Transfer enabled. The data descriptors have been pre-
pared to be transfered but not yet transfered.

Return

GRPCI2DMA_BD_STATUS_DISABLED Transfer disabled. The data descriptors have been dis-
abled. It means that the DMA finished sending this trans-
fer.

11.4. API reference

This section lists all functions part of the GRPCI2DMA driver API, and in which section(s) they are described.
The API is also documented in the source header file of the driver, see Section 11.1.2.

Table 11.13. GRPCI2DMA function reference

Prototype Section

int grpci2dma_open(void * chanptr) 11.3.2

int grpci2dma_close(int chan_id) 11.3.2

int grpci2dma_start(int chan_id, int options) 11.3.3

int grpci2dma_stop(int chan_id) 11.3.3

int grpci2dma_isr_register(int chan_id, grpci2dma_isr_t userisr,
void *userarg)

11.3.4

int grpci2dma_interrupt_enable(void *databd, int bdindex, int bd-
max, int options)

11.3.5

void * grpci2dma_data_new(int number) 11.3.6

void grpci2dma_data_delete(void * databd) 11.3.6

RCC-UM
September 2020, Version 1.3-rc9

70 www.cobhamaes.com/gaisler

Prototype Section

int grpci2dma_prepare(uint32_t pci_start, uint32_t ahb_start, int
dir, int endianness, int size, void * databd, int bdindex, int bd-
max, int block_size)

11.3.7

int grpci2dma_push(int chan_id, void * databd, int bdindex, int bd-
size)

11.3.8

int grpci2dma_status(void * databd, int bdindex, int bdsize) 11.3.9

RCC-UM
September 2020, Version 1.3-rc9

71 www.cobhamaes.com/gaisler

Chapter 12. GR-RASTA-ADCDAC PCI peripheral

This section describes the GR-RASTA-ADCDAC PCI peripheral driver.

The GR-RASTA-ADCDAC driver require the Driver Manager and that the PCI bus is big endian.

The GR-RASTA-ADCDAC driver is a bus driver providing an AMBA Plug & Play bus. The driver first sets
up the target PCI register such as PCI Master enable and the address translation registers. Once the PCI target
is set up the driver creates an ambapp_bus that scans the bus and assigns the appropriate drivers. This driver
provides interrupt handling and memory address translation on the internal AMBA bus so that the drivers can
function as expected.

The driver resources of the AMBA bus created by the GR-RASTA-ADCDAC driver can be assigned by calling
gr_rasta_adcdac_set_resource as defined by gr_rasta_adcdac.h.

The driver resources of the AMBA bus created by the GR-RASTA-ADCDAC driver can be assigned by overriding
the weak default bus resource array gr_rasta_adcdac_resources[] of the driver. It contains a array of
pointers to bus resources where index=N determines the bus resources for GR-RASTA-ADCDAC[N] board. The
array is declared in gr_rasta_adcdac.h. The driver resources can be used to set up the memory parameters, configure
locations of the DMA areas and other parameters of GRCAN, GRADCDAC and all other supported cores. Please
see respective driver for available configuration options.

RCC-UM
September 2020, Version 1.3-rc9

72 www.cobhamaes.com/gaisler

Chapter 13. GR-RASTA-IO PCI peripheral

This section describes the GR-RASTA-IO PCI peripheral driver.

The GR-RASTA-IO driver require the Driver Manager and that the PCI bus is big endian.

The GR-RASTA-IO driver is a bus driver providing an AMBA Plug & Play bus. The driver first sets up the target
PCI register such as PCI Master enable and the address translation registers. Once the PCI target is set up the
driver creates an ambapp_bus that scans the bus and assigns the appropriate drivers. This driver provides interrupt
handling and memory address translation on the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the GR-RASTA-IO driver can be assigned by overriding the
weak default bus resource array gr_rasta_io_resources[] of the driver. It contains a array of pointers to
bus resources where index=N determines the bus resources for GR-RASTA-IO[N] board. The array is declared
in gr_rasta_io.h. The driver resources can be used to set up the memory parameters and configure locations of
the DMA areas of 1553BRM, GRCAN, GRSPW cores. Please see respective driver for available configuration
options.

RCC-UM
September 2020, Version 1.3-rc9

73 www.cobhamaes.com/gaisler

Chapter 14. GR-RASTA-TMTC PCI peripheral

This section describes the GR-RASTA-TMTC PCI peripheral driver.

The GR-RASTA-TMTC driver require the Driver Manager and that the PCI bus is big endian.

The GR-RASTA-TMTC driver is a bus driver providing an AMBA Plug & Play bus. The driver first sets up the
target PCI register such as PCI Master enable and the address translation registers. Once the PCI target is set up the
driver creates an ambapp_bus that scans the bus and assigns the appropriate drivers. This driver provides interrupt
handling and memory address translation on the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the GR-RASTA-TMTC driver can be assigned by overriding
the weak default bus resource array gr_rasta_tmtc_resources[] of the driver. It contains a array of
pointers to bus resources where index=N determines the bus resources for GR-RASTA-TMTC[N] board. The
array is declared in gr_rasta_tmtc.h. The driver resources can be used to set up the memory parameters and
configure locations of the DMA areas of GRTC, GRTM, GRSPW cores. Please see respective driver for available
configuration options.

RCC-UM
September 2020, Version 1.3-rc9

74 www.cobhamaes.com/gaisler

Chapter 15. GR-RASTA-SPW_ROUTER PCI Peripheral

This section describes the GR-RASTA-SPW_ROUTER PCI peripheral driver.

The GR-RASTA-SPW_ROUTER driver require the RTEMS Driver Manager and that the PCI bus is big endian.

The GR-RASTA-SPW-ROUTER driver is a bus driver providing an AMBA Plug & Play bus. The driver first sets
up the target PCI register such as PCI Master enable and the address translation registers. Once the PCI target is
set up the driver creates an ambapp_bus that scans the bus and assigns the appropriate drivers. This driver provides
interrupt handling and memory address translation on the internal AMBA bus so that the drivers can function as
expected.

The driver resources of the AMBA bus created by the GR-RASTA-SPW_ROUTER driver can be assigned by
overriding the weak default bus resource array gr_rasta_spw_router_resources[] of the driver. It contains a array
of pointers to bus resources where index=N determines the bus resources for GR-RASTA-SPW_ROUTER[N]
board. The driver resources can be used to set up the memory parameters and configure locations of the DMA areas
of GRSPW2 AMBA port cores. Please see GRSPW driver documentation for available configuration options.

RCC-UM
September 2020, Version 1.3-rc9

75 www.cobhamaes.com/gaisler

Chapter 16. GR-CPCI-LEON4-N2X PCI Peripheral

This section describes the GR-CPCI-LEON4-N2X PCI peripheral driver.

The GR-CPCI-LEON4-N2X driver require the RTEMS Driver Manager and that the PCI bus is big endian.

The GR-CPCI-LEON4-N2X driver is a bus driver providing an AMBA Plug & Play bus. The driver first sets up
the target PCI register such as PCI Master enable and the address translation registers. The clock gating unit is by
default set up so that all functionality is enabled. Once the PCI target is set up the driver creates an ambapp_bus
that scans the bus and assigns the appropriate drivers. This driver provides interrupt handling and memory address
translation on the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the driver can be assigned by overriding the weak default bus
resource array gr_cpci_leon4_n2x_resources[] of the driver. It contains a array of pointers to bus re-
sources where index=N determines the bus resources for GR-CPCI-LEON4-N2X[N] board. The array is declared
in gr_cpci_leon4_n2x.h. The driver resources can be used to set up the memory parameters and for con-
figuring other driver options such as the base DMA area address of the SpaceWire cores. Please see respective
driver for available configuration options.

16.1. Driver registration

The driver must be registered to the driver manager by adding the
CONFIGURE_DRIVER_PCI_GR_LEON4_N2X define in the RTEMS project configuration. This process is de-
scribed in the driver manager chapter.

16.2. Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter. Below is a de-
scription of configurable driver parameters. The driver parameters is unique per PCI device and configured in the
PCI bus driver resources array. The parameters are all optional, the parameters only overrides the default values.
However the ambaFreq paramter is typically required.

Table 16.1. GR-CPCI-LEON4-N2X driver parameter description

Name Type Parameter Description

ahbmst2pci INT PCI base address of the 1Gbyte AMBA->PCI window. Default to RAM start ad-
dress.

ambaFreq INT Frequency in Hz of the LEON4-N2X AMBA bus. Defaults to 200MHz.

cgEnMask INT Clock gating enable/disable mask. Each bit in the mask corresponds to one bit the
the clock gate unit (one clock tree), set to 1 to enable or 0 to disable individual
clock trees.

bar0 INT PCI target BAR0 AMBA access address. Defaults to 0x00000000 (L2-cache main
memory)

bar1 INT PCI target BAR1 AMBA access address. Defaults to 0xf0000000 (L2-cache regis-
ters)

RCC-UM
September 2020, Version 1.3-rc9

76 www.cobhamaes.com/gaisler

Chapter 17. GR-CPCI-GR740 PCI Peripheral

This section describes the GR-CPCI-GR740 PCI peripheral driver.

The GR-CPCI-GR740 driver require the RTEMS Driver Manager and that the PCI bus is big endian.

The GR-CPCI-GR740 driver is a bus driver providing an AMBA Plug & Play bus. The driver first sets up the
target PCI register such as PCI Master enable and the address translation registers. The clock gating unit is by
default set up so that all functionality is enabled. Once the PCI target is set up the driver creates an ambapp_bus
that scans the bus and assigns the appropriate drivers. This driver provides interrupt handling and memory address
translation on the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the driver can be assigned by overriding the weak default
bus resource array gr_cpci_gr740_resources[] of the driver. It contains a array of pointers to bus re-
sources where index=N determines the bus resources for GR-CPCI-GR740[N] board. The array is declared in
gr_cpci_gr740.h. The driver resources can be used to set up the memory parameters and for configuring
other driver options such as the base DMA area address of the SpaceWire cores. Please see respective driver for
available configuration options.

17.1. Driver registration

The driver must be registered to the driver manager by adding the
CONFIGURE_DRIVER_PCI_GR_CPCI_GR740 define in the RTEMS project configuration. This process is de-
scribed in the driver manager chapter.

17.2. Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter. Below is a de-
scription of configurable driver parameters. The driver parameters is unique per PCI device and configured in the
PCI bus driver resources array. The parameters are all optional, the parameters only overrides the default values.
However the ambaFreq paramter is typically required.

Table 17.1. GR-CPCI-GR740 driver parameter description

Name Type Parameter Description

ahbmst2pci INT PCI base address of the 1Gbyte AMBA->PCI window. Default to RAM start ad-
dress.

ambaFreq INT Frequency in Hz of the GR740 AMBA bus. Defaults to 250MHz.

cgEnMask INT Clock gating enable/disable mask. Each bit in the mask corresponds to one bit the
the clock gate unit (one clock tree), set to 1 to enable or 0 to disable individual
clock trees.

bar0 INT PCI target BAR0 AMBA access address. Defaults to 0x00000000 (L2-cache main
memory)

bar1 INT PCI target BAR1 AMBA access address. Defaults to 0xf0000000 (L2-cache regis-
ters)

RCC-UM
September 2020, Version 1.3-rc9

77 www.cobhamaes.com/gaisler

Chapter 18. GRSPW Packet driver

18.1. Introduction

This section describes the GRSPW packet driver for RTEMS The packet driver will replace the older GRSPW
driver in the future.

It is an advantage to understand the SpaceWire bus/protocols, GRSPW hardware and software driver design when
developing using the user interface in Section 18.3 and Section 18.4. The Section 18.2.1 describes the overall
software design of the driver.

18.1.1. GRSPW packet driver vs. old GRSPW driver

This driver is a complete redesign of the older GRSPW driver. The user interfaces to GRSPW devices using an
API rather than using the standard UNIX file procedures like open(), read(), ioctl() and so on. The driver uses
linked lists of packet buffers to receive and transmit SpaceWire packets. Before the user called read() or write() to
copy data into/from the GRSPW DMA buffers, where each call received or transmitted a single packet at a time.
The packet driver implements a new API that allows efficient custom data buffer handling providing zero-copy
ability, SMP support and multiple DMA channel support. The link control handling has been separated from the
DMA handling, just to name a few improvements.

18.1.2. Hardware Support

The GRSPW cores user interface are documented in the GRIP Core User's manual. Below is a list of the major
hardware features it supports:

• GRSPW, GRSPW2 and GRSPW2_DMA (router AMBA port)
• Multiple DMA channels
• Time Code
• Link Control
• Port Control
• RMAP Control
• SpaceWire Interrupt codes
• Interrupt handling
• Multi-processor SMP support

18.1.3. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
tree rtems-5/c/src/lib/libbsp/sparc.

Table 18.1. Source Location

Filename Description

shared/include/grspw_pkt.h GRSPW user interface definition

shared/spw/grspw_pkt.c GRSPW driver implementation

18.1.4. Show routines

There are currently no show routines.

18.1.5. Examples

Examples are available in the src/samples/spw/ directory in the RCC distribution.

18.1.6. Known driver limitations

The known limitations in the GRSPW Packet driver exists listed below:

• The shutdown of the work thread when destroying the message queue may be problematic.

RCC-UM
September 2020, Version 1.3-rc9

78 www.cobhamaes.com/gaisler

• The statistics counters are not atomic, clearing at the same the interrupt handler is called could cause invalid
statistics, one must disable interrupt when reading/clearing.

• The SpaceWire Interrupt code support is not documented yet.

18.2. Software design overview

18.2.1. Overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing a IO system device. The API is designed for multi-threadding allowing
multiple threads to operate on the link, RX and TX DMA channel interfaces independently. The driver API has
been split up in two major parts listed below:

• Device interface, see Section 18.3.
• DMA channel interface, see Section 18.4.

GRSPW device parameters that affects the GRSPW core and all DMA channels are accessed over the device API
whereas DMA specific settings and buffer handling are accessed over the per DMA channel API. A GRSPW2
device may implement up to four DMA channels.

In order to access the driver the first thing is to open a GRSPW device using the device interface.

For controlling the device one must open a GRSPW device using 'id = grspw_open(dev_index)' and
call appropriate device control functions. Device operations naturally affects all DMA channels, for example when
the link is disabled all DMA activity pause. However there is no connection software wise between the device
functions and DMA function, except from that the grspw_close requires that all of its DMA channels have
been closed. Closing a device fails if DMA channels are still open.

Packets are transferred using DMA channels. To open a DMA channel one calls 'dma_id =
grspw_dma_open(id, dmachan_index)' and use the appropriate transmission function with the
dma_id to identify which DMA channel used.

18.2.2. Driver resource configuration

It is possible to configure the GRSPW driver by driver resources assigned at compile time. The resources are set
individually per GRSPW device. The table below shows all options.

Table 18.2. GRSPW packet driver resources

Name Type Parameter description

nDma INT Number of DMA channels to present to user. This is used to limit the number of DMA
channels and thereby save memory. This option does not have an effect if it is less than
one or greater than the number of DMA channels present in the hardware.

bdDmaArea INT Custom RX and TX DMA descriptor table area address. The driver always requires
0x800 Bytes memory per DMA channel. This means that at least (nDMA * 0x400 * 2)
Bytes must be available.

The address must be aligned to 0x400.

18.2.3. Initialization

During early initialization when the operating system boots the driver performs some basic GRSPW device and
software initialization. The following steps are performed or not performed:

• GRSPW device and DMA channels I/O registers are initialized to a state where most are zero.
• DMA is stopped on all channels
• Link state and settings are not changed (RMAP may be active).
• RMAP settings untouched (RMAP may be active).
• Port select untouched (RMAP may be active).
• Time Codes are disabled and TC register cleared.
• IRQ generation disabled.

RCC-UM
September 2020, Version 1.3-rc9

79 www.cobhamaes.com/gaisler

• Status Register cleared.
• Node address / DMA channels node address is untouched (RMAP may be active).
• Hardware capabilities are read and potentially overridden by nDMA configuration option, see Section 18.2.2.
• Device index determined.

18.2.4. Link control

The GRSPW link interface handles the communication on the SpaceWire network. It consists of a transmitter,
receiver, a FSM and FIFO interfaces. The current link state, status indicating past failures, parameters that affect
the link interface such as transmitter frequency for example is controlled using the GRSPW register interface.

The SpaceWire link is controlled using the software device interface. The driver initialization sequence during
boot does not affect the link parameters or state. The link is controlled separately from the DMA channels, even
though the link goes out from run-mode this does not affect the DMA interface. The DMA activity of all channels
are of course paused. It is possible to configure the driver to disable the link on certain error interrupts.

The link can be disabled when a link error is detected by the GRSPW interrupt handler. There are two options
which can be combined, either the DMA transmitter is disabled on error (disabled by hardware) or the software
interrupt handler disables the link on link error events selected by the user. When software disables the link the
work-task is informed and stops all DMA channels, thus grspw_dma_stop() is called for each DMA chan-
nel by the work-task. The GRSPW interrupt handler will disable the link by writing "Link Disable" bit and clear-
ing "Link Start" bit on link errors. The user is responsible to restart the link interface again. The status register
(grspw_link_status()) and statistics interface can be used to determine which error(s) happened. The two
options are configured by the link control interface of the device API using function grspw_link_ctrl().

To make hardware disable the DMA transmitter automatically on error the option (LINKOPTS_DIS_ONERR)
is used.

To activate the GRSWP interrupt routine when any link error occurs, the bitmask option Enable Error
Link IRQ (LINKOPTS_EIRQ) shall be set. The bitmask options described as Disable Link on XX Error
(LINKOPTS_DIS_ON_*) are used to select which events shall actually cause link disable in the interrupt routine
and inform the work-task of a shutdown stop.

The options LINKOPTS_DIS_ON* are in effect even when the option LINKOPTS_EIRQ is disabled. Thus, an
interrupt routine invocation caused by a DMA channel interrupt event may disable the link in case any of the
conditions in LINKOPTS_DIS_ON_* are satisfied.

Statistics about the link errors can be read from the driver, see Section 18.3.8.

It is possible to circumvent the drivers action of clearing link status events in the GRSPW status register from
the interrupt routine. This can be used for example when the user wants to detect and handle all occurrences of
a specific link event. The function grspw_link_ctrl() is used to configure this via the stscfg parameter
with values LINKSTS_*. If a bit is set in this configuration parameter, the corresponding bit in the GRSPW status
register is cleared by the interrupt routine. If the bit is not set, the interrupt routine will never clear the status
flag and the user has full control of it. The status event can then be manually read and cleared with functions
grspw_link_status() and grspw_link_status_clr().

Statistics counters for events which are configured to be circumvented by the driver, as described above, shall
not be relied upon.

Function names prefix: grspw_link_*().

18.2.5. Time Code support

The GRSPW supports sending and receiving SpaceWire Time Codes. An interrupt can optionally be generated on
Time Code reception and the last Time Code can be read out from a GRSPW register.

The GRSPW core's Time Code interface can be controlled from the device API. One can generate Time Codes and
read out the last received or generated Time Code. An user assignable interrupt handler can be used to detect and
handle Time Code reception, the callback is called from the GRSPW interrupt routine thus from interrupt context.

RCC-UM
September 2020, Version 1.3-rc9

80 www.cobhamaes.com/gaisler

Function names prefix: grspw_tc_*()

18.2.6. RMAP support

The GRSPW device has optional support for an RMAP target implemented in hardware. The target interface is
able to interpret RMAP protocol (protid=1) requests, take the necessary actions on the AMBA bus and generate
a RMAP response without the software's knowledge or interaction. The RMAP target can be disabled in order
to implement the RMAP protocol in software instead using the DMA operations. The RMAP CRC algorithm
optionally present in hardware can also be used for checksumming the data payload.

The device interface is used to get the RMAP features supported by the hardware and configuring the below
RMAP parameters:

• Probe if RMAP and RMAP CRC is supported by hardware
• RMAP enable/disable
• SpaceWire DESTKEY of RMAP packets

The SpaceWire node address, which also affects the RMAP target, is controlled from the address configuration
routines, see Section 18.2.8.

Function names prefix: grspw_rmap_*()

18.2.7. Port support

The GRSPW device has optional support for two ports (two connectors), where only one port can be active at a
time. The active SpaceWire port is either forced by the user or auto selected by the hardware depending on the
link state of the SpaceWire ports at a certain condition.

The device interface is used to get information about the GRSPW hardware port support, current set up and to
control how the active port is selected.

Function names prefix: grspw_port_*()

18.2.8. SpaceWire node address configuration

The GRSPW core supports assigning a SpaceWire node address or a range of addresses. The address affects the
received SpaceWire Packets, both to the RMAP target and to the DMA receiver. If a received packet does not
match the node address it is dropped and the GRSPW status indicates that one or more packets with invalid address
was received.

The GRSPW2 and GRSPW2_DMA cores that implements multiple DMA channels use the node address as a
way to determine which DMA channel a received packet shall appear at. A unique node address or range of node
addresses per DMA channel must be configured in this case.

It is also possible to enable promiscuous mode to enable all node addresses to be accepted into the first DMA
channel, this option does not affect the RMAP target node address decoding.

The GRSPW SpaceWire node address configuration is controlled using the device interface. A specific DMA
channel's node address is thus affected by the "global" device API and not controllable using the DMA channel
interface.

If supported by hardware the node address can be removed before DMA writes the packet to memory. This is a
configuration option per DMA channel using the DMA channel API.

Function names prefix: grspw_addr_*()

18.2.9. SpaceWire Interrupt Code support

The GRSPW2 has optionally support for receiving and generating SpaceWire Interrupt codes. The Interrupt Codes
implementation is based on the Time Code service but with a different Time Code Control content.

The SpaceWire Interrupt Code interface are controlled from the device interface.

RCC-UM
September 2020, Version 1.3-rc9

81 www.cobhamaes.com/gaisler

Function names prefix: grspw_ic_*()

18.2.10. User DMA buffer handling

The driver is designed with zero-copy in mind. The user is responsible for setting up data buffers on its own , there
is a helper library distributed together with the examples that do buffer allocation and handling . The driver uses
linked lists of packet buffers as input and output from/to the user. It makes it possible to handle multiple packets
on a single driver entry, which typically has a positive impact when transmitting small sized packets.

The API supports header and data buffers for every packet, and other packet specific transmission parameters such
as generate RMAP CRC and reception indicators such as if packet was truncated.

Since the driver never reads or writes to the header or data buffers the driver does not affect the CPU cache of the
DMA buffers, it is the user's responsibility to handle potential cache effects.

Note that the UT699 does not have D-cache snooping, this means that when reading received buffers D-cache
should either be invalidated or the load instructions should force cache miss when accessing DMA buffers (LEON
LDA instruction) .

Function names prefix: grspw_dma_*()

18.2.10.1. Buffer List help routines

The GRSPW packet driver internally uses linked lists routines. The linked list operations are found in the header
file and can be used by the user as well. The user application typically defines its own packet structures having the
same layout as struct grspw_pkt in the top and adding custom fields for the application buffer handling as needed.
For small implementations however the pkt_id field may be enough to implement application buffer handling.
The pkt_id field is never accessed by the driver, instead is an optional application 32-bit data storage intended
for identifying a specific packet, which packet pool the packet buffer belongs to, or a higher level protocol id
information for example.

Function names prefix: grspw_list_*()

18.2.11. Driver DMA buffer handling

The driver represents packets with the struct grspw_pkt packet structure, see Table 18.32. They are arranged in
linked lists that are called queues by the driver. The order of the linked lists are always maintained to ensure that
the packet transmission order is represented correctly.

head = &p0

tail = &p2

next = &p1

flags

hlen

dlen

data

hdr

next = NULL

flags

hlen

dlen

data

hdr

count = 3

next = &p2

flags

hlen

dlen

data

hdr

Figure 18.1. Queue example - linked list of three grspw_pkt packets

RCC-UM
September 2020, Version 1.3-rc9

82 www.cobhamaes.com/gaisler

18.2.11.1. DMA Queues

The driver uses three queues per DMA channel transfer direction, thus six queues per DMA channel. The number
of packets within a queue is maintained to optimize moving packets internally between queues and to the user
which also needs this information. The different queues are listed below.

• RX READY queue - free packet buffers provided by the user.
• RX SCHED queue - packets that have been assigned a DMA descriptor.
• RX RECV queue - packets containing a received packet.
• TX SEND queue - user provided packets ready to be sent.
• TX SCHED queue - packets that have been assigned a DMA descriptor.
• TX SENT queue - packets sent

Packet in the SCHED queues always are assigned to a DMA descriptor waiting for hardware to perform RX or
TX DMA operations. There is a limited number of DMA descriptor table, 64 TX or 128 RX descriptors. Naturally
this also limits the number of packets that the SCHED queues contain simultaneously. The other queues does not
have any maximum number of packets, instead it is up to the user to handle the sizing of the RX READY, RX
RECV, TX SEND and TX SENT packet queues by controlling the input and output to them. Thereby it is possible
to queue packets within the driver. Since the driver can move queued packets itself it can makes sense to queue
up free buffers in the RX READY queue and TX SEND queue for future transmission.

The current number of packets in respective queue can be read by doing function calls using the DMA API, see
Section 18.4.7. The user can for example use this to determine to wait or continue with packet processing.

18.2.11.2. DMA Queue operations

The user can control how the RX READY and TX SEND queue is populated, by providing packet buffers. The
user can control how and when packets are moved from RX READY and TX SEND queues into the RX SCHED
or TX SCHED by enabling the work-task and interrupt driven DMA or by manually trigger the moving calling
reception and transmission routines as described in Section 18.4.6 and Section 18.4.5.

The packets always flow in one direction from RX READY -> RX SCHED -> RX RECV. Likewise the TX packets
flow TX SEND -> TX SCHED -> TX SENT. The procedures triggering queue packet moves are listed below and
in Figure 18.2 and Figure 18.3. The interface of theses procedures are described in the DMA channel API.

• USER -> RX READY queue - rx_prepare, Section 18.4.6.
• RX RECV -> USER - rx_recv, Section 18.4.6.
• USER -> TX SEND - tx_send, Section 18.4.5.
• TX SEND -> USER - tx_reclaim, Section 18.4.5.

" RX PREPARE"
User input empty

packet buffers

RX READY
Queue

&p10

&p11

&p12

&p13

&p14

...

" RX RECV"
User receive

packet buffers

RX SCHED
Queue

&p7

&p8

&p9

step 3 (optional)

RX RECV
Queue

&p6

&p5

&p4

&p3

step 1 (optional)

Figure 18.2. RX queue packet flow and operations

RCC-UM
September 2020, Version 1.3-rc9

83 www.cobhamaes.com/gaisler

" TX SEND"
User input

packet buffers

TX SEND
Queue

&p10

&p11

&p12

&p13

&p14

...

" TX RECLAIM"
User retake

packet buffers

TX SCHED
Queue

&p7

&p8

&p9

step 3 (optional)

TX SENT
Queue

&p6

&p5

&p4

&p3

step 1 (optional)

Figure 18.3. TX queue packet flow and operations

Packets which the user has provided to the driver shall be considered owned by the driver until the user takes the
packets back again. In particular, the struct grspw_pkt fields should not be accessed by the user while the packet
buffers are assigned to the driver.

18.2.12. Polling and blocking mode

Both polling and blocking transfer modes are supported. Blocking mode is implemented using DMA interrupt
and a work-task for processing the descriptor tables to avoid loading the CPU in interrupt context. One common
work-task handles all GRSPW devices DMA handling triggered by DMA interrupt. In polling mode the user is
responsible for processing the DMA descriptor tables at a user defined interval by calling reception and transmit
routines of the driver.

DMA interrupt is generated every N received/transmitted packets or controlled individually per packet. The latter
is configured in the packet data structures and the former using the DMA channel configuration. See Section 18.4.3
and Section 18.4.9 for more information.

Blocking mode is implemented by letting the user setting up a condition on the RX or TX DMA queues packet
counters. The condition can optionally be timed out protected in a number of ticks, implemented by the semaphore
service provided by the operating system. Each time after the work-task has completed processing the DMA
descriptor table the condition is evaluated. If considered true then the blocked task is woken up by signaling on
the semaphore the task is waiting for. There is only one RX and one TX condition per channel, thus only two
tasks can block at a time per channel.

Blocking function names: grspw_dma_{tx,rx}_wait()

18.2.13. Interrupt and work-task

The driver can optionally spawn one work-task that is used to service all GRSPW devices. The work-task execution
is resumed/triggered from the GRSPW ISR at certain user configurable events, at link errors or DMA transmissions
completed. The ISR sends messages to the work-task using the RTEMS Message API. When the work-task has
been scheduled work for a specific device or DMA channel the ISR has turned off the specific interrupt that the
work-task handles, once the work has been completed the work-task re-enables interrupt again for the specific
event. This is to lower the number of interrupts.

When the work-task is used to process DMA descriptor tables the priority of the work-task must be considered.
The priority must be selected so that the work-task is allowed to execute in time. Normally a high priority should
be selected to lower the latency and for higher DMA throuhgput. When using the RX/TX DMA Wait interface
the waiting tasks will be woken first after the work-task has processed the DMA descriptor table. If the work-task
never gets CPU resources due to other higher-priority tasks always ready it may appear to dead-lock. To avoid
dead-lock or wait timeouts the priority must be set with other task priorities in mind. When the priority is set to
-1 the work-task is never created. The functionality of the ISR sending messages to the work-task, the work-task
DMA and link error handling and RX/TX DMA wait interface are not available to the user.

The priority is controlled by the user at compile time by defining the variable grspw_work_task_priority.
Its default value is 100 declared by the driver using the a weak variable:

 int grspw_work_task_priority __attribute__((weak)) = 100;

RCC-UM
September 2020, Version 1.3-rc9

84 www.cobhamaes.com/gaisler

NOTE: The priority of the work-task is user configurable and must be assigned with the rest of the application's
task priorities in mind so that it is allowed to execute and wake up the waiting/blocked user task(s). Otherwise the
user task may be blocked forever or for too long.

The work-task can also be used to automatically stop DMA operation on certain link errors. This feature is enabled
by activating the different Disable Link on XX Error (LINKOPTS_DIS_ON_*) options from the device API link
control interface. See Section 18.2.4. For the configured link errors the GRSPW interrupt handler will trigger the
shutdown work to start which will stop all DMA channels by calling grspw_dma_stop().

18.2.14. Starting and stopping DMA

The driver has been designed to make it clear which functionality belongs to the device and DMA channel APIs.
The DMA API is affected by started and stopped mode, where in stopped mode means that DMA is not possible
and used to configure the DMA part of the driver. During started mode a DMA channel can accept incoming and
send packets. Each DMA channel controls its own state. Parts of the DMA API is not available in during stopped
mode and some during stopped mode to simplify the design. The device API is not affected by this.

Typically the DMA configuration is set and user buffers are initialized before DMA is started. The user can control
the link interface separately from the DMA channel before and during DMA starts.

When the DMA channel is stopped by calling grspw_dma_stop() the driver will:

• Stop DMA transfers and DMA interrupts.
• Stop accepting new packets for transmission and reception. However the DMA functions will still be open for

the user to retrieve sent and unsent TX packet buffers and to retrieve received and unused RX packet buffers.
• Wake up blocked DMA threads and return to the caller. Tasks can be blocked waiting for TX/RX event by

using the TX/RX DMA wait functions.

The DMA close routines requires that the DMA channel is stopped. Similarly, the device close routine makes sure
that all DMA channels are closed to be successful. This is to make sure that all user tasks has return and hardware
is in a good state. It is the user's responsibility to stop the DMA channel before closing.

DMA operational function names: grspw_dma_{start,stop}()

18.2.15. Thread concurrency

The driver has been designed to allow multi-threading. There are five parts that can be operated simulaneously
by different or the same thread(s):

• Device (link control) interface.
• DMA RX channel.
• DMA TX channel.
• work-task is a separate thread of execution.
• Interrupt Service Routine.

There may be multiple DMA channels in a GRSPW device. DMA channels are operated independently of each
other. Each DMA channel has two semaphores to allow operations on different DMA channels simultaneously
as well as simultaneous RX and TX operations on the same DMA channel. However multiple RX and TX tasks
of the same RX or TX interface of the same DMA channel is possible but will temporarily lock each other out
during register and DMA descriptor table processing. The same semaphores are taken by the work-task during
DMA processing if the user has enabled it. There is a global device semaphore that manages device open/close
operations that introduce dependencies between different GRSPW device and between DMA channels on those
operations. The DMA channels and device interface share the same GRSPW I/O registers which needs in some
cases to be protected, they are protected from each other by using interrupt disabling (or spin-locks on SMP).

Each DMA channel also has two semahpores to implement blocking on RX/TX operations. The DMA RX/TX
interrupt wakes a worker which processes the DMA RX/TX descriptor tables and signals via the RX-WAIT and
TX-WAIT that incomming/outgoing packets processing has finished.

The table below summarises the semaphore operations of a DMA channel that the driver makes.

RCC-UM
September 2020, Version 1.3-rc9

85 www.cobhamaes.com/gaisler

Table 18.3. DMA channel semaphore operations.

Function Operation Semaphore Description

dma_open Init semaphores RX TX RX and TX semaphores are initialized to 1.

dma_close Free semaphores RX TX Both RX and TX semaphores are taken and left in
locked state or deleted on a successful close. From
this point the user can not enter other DMA func-
tions than dma_open.

dma_start Init semaphores RX-WAIT
TX-WAIT

The wait semaphores are initialized to 0 (locked)
state. From this point onwards the RX/TX wait in-
terface is available.

dma_stop Shutdown DMA RX TX RX-
WAIT TX-
WAIT

The RX and TX semaphores are taken and re-
turned in sequence during stopping a DMA chan-
nel. The RX-WAIT and TX-WAIT semahpores are
signalled in order for potential locked tasks to be
worken up and return to caller with an error code
or indicating DMA stopped (1) error code.

dma_rx_recv
dma_rx_prepare
dma_rx_count

RX DMA operations RX Holds the RX semahpore while performing RX op-
erations.

dma_tx_send
dma_tx_reclaim
dma_tx_count

RX DMA operations RX Holds the RX semaphore while performing TX op-
erations.

dma_tx_wait Wait for TX DMA. TX TX-
WAIT

Takes the TX semaphore to initialize the wait
structures. TX-WAIT is taken to block the calling
thread until the worker, DMA shutdown or timeout
awakens the thread again.

dma_rx_wait Wait for RX DMA. RX RX-
WAIT

Takes the RX semaphore to initialize the wait
structures. RX-WAIT is taken to block the calling
thread until the worker, DMA shutdown or timeout
awakens the thread again.

DMA work Normal DMA de-
scriptor list process-
ing.

RX TX RX-
WAIT TX-
WAIT

RX and TX locks taken in sequence. RX-WAIT
and TX-WAIT given on matching conditions.

DMA work error DMA AHB error
handling.

RX TX DMA RX/TX AHB errors leads to calling
grspw_dma_stop() for one DMA channel.
The work-task does not hold any locks itself.

Link work error Link error handling. RX TX SpaceWire link errors configured to gener-
ate interrupt may be handled by worker to call
grspw_dma_stop() for all DMA channels.

18.3. Device Interface

This section covers how the driver can be interfaced to an application to control the GRSPW hardware.

18.3.1. Opening and closing device

A GRSPW device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using grspw_dev_count. A particular device can be opened
using grspw_open and closed grspw_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. This procedure is thread-safe by protecting from other threads by using the GRSPW
driver's semaphore lock. The semaphore is used by all GRSPW devices on device opening, closing and DMA
channel opening and closing.

RCC-UM
September 2020, Version 1.3-rc9

86 www.cobhamaes.com/gaisler

During opening of a GRSPW device the following steps are taken:

• GRSPW device I/O registers are initialized to a state where most are zero.
• Descriptor tables memory for all DMA channels are allocated from the heap or from a user assigned address

and cleared. See driver resource configuration options described in Section 18.2.2. The descriptor table length
is always the maximum 0x400 Bytes for RX and TX.

• Internal resources like spin-locks and data structures are initialized.
• The GRSPW device Interrupt Service Routine (ISR) is installed and enabled. However hardware does not

generate interrupt until the user configures the device or DMA channel to generate interrupts.
• The driver is configured to clear all link status events from the ISR.
• The device is marked opened to protect the caller from other users of the same device.

The example below prints the number of GRSPW devices to screen then opens, prints the current link settings and
closes the first GRSPW device present in the system.

int print_spw_link_properties()
{
 void *device;
 int count, options, clkdiv;

 count = grspw_dev_count();
 printf("%d GRSPW device present\n", count);

 device = grspw_open(0);
 if (!device)
 return -1; /* Failure */

 options = clkdiv = -1;
 grspw_link_ctrl(device, &options, &clkdiv);
 if (options & LINKOPTS_AUTOSTART) {
 printf("GRSPW0: Link is in auto-start after start-up\n");
 }
 printf("GRSPW0: Clock divisor reset value is %d\n", clkdiv);

 grspw_close(device);
 return 0; /* success */
}

Table 18.4. grspw_dev_count function declaration

Proto int grspw_dev_count(void)

About Retrieve number of GRSPW devices registered to the driver.

Return int. Number of GRSPW devices registered in system, zero if none.

Table 18.5. grspw_open function declaration

Proto void *grspw_open(int dev_no)

About Opens a GRSPW device. The GRSPW device is identified by index. The returned value is used as in-
put argument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by grspw_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRSPW device.

Notes May blocking until other GRSPW device operations complete.

Table 18.6. grspw_close function declaration

Proto int grspw_close(void *d)

RCC-UM
September 2020, Version 1.3-rc9

87 www.cobhamaes.com/gaisler

About Closes a previously opened device. All DMA channels must have been stopped and closed
by the user prior to calling this function. See the documentation for grspw_dma_stop and
grspw_dma_close.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Value. Description

0 Device was successfully closed, or already previously closed.

1 Failure due to a DMA channel is open for this device.

Return

-1 Failure due to invalid input arguments or unknown semaphore error.

18.3.2. Hardware capabilities

The features and capabilities present in hardware might not be symmetric in a system with several GRSPW devices.
For example the two first GRSPW devices on the GR712RC implements RMAP whereas the others does not. The
driver can read out the hardware capabilities and present it to the user. The set of functionality are determined
at design time. In some system where two or more systems are connected together it is likely to have different
capabilities.

The capabilities are read out from the GRSPW I/O registers and written to the user in an easier accessible way.
See below function declarations for details.

Depending on the capabilities parts of the API may be inactivated due to missing hardware support. See respective
section for details.

The function grspw_rmap_support and grspw_port_count retrieves a subset of the hardware capabili-
ties. They are described in respective section.

Table 18.7. grspw_hw_support function declaration

Proto void grspw_hw_support(void *d, struct grspw_hw_sup *hw)

About Read hardware capabilities of GRSPW device and write them in an easy to use format described by
the grspw_hw_sup data structure. The data structure is described by Table 18.8.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

hw [OUT] pointerParam

Address to where the driver will write the hardware capabilities. Pointer must point to memory and be
valid.

Return None. Always success, input is not range checked.

The grspw_hw_sup data structure is described by the declaration and table below. It is used to describe the GRSPW
hardware capabilities.

/* Hardware Support in GRSPW Core */
struct grspw_hw_sup {
 char rmap; /* If RMAP in HW is available */
 char rmap_crc; /* If RMAP CRC is available */
 char rx_unalign; /* RX unaligned (byte boundary) access allowed*/
 char nports; /* Number of Ports (1 or 2) */
 char ndma_chans; /* Number of DMA Channels (1..4) */
 char strip_adr; /* Hardware can strip ADR from packet data */
 char strip_pid; /* Hardware can strip PID from packet data */
 int hw_version; /* GRSPW Hardware Version */
 char reserved[2];
};

Table 18.8. grspw_hw_sup data structure declaration

Member Description

rmap 0 RMAP target functionality is not implemented in hardware.

RCC-UM
September 2020, Version 1.3-rc9

88 www.cobhamaes.com/gaisler

Member Description

1 RMAP target functionality is implemented by hardware.

rmap_crc Non-zero if RMAP CRC is available in hardware.

rx_unalign Non-zero if hardware can perform RX unaligned (byte boundary) DMA accesses.

nports Number of SpaceWire ports in hardware. Values: 1 or 2.

ndma_chans Number of DMA Channels in hardware. Values: 1,2,3 or 4.

strip_adr non-zero if GRSPW can strip ADR from packet data.

strip_pid non-zero if device can strip PID from packet data.

27..16 The 12-bits indicates GRLIB AMBA Plug & Play device ID of APB device.
Indicates if GRSPW, GRSPW2 or GRSPW2_DMA.

hw_version

4..0 The 5 LSB bits indicates GRLIB AMBA Plug & Play device version of APB
device. Indicates subversion of GRSPW or GRSPW2.

reserved Not used. Reserved for future use.

18.3.3. Link Control

The SpaceWire link is controlled and configured using the device API functions described below. The link control
functionality is described in Section 18.2.4.

Table 18.9. grspw_link_ctrl function declaration

Proto void grspw_link_ctrl(void *d, int *options, int *stscfg, int *clk-
div)

About Read and configure link interface settings, such as clock divisor, link start and error options.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

options [IO] pointer to bitmask

If options points to -1, the link options are only read from the I/O registers, otherwise they are up-
dated according to the value in memory pointed to by options. Use LINKOPTS_* defines for op-
tion bit declarations.

The masks for LINKOPTS_DIS_ON* are in effect even when the option LINKOPTS_EIRQ is not
enabled.

Bitmask Description (prefixed LINKOPTS_)

DISABLE Read/Set enable/disable link option.

START Read/Set start link option.

AUTOSTART Read/Set enable/disable link auto-start option.

DIS_ONERR Read/Set disable DMA transmitters when a link error occurs option.

EIRQ Read/Set interrupt generation on link error option.

DIS_ON_CE Read/Set disable link on credit error option.

DIS_ON_ER Read/Set disable link on escape error option.

DIS_ON_DE Read/Set disable link on disconnect error option.

DIS_ON_PE Read/Set disable link on parity error option.

DIS_ON_WE Read/Set disable link on write synchronization error option (GRSPW1 only).

Param

DIS_ON_EE Read/Set disable link on early EOP/EEP error option.

stscfg [IO] pointer to bitmaskParam

If stscfg points to -1, the link status configuration is only read, otherwise it is updated according to
the value in memory pointer to by stscfg. Use LINKSTS_* defines for stscfg bit declarations.

RCC-UM
September 2020, Version 1.3-rc9

89 www.cobhamaes.com/gaisler

The status configuration selects which link status bits to clear by the driver ISR. Bits in the link status
register are cleared by the driver interrupt service routine if and only if the corresponding bit is set in
the stscfg parameter.

Bitmask Description (prefixed LINKSTS_)

CE Read/Set clear status from ISR for credit error

ER Read/Set clear status from ISR for escape error

DE Read/Set clear status from ISR for disconnect error

PE Read/Set clear status from ISR for parity error

WE Read/Set clear status from ISR for write synchronization error (GRSPW1 only)

IA Read/Set clear status from ISR for invalid address

EE Read/Set clear status from ISR for early EOP/EEP

clkdiv [IO] pointer to integerParam

If clkdiv points to -1, the clock divisor fields are only read from the I/O registers, otherwise it is up-
dated according to the value in memory pointed to by clkdiv.

Return None.

Table 18.10. grspw_link_state function declaration

Proto spw_link_state_t grspw_link_state(void *d)

About Read and return current SpaceWire link status.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

enum spw_link_state_t. SpaceWire link status according to SpaceWire standard FSM state machine
numbering. The possible return values are listed below, all numbers must be prefixed with SPW_LS_
declared by enum spw_link_state_t.

Value Description.

ERRRST Error reset.

ERRWAIT Error Wait state.

READY Error Wait state.

CONNECTING Connecting state.

STARTED Stated state.

Return

RUN Run state - link and DMA is fully operational.

Table 18.11. grspw_link_status function declaration

Proto unsigned int grspw_link_status(void *d)

About Reads and returns the current value of the GRSPW status register.

The status register bits can be cleared by calling grspw_link_status_clr with return value as
parameter.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Return unsigned int. Current value of the GRSPW Status Register.

Table 18.12. grspw_link_status_clr function declaration

Proto void grspw_link_status_clr(void *d, unsigned int mask)

About Clear bits in the GRSPW status register.

The mask can be the return value of function grspw_link_status

RCC-UM
September 2020, Version 1.3-rc9

90 www.cobhamaes.com/gaisler

d [IN] pointerParam

Device identifier. Returned from grspw_open.

mask [IN] IntegerParam

Status bits to clear

Return None.

18.3.4. Node address configuration

This part for the device API controls the node address configuration of the RMAP target and DMA channels. The
node address configuration functionality is described in Section 18.2.8. The data structures and functions involved
in controlling the node address configuration are listed below.

struct grspw_addr_config {
 /* Ignore address field and put all received packets to first
 * DMA channel.
 */
 int promiscuous;

 /* Default Node Address and Mask */
 unsigned char def_addr;
 unsigned char def_mask;
 /* DMA Channel custom Node Address and Mask */
 struct {
 char node_en; /* Enable Separate Addr */
 unsigned char node_addr; /* Node address */
 unsigned char node_mask; /* Node address mask */
 } dma_nacfg[4];
};

Table 18.13. grspw_addr_config data structure declaration

promiscu-
ous

Enable (1) or disable (0) promiscous mode. The GRSPW will ignore the address field and put all
received packets to first DMA channel. See hardware manual for. This field is also used to by the
driver indicate if the settings should be written and read, or only read. See function description.

def_addr GRSPW default node address.

def_mask GRSPW default node address mask. This field shall the set to the inverse of the effective node
address mask.

DMA channel node address array configuration, see below field description. DMA channel N is
described by dma_nacfg[N].

Field Description

node_en Enable (1) or disable (1) separate node address for DMA channel N (determined by
array index).

node_addr If separate node address is enabled this option sets the node address for DMA chan-
nel N (determined by array index).

dma_nacfg

node_mask If separate node address is enabled this option sets the node address mask for DMA
channel N (determined by array index). This field shall the set to the inverse of the
effective node address mask.

Table 18.14. grspw_addr_ctrl function declaration

Proto void grspw_addr_ctrl(void *d, struct grspw_addr_config *cfg)

About Always read and optionally set the node addresses configuration. The GRSPW device is either config-
ured to have one single node address or a range of addresses by masking. The cfg input memory lay-
out is described by the grspw_addr_config data structure in Table 18.13. When using multiple DMA
channels one must assign each DMA channel a unique node address or a unique range by masking.
Each DMA channel is represented by the input dma_nacfg[N].

d [IN] pointerParam

Device identifier. Returned from grspw_open.

RCC-UM
September 2020, Version 1.3-rc9

91 www.cobhamaes.com/gaisler

cfg [IO] pointerParam

Address to where the driver will read or write the address configuration from. If the promiscous
field is set to -1 the hardware is not written, instead the current configuration is only read and memory
content updated accordingly.

Return None.

18.3.5. Time Code support

SpaceWire Time Code handling is controlled and configured using the device API functions described below. The
Time Code functionality is described in Section 18.2.5.

Table 18.15. grspw_tc_ctrl function declaration

Proto void grspw_tc_ctrl(void *d, int *options)

About Always read and optionally set TimeCode settings of GRSPW device.

It is possible to enable/disable reception/transmission and interrupt generation of TimeCodes.

See TCOPTS_* defines for available options.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

options [IO] pointer to bit-mask

If options points to -1, the TimeCode options is only read from the I/O registers, otherwise it is updat-
ed according to the value in memory pointed to by options. Use TCOPTS_* defines for option bit dec-
larations.

Value Description

EN_RXIRQ When 1 enable, when zero disable TimeCode receive interrupt generation (affects TQ
and IE bit in control register).

EN_TX Enable/disable TimeCode transmission (affects TT bit in control register).

Param

EN_RX Enable/disable TimeCode reception (affects TR bit in control register).

Return None.

Table 18.16. grspw_tc_tx function declaration

Proto void grspw_tc_tx(void *d)

About Generates a TimeCode Tick-In.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Return None.

Table 18.17. grspw_tc_isr function declaration

Proto void grspw_tc_isr(void *d, void (*tcisr)(void *data, int tc), void
*data)

About Assigns a Interrupt Service Routine (ISR) to handle TimeCode interrupt events. The ISR is called
from the GRSPW device's interrupt handler, thus the isr is called in interrupt context and care needs to
be taken.

The ISR is called when a Tick-Out event has happened and an interrupt has been generated. The ISR
is called with a custom argument data and the current value of the GRSPW TC register. The TC reg-
ister contains TimeCode control flags and counter.

The GRSPW interrupt handler always clears the GRSPW status field. It is performed after the ISR has
been called.

RCC-UM
September 2020, Version 1.3-rc9

92 www.cobhamaes.com/gaisler

Note that even if the Tick-Out interrupt generation has not been enabled the ISR may still be called if
other GRSPW interrupts are generated and the GRSPW status indicates that a Tick-Out has been re-
ceived.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

tcisr [IN] pointer to functionParam

If argument is NULL the Tick-Out ISR call is disabled. Otherwise the pointer will be used in a func-
tion call from interrupt context when a Tick-Out event is detected.

data [IN] pointer to custom dataParam

This value is given as the first argument to the ISR.

Return None.

Table 18.18. grspw_tc_time function declaration

Proto void grspw_tc_time(void *d, int *time)

About Optionally writes and always reads the current TimeCode control flags and counter from hardware
registers. The values are written into the address pointed to by time.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

time [IO] pointer to bit-mask

If time points to -1, the TimeCode options are only read from the I/O registers. Otherwise hardware
is updated according to the value in memory pointed to by time before reading the hardware registers.
Use TCOPTS_* defines for time bit declarations.

bits Description

5..0 The 6 LSB bits reads/writes the time control flags.

Param

7..6 The 2 bits reads/writes the time counter value.

Return None.

18.3.6. Port Control

The SpaceWire port selection configuration, hardware support and current hardware status can be accessed using
the device API functions described below. The SpaceWire port support functionality is described in Section 18.2.4.

In cases where only one SpaceWire port is implemented this part of the API can safely be ignored. The functions
still deliver consistent information and error code failures when forcing Port1, however provides no real function-
ality.

Table 18.19. grspw_port_ctrl function declaration

Proto int grspw_port_ctrl(void *d, int *port)

About Always read and optionally set port control settings of GRSPW device. The configuration determines
how the hardware selects which SpaceWire port that is used. This is an optional feature in hardware to
support one or two SpaceWire ports. An error is returned if operation not supported by hardware.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

port [IO] pointer to bit-mask

The port configuration is first written if port does not point to -1. The port configuration is always
read from the I/O registers and stored in the port address.

Value Description

Param

-1 The current port configuration is read and stored into the port address.

RCC-UM
September 2020, Version 1.3-rc9

93 www.cobhamaes.com/gaisler

0 Force to use Port0.

1 Force to use Port1.

> 1 Hardware auto select between Port0 or Port1.

Value. Description

0 Request successful.

Return

-1 Request failed. Port1 is not implemented in hardware.

Table 18.20. grspw_port_count function declaration

Proto int grspw_port_count(void *d)

About Reads and returns number of ports that hardware supports.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

int. Number of ports implemented in hardware.

Value Description

1 One SpaceWire port is implemented in hardware. In this case grspw_port_ctrl function
has no effect and grspw_port_active always returns 0.

Return

2 Two SpaceWire ports are implemented in hardware.

Table 18.21. grspw_port_active function declaration

Proto int grspw_port_active(void *d)

About Reads and returns the currently actively used SpaceWire port.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

int. Currently active SpaceWire port

Value Description

0 SpaceWire port0 is active.

Return

1 SpaceWire port1 is active.

18.3.7. RMAP Control

The device API described below is used to configure the hardware supported RMAP target. The RMAP support
is described in Section 18.2.6.

When RMAP CRC is implemented in hardware it can be used to generate and append a CRC on a per packet basis.
It is controlled by the DMA packet flags. Header and data CRC can be generated individually. See Table 18.32
for more information.

Table 18.22. grspw_rmap_support function declaration

Proto int grspw_rmap_support(void *d, char *rmap, char *rmap_crc)

About Reads the RMAP hardware support of a GRSPW device. It is equivalent to use the
grspw_hw_support function to get the RMAP functionality present in hardware.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

rmap [OUT] pointer

If not NULL the RMAP configuration is stored into the address of rmap.

Param

Value Description

RCC-UM
September 2020, Version 1.3-rc9

94 www.cobhamaes.com/gaisler

0 RMAP target is not implemented in hardware.

1 RMAP target is implemented in hardware.

rmap_crc [OUT] pointer

If not NULL the RMAP configuration is stored into the address of rmap.

Value Description

0 RMAP CRC algorithm is not implemented in hardware

Param

1 RMAP CRC algorithm is implemented in hardware

Return None.

Table 18.23. grspw_rmap_ctrl function declaration

Proto int grspw_rmap_ctrl(void *d, int *options, int *dstkey)

About Read and optionally write RMAP configuration and SpaceWire destination key value. This function
controls the GRSPW hardware implemented RMAP functionality.

Set option to NULL not to read or write RMAP configuration. Set dstkey to NULL to not read or
write RMAP destination key. Setting both to NULL results in no operation.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

options [IO] pointer to bit-mask

The RMAP configuration is first written if options does not point to -1. The RMAP configuration
is always read from the I/O registers and stored in the options address. See RMAPOPTS_* defini-
tions for bit declarations.

Bit Description

EN_RMAP Enable (1) or Disable (0) RMAP target handling in hardware.

Param

EN_BUF Enable (0) or Disable (1) RMAP buffer. Disabling ensures that all RMAP requests
are processed in the order they arrive.

dstkey [IO] pointerParam

The SpaceWire 8-bit destination key is first written if dstkey does not point to -1. The destination
key configuration is always read from the I/O registers and stored in the dstkey address.

int. Status

0 Request successful.

Return

-1 Failed to enable RMAP handling in hardware. Not present in hardware.

18.3.8. Statistics

The driver counts statistics at certain events. The GRSPW device driver counters can be read out using the device
API. The number of interrupts serviced and different kinds of link error can be obtained.

Statistics related to a specific DMA channel activity can be accessed using the DMA channel API.

The read function is not protected by locks. A GRSPW interrupt could cause the statistics to be out of sync. For
example the number of link parity errors may not match the number of interrupts, by one.

struct grspw_core_stats {
 int irq_cnt;
 int err_credit;
 int err_eeop;
 int err_addr;
 int err_parity;
 int err_disconnect;
 int err_escape;
 int err_wsync; /* only in GRSPW1 */
};

RCC-UM
September 2020, Version 1.3-rc9

95 www.cobhamaes.com/gaisler

Table 18.24. grspw_core_stats data structure declaration

irq_cnt Number of interrupts serviced for this GRSPW device.

err_credit Number of credit errors experienced for this GRSPW device.

err_eeop Number of Early EOP/EEP errors experienced for this GRSPW device.

err_addr Number of invalid address errors experienced for this GRSPW device.

err_parity Number of parity errors experienced for this GRSPW device.

err_disconnect Number of disconnect errors experienced for this GRSPW device.

err_escape Number of escape errors experienced for this GRSPW device.

err_wsync Number of write synchronization errors experienced for this GRSPW device. This is only ap-
plicable for GRSPW cores.

Table 18.25. grspw_stats_read function declaration

Proto void grspw_stats_read(void *d, struct grspw_core_stats *sts)

About Reads the current driver statistics collected from earlier events by GRSPW device and driver usage.
The statistics are stored to the address given by the second argument. The layout and content of the
statistics are defined by the grspw_core_stats data structure described in Table 18.24.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chronized with each other. This could be caused if the function is interrupted by a the GRSPW inter-
rupt.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

sts [OUT] pointerParam

If NULL no operating is performed. Otherwise a snapshot of the current driver statistics are copied to
this user provided buffer.

The layout and content of the statistics are defined by the grspw_core_stats data structure described in
Table 18.24.

Return None.

Table 18.26. grspw_stats_clr function declaration

Proto void grspw_stats_clr(void *d)

About Resets the driver GRSPW device statistical counters to zero.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Return None.

18.4. DMA interface

This section covers how the driver can be interfaced to an application to send and transmit SpaceWire packets
using the GRSPW hardware.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel. The device channel zero is always
present.

18.4.1. Opening and closing DMA channels

The first step before any SpaceWire packets can be transferred is to open a DMA channel to be used for transmis-
sion. As described in the device API Section 18.3.1 the GRSPW device the DMA channel belongs to must be
opened and passed onto the DMA channel open routines.

The number of DMA channels of a GRSPW device can obtained by calling grspw_hw_support.

RCC-UM
September 2020, Version 1.3-rc9

96 www.cobhamaes.com/gaisler

An opened DMA channel can not be reopened unless the channel is closed first. When opening a channel the
channel is marked opened by the driver. This procedure is thread-safe by protecting from other threads by using
the GRSPW driver's semaphore lock. The semaphore is used by all GRSPW devices on device opening, closing
and DMA channel opening and closing.

During opening of a GRSPW DMA channel the following steps are taken:

• DMA channel I/O registers are initialized to a state where most are zero.
• Resources like semaphores used for the DMA channel implementation itself are allocated and initialized.
• The channel is marked opened to protect the caller from other users of the DMA channel.

Below is a partial example of how the first GRSPW device's first DMA channel is opened, link is started and a
packet can be received.

int spw_receive_one_packet()
{
 void *device;
 void *dma0;
 int count, options, clkdiv;
 spw_link_state_t state;
 struct grspw_list lst;

 device = grspw_open(0);
 if (!device)
 return -1; /* Failure */

 /* Start Link */
 options = LINKOPTS_ENABLE | LINKOPTS_START; /* Start Link */
 clkdiv = (9 << 8) | 9; /* Clock Divisor factor of 10 (100MHz input) */
 grspw_link_ctrl(device, &options, &clkdiv);

 /* wait until link is in run-state */
 do {
 state = grspw_link_state(device);
 } while (state != SPW_LS_RUN);

 /* Open DMA channel */
 dma0 = grspw_dma_open(device, 0);
 if (!dma0) {
 grspw_close(device);
 return -2;
 }

 /* Initialize and activate DMA */
 if (grspw_dma_start(dma0)) {
 grspw_dma_close(dma0);
 grspw_close(device);
 return -3;
 }

 /* ... */

 /* Prepare driver with RX buffers */
 grspw_dma_rx_prepare(dma0, 1, &preinited_rx_unused_buf_list0, NPKTS);

 /* Start sending a number of SpaceWire packets */
 grspw_dma_tx_send(dma0, 1, &preinited_tx_send_buf_list);

 /* Receive at least one packet */
 do {
 /* Try to receive as many packets as possible */
 count = -1;
 grspw_dma_rx_recv(dma0, 0, &lst, &count);
 } while (count <= 0);

 printf("GRSPW0.DMA0: Received %d packets\n", count);

 /* ... */

 grspw_dma_close(dma0);
 grspw_close(device);
 return 0; /* success */
}

Table 18.27. grspw_dma_open function declaration

Proto void *grspw_dma_open(void *d, int chan_no)

RCC-UM
September 2020, Version 1.3-rc9

97 www.cobhamaes.com/gaisler

About Opens a DMA channel of a previously opened GRSPW device. The GRSPW device is identified by
its device handle d and the DMA channel is identified by index chan_no.

The returned value is used as input argument to all functions operating on the DMA channel.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

chan_no [IN] IntegerParam

DMA channel identification number. DMA channels are indexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero, and smaller than the num-
ber of DMA channels reported by grspw_hw_support.

Pointer. Status and driver's internal device identification.

Value Description

NULL Indicates failure to DMA channel. Fails if device semaphore operation fails, DMA channel
does not exists, DMA channel already has been opened or that DMA channel resource al-
location or initialization fails.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, identifies which DMA channel.

Notes May blocking until other GRSPW device operations complete.

Table 18.28. grspw_dma_close function declaration

Proto int grspw_dma_close(void *c)

About Closes a previously opened DMA channel. The specified DMA channel must be in stopped state be-
fore calling this function.

Prior to closing the user is responsible for calling grspw_dma_stop to stop on-going DMA trans-
fers and interrupts, free DMA channels resources and to unblock tasks waiting for RX/TX events on
this DMA channel. Blocked tasks must have exited the device driver otherwise an error code is re-
turned.

If threads have been blocked within DMA operations they will be woken up and
grspw_dma_close waits N ticks until they have returned to the caller with an error return value.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

int. Return code as indicated below.

Value Description

0 Success.

1 Failure due to DMA channel is active (started) or tasks may be blocked within the driver
by the RX/TX wait interface of this specific device.

Return

-1 Failure due to invalid input arguments or unknown semaphore error.

18.4.2. Starting and stopping DMA operation

The start and stop operational modes are described in Section 18.2.14. The functions described below are used
to change the operational mode of a DMA channels. A summary of which DMA API functions are affected are
listed in Table 18.29, see function description for details on limitations.

Table 18.29. functions available in the two operational modes

Function Stopped Started

grspw_dma_open N/A N/A

grspw_dma_close Yes Yes

RCC-UM
September 2020, Version 1.3-rc9

98 www.cobhamaes.com/gaisler

Function Stopped Started

grspw_dma_start Yes No

grspw_dma_stop No Yes

grspw_dma_rx_recv Yes, with limitations, see
Section 18.4.6

Yes

grspw_dma_rx_prepare Yes, with limitations, see
Section 18.4.6

Yes

grspw_dma_rx_count Yes, with limitations, see
Section 18.4.7

Yes

grspw_dma_rx_wait No Yes

grspw_dma_tx_send Yes, with limitations, see
Section 18.4.5

Yes

grspw_dma_tx_reclaim Yes, with limitations, see
Section 18.4.5

Yes

grspw_dma_tx_count Yes with limitations, see
Section 18.4.7

Yes

grspw_dma_tx_wait No Yes

grspw_dma_config Yes No

grspw_dma_config_read Yes Yes

grspw_dma_stats_read Yes Yes

grspw_dma_stats_clr Yes Yes

Table 18.30. grspw_dma_start function declaration

Proto int grspw_dma_start(void *c)

About Starts DMA operational mode for the DMA channel indicated by the argument. After this step it is
possible to send and receive SpaceWire packets. If the DMA channel already is in started mode, no
action will be taken.

The start routine clears and initializes the following:

• DMA descriptor rings.
• DMA queues.
• Statistic counters.
• Interrupt counters
• I/O registers to match DMA configuration
• Interrupt
• DMA Status
• Enables the receiver

Even though the receiver is enabled the user is required to prepare empty receive buffers after this
point, see grspw_dma_rx_prepare. The transmitter is enabled when the user provides send
buffers that ends up in the TX SCHED queue, see grspw_dma_tx_send.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Return int. Always returns zero.

Table 18.31. grspw_dma_stop function declaration

Proto void grspw_dma_stop(void *c)

About Stops DMA operational mode for the DMA channel indicated by the argument. The transmitter will
abort ongoing transfers and the receiver disabled.

RCC-UM
September 2020, Version 1.3-rc9

99 www.cobhamaes.com/gaisler

Blocked tasks within the DMA channel will be woken up and return to caller with an error indica-
tion. This will cause the stop function to wait in N ticks until the blovked tasks have exited the driver.
When no tasks have previously been blocked this function is not blocking either.

Packets in the RX READY, RX SCHED queues will be moved to the RX RECV queue. The
RXPKT_FLAG_RX packet flag is used to signal if the packet was received or just moved. Similar-
ly, the packets in the TX SEND and TX SCHED queues are moved to the TX SENT queue and the
TXPKT_FLAG_TX marks if the packet actually was transferred or not.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Return None.

18.4.3. Packet buffer description

The GRSPW packet driver describes packets for both RX and TX using a common memory layout defined by the
data structure grspw_pkt. It is described in detail below.

There are differences in which fields and bits are used between RX and TX operations. The bits used in the flags
field are defined different. When sending packets the user can optionally provide two different buffers, the header
and data. The header can maximally be 256Bytes due to hardware limitations and the data supports 24-bit length
fields. For RX operations hdr and hlen are not used. Instead all data received is put into the data area.

struct grspw_pkt {
 struct grspw_pkt *next; /* Next packet in list. NULL if last packet */
 unsigned int pkt_id; /* User assigned ID (not touched by driver) */
 unsigned short flags; /* RX/TX Options and status */
 unsigned char reserved; /* Reserved, must be zero */
 unsigned char hlen; /* Length of Header Buffer (only TX) */
 unsigned int dlen; /* Length of Data Buffer */
 void *data; /* 4-byte or byte aligned depends on HW */
 void *hdr; /* 4-byte or byte aligned depends on HW (only TX) */
};

Table 18.32. grspw_pkt data structure declaration

next The packet structure can be part of a linked list. This field is used to point out the next packet in the
list. Set to NULL if this packet is the last in the list or a single packet.

pkt_id User assigned ID. This field is never touched by the driver. It can be used to store a pointer or other
data to help implement the user buffer handling.

RX/TX transmission options and flags indicating resulting status. The bits described below is to be
prefixed with TXPKT_FLAG_ or RXPKT_FLAG_ in order to match the TX or RX options defini-
tions declared by the driver's header file.

Bits TX Description (prefixed TXPKT_FLAG_)

NOCRC_MASK Indicates to driver how many bytes should not be part of the header CRC calcula-
tion. 0 to 15 bytes can be omitted. Use NOCRC_LENN to select a specific length.

IE Enable (1) or Disable (0) IRQ generation on packet transmission completed.

HCRC Enable (1) or disable (0) Header CRC generation (if CRC is available in hard-
ware). Header CRC will be appended (one byte at end of header).

DCRC Enable (1) or disable (0) Data CRC generation (if CRC is available in hardware).
Data CRC will be appended (one byte at end of packet).

TX Is set by the driver to indicate that the packet was transmitted. This does no signal
a successful transmission, but that transmission was attempted, the LINKERR bit
needs to be checked for error indication.

LINKERR Set if a link error was exhibited during transmission of this packet.

Bits RX Description (prefixed RXPKT_FLAG_)

flags

IE Enable (1) or Disable (0) IRQ generation on packet reception completed.

RCC-UM
September 2020, Version 1.3-rc9

100 www.cobhamaes.com/gaisler

TRUNK Set if packet was truncated.

DCRC Set if data CRC error detected (only valid if RMAP CRC is enabled).

HCRC Set if header CRC error detected (only valid if RMAP CRC is enabled).

EEOP Set if an End-of-Packet error occurred during reception of this packet.

RX Marks if packet was received or not.

hlen Header length. The number of bytes hardware will transfer using DMA from the address indicated by
the hdr pointer. This field is not used by RX operation.

dlen Data payload length. The number of bytes hardware DMA read or written from/to the address indicat-
ed by the data pointer. On RX this is the complete packet data received.

data Header Buffer Address. DMA will read from this. The address can be 4-byte or byte aligned depend-
ing on hardware.

hdr Header Buffer Address. DMA will read hlen bytes from this. The address can be 4-byte or byte
aligned depending on hardware. This field is not used by RX operation.

18.4.4. Blocking/Waiting on DMA activity

Blocking and polling mode are described in the Section 18.2.12. The functions described below are used to set up
RX or TX wait conditions and blocks the calling thread until condition evaluates true.

Table 18.33. grspw_dma_tx_wait function declaration

Proto int grspw_dma_tx_wait(void *c, int send_cnt, int op, int sent_cnt,
int timeout)

About Block until send_cnt or fewer packets are queued in TX "Send and Scheduled" queue, op (AND or
OR), sent_cnt or more packet "have been sent" (Sent Q) condition is met.

If a link error occurs and the "Disable on Link error" is defined, this function will also return to caller.
The timeout argument is used to return after timeout ticks, regardless of the other conditions. If
timeout is zero, the function will wait forever until the condition is satisfied.

If IRQ of TX descriptors are not enabled conditions are never checked, this may hang infinitely unless
a timeout has been specified.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

send_cnt [IN] intParam

Sets the condition's number of packets in TX SEND queue.

op [IN] booleanParam

Condition operation. Set to zero for AND or one for OR.

sent_cnt [IN] intParam

Sets the condition's number of packets in TX SENT queue.

timeout [IN] intParam

Sets the timeout in number of system clock ticks. The operating system's semaphore service is used to
implement the timeout functionality. Set to zero to disable timeout, negative value is invalid.

Int. See return code below.

Value Description

-1 Error.

0 Returning to caller because specified conditions are now fullfilled.

1 DMA stopped.

Return

2 Timeout, conditions are not met.

RCC-UM
September 2020, Version 1.3-rc9

101 www.cobhamaes.com/gaisler

3 Another task is already waiting. Service is Busy.

Table 18.34. grspw_dma_rx_wait function declaration

Proto int grspw_dma_rx_wait(void *c, int recv_cnt, int op, int ready_cnt,
int timeout)

About Block until recv_cnt or more packets are queued in RX RECV queue, op (AND or OR),
ready_cnt or fewer packet buffers are available in the RX "READY and Scheduled" queues, con-
dition is met.

If a link error occurs and the "Disable on Link error" is defined, this function will also return to caller,
however with an error. The timeout argument is used to return after timeout number of ticks, re-
gardless of the other conditions. If timeout is zero, the function will wait forever until the condition is
satisfied.

If IRQ of RX descriptors are not enabled conditions are never checked, this may hang infinitely unless
a timeout has been specified.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

recv_cnt [IN] intParam

Sets the condition's number of packets in RX RECV queue.

op [IN] booleanParam

Condition operation. Set to zero for AND or one for OR.

ready_cnt [IN] intParam

Sets the condition's number of packets in RX READY queue.

timeout [IN] intParam

Sets the timeout in number of system clock ticks. The operating system's semaphore service is used to
implement the timeout functionality. Set to zero to disable timeout, negative value is invalid.

Int. See return code below.

Value Description

-1 Error.

0 Returning to caller because specified conditions are now fullfilled.

1 DMA stopped.

2 Timeout, conditions are not met.

Return

3 Another task is already waiting. Service is Busy.

18.4.5. Sending packets

Packets are sent by adding packets to the SEND queue. Depending on the driver configuration and usage the
packets eventually are put into SCHED queue where they will be assigned a DMA descriptor and scheduled for
transmission. After transmission has completed the packet buffers can be retrieved to view the transmission status
and to be able to reuse the packet buffers for new transfers. During the time the packet is in the driver it must
not be accessed by the user.

Transmission of SpaceWire packets are described in Section 18.2.1.

In the below example Figure 18.4 three SpaceWire packets are scheduled for transmission. The count should
be set to three. The second packet is programmed to generate an interrupt when transmission finished, GRSPW
hardware will also generate a header CRC using the RMAP CRC algorithm resulting in a 16 bytes long SpaceWire
packet.

RCC-UM
September 2020, Version 1.3-rc9

102 www.cobhamaes.com/gaisler

pkts (input)

head = &p0

tail = &p2 next = &p1

flags = 0

hlen = 0

dlen = 5

data = &d0

hdr = NULL

next = NULL

flags = 0

hlen = 0

dlen = 4

data = &d2

hdr = NULL

next = &p2

flags =
FLAG_IE |

FLAG_HCRC

hlen = 7

dlen = 8

data = &d1

hdr = &h1

DATA0 PAYLOAD

a b c d e

HEADER1 (without CRC)

a b c d e f g

DATA1 PAYLOAD

a b c d e f g h

DATA2 PAYLOAD

a b c d

Figure 18.4. TX packet description pkts input to grspw_tx_dma_send

The below tables describe the functions involved in initiating and completing transmissions.

Table 18.35. grspw_dma_tx_send function declaration

Proto int grspw_dma_tx_send(void *c, int opts, struct grspw_list *pkts,
int count)

About Schedules a list of packets for transmission at some point in future. The packets are put to the SEND
queue of the driver. Depending on the input arguments a selection of the below steps are performed:

1. Move transmitted packets to SENT List (SCHED->SENT).
2. Add the requested packets to the SEND List (USER->SEND)
3. Schedule as many packets as possible for transmission (SEND->SCHED)

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for handling descriptors.

The GRSPW transmitter is enabled when packets are added to the TX SCHED queue.

The fastest solution in retrieving sent TX packets and sending new frames is to call:

1. grspw_dma_tx_reclaim(opts=0)
2. grspw_dma_tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag must not be set in the packet structure.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

opts [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opts argument according the description be-
low.

Bit Description

0 Set to 1 to skip Step 1.

Param

1 Set to 1 to skip Step 3.

pkts [IN] pointerParam

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head points to the first packet and tail points to the last.

Call this function with pkts set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opts is normally performed in polling-mode.

RCC-UM
September 2020, Version 1.3-rc9

103 www.cobhamaes.com/gaisler

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 18.32. Note that TXPKT_FLAG_TX of the flags field must not be set.

pkts is not cleared by this function.

count [IN] integerParam

Number of packets in the packet list.

Status. See return codes below

Value Description

-1 Error occurred, DMA channel may not be valid.

0 Successfully added pkts to TX SEND/SCHED list.

Return

1 DMA stopped. No operation.

Notes This function performs no operation when the DMA channel is stopped.

Table 18.36. grspw_dma_tx_reclaim function declaration

Proto int grspw_dma_tx_reclaim(void *c, int opts, struct grspw_list *pkts,
int *count)

About Reclaim TX packet buffers that has previously been scheduled for transmission with
grspw_dma_tx_send. The packets in the SENT queue are moved to the pkts packet list. When
the move has been completed the packet can safely be reused again by the user. The packet structures
have been updated with transmission status to indicate transfer failures of individual packets. Depend-
ing on the input arguments a selection of the below steps are performed:

1. Move transmitted packets to SENT List (SCHED->SENT).
2. Move all SENT List to pkts list (SENT->USER).
3. Schedule as many packets as possible for transmission (SEND->SCHED)

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for descriptor processing. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving sent TX packets and sending new frames is to call:

1. grspw_dma_tx_reclaim(opts=0)
2. grspw_dma_tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag indicates if the packet was transmitted.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

opts [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opts argument according the description be-
low.

Bit Description

0 Set to 1 to skip Step 1.

Param

1 Set to 1 to skip Step 3.

pkts [OUT] pointerParam

The list will be initialized to contain the SpaceWire packets moved from the SENT queue to the pack-
et list. The grspw_list structure will be initialized so that head points to the first packet, tail points
to the last and the last packet (tail) next pointer is NULL.

Call this function with pkts set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opts is normally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 18.32. Note that TXPKT_FLAG_TX of the flags field indicates if the packet was sent of not.
In case of DMA being stopped one can use this flag to see if the packet was transmitted or not. The

RCC-UM
September 2020, Version 1.3-rc9

104 www.cobhamaes.com/gaisler

TXPKT_FLAG_LINKERR indicates if a link error occurred during transmission of the packet, re-
gardless the TXPKT_FLAG_TX is set to indicate packet transmission attempt.

count [IO] pointer

Number of packets in the packet list.

Value Input Description

NULL Move all packets from the SENT queue to the packet list.

-1 Move all packets from the SENT queue to the packet list.

0 No packets are moved. Same as if pkts is NULL.

>0 Move a maximum of '*count' packets to the packet list.

Value Output Description

NULL Nothing performed.

Param

others '*count' is updated to reflect number of packets in packet list.

Status. See return codes below

Value Description

-1 Error occurred, DMA channel may not be valid.

0 Successful. pkts list filled with all packets from sent list.

Return

1 Indicates that DMA is stopped. Same as 0 but step 1 and 3 were never done.

Notes This function can only do step 1 and 2 to allow read out sent packets when in stopped mode. This is
useful when a link goes down and the DMA activity is stopped by user of by driver automatically.

18.4.6. Receiving packets

Packets are received by adding empty/free packets to the RX READY queue. Depending on the driver configura-
tion and usage the packets eventually are put into RX SCHED queue where they will be assigned a DMA descriptor
and scheduled for reception. After a packet is received into the buffer(s) the packet buffer(s) can be retrieved to
view the reception status and to be able to reuse the packet buffers for new transfers. During the time the packet
is in the driver it must not be accessed by the user.

Reception of SpaceWire packets are described in Section 18.2.1.

In the Figure 18.5 example three SpaceWire packets are received. The count parameters is set to three by the
driver to reflect the number of packets. The first packet exhibited an early end-of-packet during reception which
also resulted in header and data CRC error. All header points and header lengths have been set to zero by the user
since they are no used, however the values in those fields does not affect the RX operations. The RX flag is set
to indicate that DMA transfer was performed.

pkts (input)

head = &p0

tail = &p2 next = &p1

flags =
FLAG_RX |

FLAG_EEOP |
FLAG_DCRC |
FLAG_HCRC

hlen = 0

dlen = 5

data = &d0

hdr = NULL

next = NULL

flags =
FLAG_RX

hlen = 0

dlen = 4

data = &d2

hdr = NULL

next = &p2

flags =
FLAG_RX

hlen = 0

dlen = 8

data = &d1

hdr = NULL

DATA0 PAYLOAD

a b c d e

DATA1 PAYLOAD

a b c d e f g h

DATA2 PAYLOAD

a b c d

Figure 18.5. RX packet output from grspw_rx_dma_recv

RCC-UM
September 2020, Version 1.3-rc9

105 www.cobhamaes.com/gaisler

The below tables describe the functions involved in initiating and completing transmissions.

Table 18.37. grspw_dma_rx_prepare function declaration

Proto int grspw_dma_rx_prepare(void *c, int opts, struct grspw_list *pkts,
int count)

About Add more RX packet buffers for future for reception. The received packets can later be read out with
grspw_dma_rx_recv. The packets are put to the READY queue of the driver. Depending on the
input arguments a selection of the below steps are performed:

1. Move Received packets to RECV List (SCHED->RECV).
2. Add the pkt packet buffers to the READY List (USER->READY).
3. Schedule as many packets as possible (READY->SCHED).

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for handling descriptors. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving received RX packets and preparing new packet buffers for future re-
ceive, is to call:

1. grspw_dma_rx_recv(opts=2, &recvlist) (Skip step 3)
2. grspw_dma_rx_prepare(opts=1, &freelist) (Skip step 1)

NOTE: the RXPKT_FLAG_RX flag must not be set in the packet structure.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

opts [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opts argument according the description be-
low.

Bit Description

0 Set to 1 to skip Step 1.

Param

1 Set to 1 to skip Step 3.

pkts [IN] pointerParam

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head points to the first packet and tail points to the last.

Call this function with pkts set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opts is normally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 18.32. Note that RXPKT_FLAG_RX of the flags field must not be set.

pkts is not cleared by this function.

count [IN] integerParam

Number of packets in the packet list.

Status. See return codes below

Value Description

-1 Error occurred, DMA channel may not be valid.

0 Successfully added pkts to RX READY/SCHED list.

Return

1 DMA stopped. No operation.

Notes This function performs no operation when the DMA channel is stopped.

Table 18.38. grspw_dma_rx_recv function declaration

Proto int grspw_dma_rx_recv(void *c, int opts, struct grspw_list *pkts,
int *count)

RCC-UM
September 2020, Version 1.3-rc9

106 www.cobhamaes.com/gaisler

About Get received RX packet buffers that has previously been scheduled for reception with
grspw_dma_rx_prepare. The packets in the RX RECV queue are moved to the pkts pack-
et list. When the move has been completed the packet(s) can safely be reused again by the user. The
packet structures have been updated with reception status to indicate transfer failures of individual
packets, received packet length. The header pointer and length fields are not touched by the driver, all
data ends up in the data area. Depending on the input arguments a selection of the below steps are per-
formed:

1. Move scheduled packets to RECV List (SCHED->RECV).
2. Move all RECV packet to the callers list (RECV->USER).
3. Schedule as many free packet buffers as possible (READY->SCHED).

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for descriptor processing. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving received RX packets and preparing new packet buffers for future re-
ceive, is to call:

1. grspw_dma_rx_recv(opts=2, &recvlist) (Skip step 3)
2. grspw_dma_rx_prepare(opts=1, &freelist) (Skip step 1)

NOTE: the RXPKT_FLAG_RX flag indicates if a packet was received, thus if the data field contains
new valid data or not.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

opts [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opts argument according the description be-
low.

Bit Description

0 Set to 1 to skip Step 1.

Param

1 Set to 1 to skip Step 3.

pkts [OUT] pointerParam

The list will be initialized to contain the SpaceWire packets moved from the RECV queue to the pack-
et list. The grspw_list structure will be initialized so that head points to the first packet, tail points
to the last and the last packet (tail) next pointer is NULL.

Call this function with pkts set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opts is normally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 18.32. Note that RXPKT_FLAG_RX of the flags field indicates if the packet was received or
not. In case of DMA being stopped one can use this flag to see if the packet was received or not. The
TRUNK, DCRC, HCRC and EEOP flags indicates if an error occurred during reception of the packet,
regardless the RXPKT_FLAG_RX is set to indicate packet reception attempt.

count [IO] pointer

Number of packets in the packet list.

Value Input Description

NULL Move all packets from the RECV queue to the packet list.

-1 Move all packets from the RECV queue to the packet list.

0 No packets are moved. Same as if pkts is NULL.

>0 Move a maximum of '*count' packets to the packet list.

Value Output Description

NULL Nothing performed.

Param

others '*count' is updated to reflect number of packets in packet list.

RCC-UM
September 2020, Version 1.3-rc9

107 www.cobhamaes.com/gaisler

Status. See return codes below

Value Description

-1 Error occurred, DMA channel may not be valid.

0 Successful. pkts list filled with all packets from recv list.

Return

1 Indicates that DMA is stopped. Same as 0 but step 1 and 3 were never done.

Notes This function can only do step 1 and 2 to allow read out received packets when in stopped mode. This
is useful when a link goes down and the DMA activity is stopped by user or by driver automatically.

18.4.7. Transmission queue status

The current status of send and receive transmissions can be obtained by looking at the DMA channel's packet
queues. Note that the queues content does not change unless the user calls the driver to perform work or if the work
thread triggered via DMA interrupts is enabled. The current number of packets actually processed by hardware
can also be read using the functions described below.

Table 18.39. grspw_dma_tx_count function declaration

Proto void grspw_dma_tx_count(void *c, int *send, int *sched, int *sent,
int *hw)

About Get current number of packets in respective TX queue and current number of unhandled packets that
hardware processed (from descriptor table).

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

send [OUT] pointerParam

If not NULL the TX SEND Queue count is stored into the address of send.

sched [OUT] pointerParam

If not NULL the TX SCHED Queue count is stored into the address of sched.

sent [OUT] pointerParam

If not NULL the TX SENT Queue count is stored into the address of sent.

hw [OUT] pointerParam

If not NULL the number of packets completed transmitted by hardware. This is determined by look-
ing at the TX descriptor pointer register. The number represents how many of the SCHED queue that
actually have been transmitted by hardware but not handled by the driver yet. The number is stored in-
to the address of hw.

Return None.

Table 18.40. grspw_dma_rx_count function declaration

Proto void grspw_dma_rx_count(void *c, int *ready, int *sched, int *recv,
int *hw)

About Get current number of packets in respective RX queue and current number of unhandled packets that
hardware processed (from descriptor table).

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

ready [OUT] pointerParam

If not NULL the RX READY Queue count is stored into the address of ready.

sched [OUT] pointerParam

If not NULL the RX SCHED Queue count is stored into the address of sched.

recv [OUT] pointerParam

If not NULL the RX RECV Queue count is stored into the address of recv.

RCC-UM
September 2020, Version 1.3-rc9

108 www.cobhamaes.com/gaisler

hw [OUT] pointerParam

If not NULL the number of packets completed received by hardware. This is determined by looking at
the RX descriptor pointer register. The number represents how many of the SCHED queue that actual-
ly have been received by hardware but not handled by the driver yet. The number is stored into the ad-
dress of hw.

Return None.

18.4.8. Statistics

The driver counts statistics at certain events. The driver's DMA channel counters can be read out using the DMA
API. The number of interrupts serviced by the worker task, packet transmission statistics, packet transmission
errors and packet queue statistics can be obtained.

The read function is not protected by locks. A GRSPW interrupt or other tasks performing driver operations on
the same device could cause the statistics to be out of sync. Similar to the statistic functionality of the device API.

struct grspw_dma_stats {
 /* IRQ Statistics */
 int irq_cnt; /* Number of DMA IRQs generated by channel */

 /* Descriptor Statistics */
 int tx_pkts; /* Number of Transmitted packets */
 int tx_err_link; /* Number of Transmitted packets with Link Error*/
 int rx_pkts; /* Number of Received packets */
 int rx_err_trunk; /* Number of Received Truncated packets */
 int rx_err_endpkt; /* Number of Received packets with bad ending */

 /* Diagnostics to help developers sizing their number buffers to avoid
 * out-of-buffers or other phenomenons.
 */
 int send_cnt_min; /* Minimum number of packets in TX SEND queue */
 int send_cnt_max; /* Maximum number of packets in TX SEND queue */
 int tx_sched_cnt_min; /* Minimum number of packets in TX SCHED queue */
 int tx_sched_cnt_max; /* Maximum number of packets in TX SCHED queue */
 int sent_cnt_max; /* Maximum number of packets in TX SENT queue */
 int tx_work_cnt; /* Times the work thread processed TX BDs */
 int tx_work_enabled; /* No. TX BDs enabled by work thread */

 int ready_cnt_min; /* Minimum number of packets in RX READY queue */
 int ready_cnt_max; /* Maximum number of packets in RX READY queue */
 int rx_sched_cnt_min; /* Minimum number of packets in RX SCHED queue */
 int rx_sched_cnt_max; /* Maximum number of packets in RX SCHED queue */
 int recv_cnt_max; /* Maximum number of packets in RX RECV queue */
 int rx_work_cnt; /* Times the work thread processed RX BDs */
 int rx_work_enabled; /* No. RX BDs enabled by work thread */
};

Table 18.41. grspw_dma_stats data structure declaration

irq_cnt Number of interrupts serviced for this DMA channel.

tx_pkts Number of transmitted packets with link errors.

tx_err_link Number of transmitted packets with link errors.

rx_pkts Number of received packets.

rx_err_trunk Number of received Truncated packets.

rx_err_endpkt Number of received packets with bad ending.

send_cnt_min Minimum number of packets in TX SEND queue.

send_cnt_max Maximum number of packets in TX SEND queue.

tx_sched_cnt_min Minimum number of packets in TX SCHED queue.

tx_sched_cnt_max Maximum number of packets in TX SCHED queue.

sent_cnt_max Maximum number of packets in TX SENT queue.

tx_work_cnt Times the work thread processed TX BDs.

tx_work_enabled Number of TX BDs enabled by work thread.

RCC-UM
September 2020, Version 1.3-rc9

109 www.cobhamaes.com/gaisler

ready_cnt_min Minimum number of packets in RX READY queue.

ready_cnt_max Maximum number of packets in RX READY queue.

rx_sched_cnt_min Minimum number of packets in RX SCHED queue.

rx_sched_cnt_max Maximum number of packets in RX SCHED queue.

recv_cnt_max Maximum number of packets in RX RECV queue.

rx_work_cnt Times the work thread processed RX BDs.

rx_work_enabled Number of RX BDs enabled by work thread.

Table 18.42. grspw_dma_stats_read function declaration

Proto void grspw_dma_stats_read(void *d, struct grspw_dma_stats *sts)

About Reads the current driver statistics collected from earlier events by a DMA channel and DMA channel
usage. The statistics are stored to the address given by the second argument. The layout and content of
the statistics are defined by the grspw_dma_stats data structure is described in Table 18.41.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chronized with each other. This could be caused if the function is interrupted by a the GRSPW inter-
rupt or other tasks performing driver operations on the same DMA channel.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

sts [OUT] pointerParam

A snapshot of the current driver statistics are copied to this user provided buffer.

The layout and content of the statistics are defined by the grspw_dma_stats data structure is described
in Table 18.41.

Return None.

Table 18.43. grspw_dma_stats_clr function declaration

Proto void grspw_dma_stats_clr(void *c)

About Resets one DMA channel's statistical counters. Most of the driver's counters are set to zero, however
some have other initial values, for example the send_cnt_min.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

Return None.

18.4.9. DMA channel configuration

Various aspects of DMA transfers can be configured using the functions described in this section. The configu-
ration affects:

• DMA transfer options, no-spill, strip address/PID.
• Receive max packet length.
• RX/TX Interrupt generation options.

struct grspw_dma_config {
 int flags; /* DMA config flags, see DMAFLAG_* options */
 int rxmaxlen; /* RX Max Packet Length */
 int rx_irq_en_cnt; /* Enable RX IRQ every cnt descriptors */
 int tx_irq_en_cnt; /* Enable TX IRQ every cnt descriptors */
};

Table 18.44. grspw_dma_config data structure declaration

flags RX/TX DMA transmission options See below.

RCC-UM
September 2020, Version 1.3-rc9

110 www.cobhamaes.com/gaisler

Bits Description (prefixed DMAFLAG_ or DMAFLAG2_)

NO_SPILL Enable (1) or Disable (0) packet spilling, flow control.

STRIP_ADR Enable (1) or Disable (0) stripping node address byte from DMA write
transfers (packet reception). See hardware support to determine if present in
hardware. See hardware documentation about DMA CTRL SA bit.

STRIP_PID Enable (1) or disable (0) stripping PID byte from DMA write transfers
(packet reception).(if CRC is available in hardware). See hardware sup-
port to determine if present in hardware. See hardware documentation about
DMA CTRL SP bit.

TXIE Enable (1) or disable (0) DMA TX interrupts on DMA transmission. This
affects the DMA-CTRL TI register bit. This can be used in combination
with packet flags to allow the user to control precisely which TX SpW
buffers will generate interrupt(s) on send completed.

RXIE Enable (1) or disable (0) DMA RX interrupts on DMA reception. This af-
fects the DMA-CTRL RI register bit. This can be used in combination with
packet flags to allow the user to control precisely which RX SpW buffers
will generate interrupt(s) on receive completed.

rxmaxlen Max packet reception length. Longer packets with will be truncated see
RXPKT_FLAG_TRUNK flag in packet structure. This field must be set to a multiple of four.

rx_irq_en_cnt Controls RX interrupt generation. This integer number enable RX DMA IRQ every 'cnt' de-
scriptors.

tx_irq_en_cnt Controls TX interrupt generation. This integer number enable TX DMA IRQ every 'cnt' de-
scriptors.

Table 18.45. grspw_dma_config function declaration

Proto int grspw_dma_config(void *c, struct grspw_dma_config *cfg)

About Set the DMA channel configuration options as described by the input arguments. It is only possible
the change the configuration on stopped DMA channels, otherwise an error code is returned.

The hardware registers are not written directly. The settings take effect when the DMA channel is
started calling grspw_dma_start.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

cfg [IN] pointerParam

Address to where the driver will read or write the DMA channel configuration from. The configura-
tion options are described in Table 18.44.

int. Return code as indicated below.

Value Description

0 Success.

Return

-1 Failure due to invalid input arguments or DMA has already been started.

Table 18.46. grspw_dma_config_read function declaration

Proto void grspw_dma_config_read(void *c, struct grspw_dma_config *cfg)

About Copies the DMA channel configuration to user defined memory area.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

sts [OUT] pointerParam

The driver DMA channel configuration options are copied to this user provided buffer.

RCC-UM
September 2020, Version 1.3-rc9

111 www.cobhamaes.com/gaisler

The layout and content of the statistics are defined by the grpsw_dma_config data structure is de-
scribed in Table 18.44.

Return None.

18.5. API reference

This section lists all functions and data structures part of the GRSPW driver API, and in which section(s) they are
described. The API is also documented in the source header file of the driver, see Section 18.1.3.

18.5.1. Data structures

The data structures used together with the Device and/or DMA API are summarized in the table below.

Table 18.47. Data structures reference

Data structure name Section

struct grspw_pkt 18.4.3

struct grspw_list 18.2.11

struct grspw_addr_config 18.3.4

struct grspw_hw_sup 18.3.2

struct grspw_core_stats 18.3.8

struct grspw_dma_config 18.4.9

struct grspw_dma_stats 18.4.8

18.5.2. Device functions

The GRSPW device API. The functions listed in the table below operates on the GRSPW common registers and
driver set up. Changes here typically affects all DMA channels and link properties.

Table 18.48. Device function reference

Prototype Section

int grspw_dev_count(void) 18.3.1

void *grspw_open(int dev_no) 18.3.1

void grspw_close(void *d) 18.3.1

void grspw_hw_support(void *d, struct grspw_hw_sup *hw) 18.3.2

void grspw_stats_read(void *d, struct grspw_core_stats *sts) 18.3.8

void grspw_stats_clr(void *d) 18.3.8

void grspw_addr_ctrl(void *d, struct grspw_addr_config *cfg) 18.3.4,
18.2.8

spw_link_state_t grspw_link_state(void *d) 18.3.3,
18.2.4

void grspw_link_ctrl(void *d, int *options, int *clkdiv) 18.3.3,
18.2.4

unsigned int grspw_link_status(void *d) 18.3.3,
18.2.4

void grspw_link_status_clr(void *d, unsigned int mask) 18.3.3,
18.2.4

void grspw_tc_ctrl(void *d, int *options) 18.3.5,
18.2.5

void grspw_tc_tx(void *d) 18.3.5,
18.2.5

RCC-UM
September 2020, Version 1.3-rc9

112 www.cobhamaes.com/gaisler

Prototype Section

void grspw_tc_isr(void *d, void (*tcisr)(void *data, int tc), void
*data)

18.3.5,
18.2.5

void grspw_tc_time(void *d, int *time) 18.3.5,
18.2.5

int grspw_rmap_ctrl(void *d, int *options, int *dstkey) 18.3.7,
18.2.6

void grspw_rmap_support(void *d, char *rmap, char *rmap_crc) 18.3.7,
18.2.6,
18.3.2

int grspw_port_ctrl(void *d, int *port) 18.3.6,
18.2.7

int grspw_port_count(void *d) 18.3.6,
18.2.7,
18.3.2

int grspw_port_active(void *d) 18.3.6,
18.2.7

18.5.3. DMA functions

The GRSPW DMA channel API. The functions listed in the table below operates on one GRSPW DMA channel
and its driver set up. This interface is used to send and receive SpaceWire packets.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel.

Table 18.49. DMA channel function reference

Prototype Section

void *grspw_dma_open(void *d, int chan_no) 18.2.1,
18.4.1,
18.3.1

void grspw_dma_close(void *c) 18.2.1,
18.4.1,
18.3.1

int grspw_dma_start(void *c) 18.4.2,
18.2.14

void grspw_dma_stop(void *c) 18.4.2,
18.2.14

int grspw_dma_rx_recv(void *c, int opts, struct grspw_list *pkts,
int *count)

18.4.6,
18.2.1

int grspw_dma_rx_prepare(void *c, int opts, struct grspw_list *pk-
ts, int count)

18.4.6,
18.2.1

void grspw_dma_rx_count(void *c, int *ready, int *sched, int *recv) 18.4.7,
18.2.11.1

int grspw_dma_rx_wait(void *c, int recv_cnt, int op, int ready_cnt,
int timeout)

18.4.4,
18.2.12

int grspw_dma_tx_send(void *c, int opts, struct grspw_list *pkts,
int count)

18.4.5,
18.2.1

int grspw_dma_tx_reclaim(void *c, int opts, struct grspw_list *pk-
ts, int *count)

18.4.5,
18.2.1

void grspw_dma_tx_count(void *c, int *send, int *sched, int *sent) 18.4.7,
18.2.11.1

RCC-UM
September 2020, Version 1.3-rc9

113 www.cobhamaes.com/gaisler

Prototype Section

int grspw_dma_tx_wait(void *c, int send_cnt, int op, int sent_cnt,
int timeout)

18.4.4,
18.2.12

int grspw_dma_config(void *c, struct grspw_dma_config *cfg) 18.4.9

void grspw_dma_config_read(void *c, struct grspw_dma_config *cfg) 18.4.9

void grspw_dma_stats_read(void *c, struct grspw_dma_stats *sts) 18.4.8

void grspw_dma_stats_clr(void *c) 18.4.8

RCC-UM
September 2020, Version 1.3-rc9

114 www.cobhamaes.com/gaisler

Chapter 19. GRSPW GRLIB SpaceWire driver

19.1. Introduction

This document is intended as an aid in getting started developing with Gaisler GRSPW SpaceWire core using the
GRSPW driver for RTEMS. It briefly takes the reader through some of the most important steps in using the driver
such as setting up a connection, configuring the driver, reading and writing packets. The reader is assumed to be
well acquainted with SpaceWire and RTEMS.

The cores supported are GRSPW, GRSPW2 and SpaceWire Router DMA interface.

The GRSPW driver require the RTEMS Driver Manager.

See the GRLIB IP Core User's Manual for GRSPW hardware details.

19.1.1. Software driver

The driver provides means for processes and threads to send and receive packets. Link errors can be detected by
polling or by using a dedicated task sleeping until a link error is detected.

The driver is somewhat similar to an Ethernet driver. However, an Ethernet driver is referenced by an IP stack
layer. The IP stack can detect missing or erroneous packets, since the user talks directly with the GRSPW driver it
is up to the user to handle errors. The driver aims to be fully user space controllable in contrast to Ethernet drivers.

19.1.2. Examples

There is a example of how to use the GRSPW driver distributed together with the driver. The example demonstrates
some fundamental approaches to access and use the driver. It is made up of two tasks communicating with each
other through two SpaceWire devices. To be able to run the example one must have two GRSPW devices connected
together on the same board or two boards with at least one GRSPW core on each board.

19.2. User interface

The RTEMS GRSPW driver supports the standard access routines to file descriptors such as read, write and ioctl.
User applications should include the grspw driver's header file which contains definitions of all necessary data
structures used when accessing the driver. The RTEMS GRSPW sample is called rtems-spwtest-2boards.c and it
is provided in the Gaisler Research RTEMS distribution.

19.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using standard
means, such as open. The RTEMS I/O driver registration is performed automatically by the driver when GRSPW
hardware is found for the first time. The driver is called from the driver manager to handle detected GRSPW
hardware. In order for the driver manager to unite the GRSPW driver with the GRSPW hardware one must register
the driver to the driver manager. This process is described in the driver manager chapter.

19.2.2. Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter. Below is a de-
scription of configurable driver parameters. The driver parameters is unique per GRSPW device. The parameters
are all optional, the parameters only overrides the default values.

Table 19.1. GRSPW driver parameter description

Name Type Parameter Description

txBdCnt INT Number of transmit descriptors.

rxBdCnt INT Number of receive descriptors.

txDataSize INT Maximum transmit packet data size.

txHdrSize INT Maximum transmit packet header size.

RCC-UM
September 2020, Version 1.3-rc9

115 www.cobhamaes.com/gaisler

Name Type Parameter Description

rxPktSize INT Maximum packet size of received packets.

rxDmaArea INT Custom receiver DMA area address. See note below.

txDataDmaArea INT Custom transmit Data DMA area address. See note below.

txHdrDmaArea INT Custom transmit Header DMA area address. See note below.

19.2.2.1. Custom DMA area parameters

The three DMA areas can be configured to be located at a custom address. The standard configuration is to leave
it up to the driver to do dynamic allocation of the areas. However in some cases it may be required to locate the
DMA area on a custom location, the driver will not allocate memory but will assume that enough memory is
available and that the alignment needs of the core on the address given is fulfilled. The memory required can be
calculated from the other parameters.

For some systems it may be convenient to give the addresses as seen by the GRSPW core. This can be done
by setting the LSB bit in the address to one. For example a GR-RASTA-IO board with a GRSPW core doesn't
read from the same address as the CPU in order to access the same data. This is dependent on the PCI mappings.
Translation between CPU and GRPSW addresses must be done. The GRSPW driver automatically translates ad-
dresses in the descriptors. This requires the bus driver, in this case the GR-RASTA-IO driver, to set up translation
addresses correctly.

19.2.3. Opening the device

Opening the device enables the user to access the hardware of a certain GRSPW device. Open reset the SpaceWire
core and reads reset values of certain registers. With the ioctl command START it is possible to wait for the link to
enter run state. The same driver is used for all GRSPW devices available. The devices are separated by assigning
each device a unique name, the name is passed during the opening of the driver. Some example device names
are printed out below.

Table 19.2. Device number to device name conversion

Device number Filesystem name Location

0 /dev/grspw0 On-Chip Bus

1 /dev/grspw1 On-Chip Bus

2 /dev/grspw2 On-Chip Bus

Depends on system configuration /dev/rastaio0/grspw0 GR-RASTA-IO

Depends on system configuration /dev/rastatmtc0/grspw1 GR-RASTA-TMTC

An example of an RTEMS open call is shown below.

fd = open("/dev/grspw0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as indicated in Table 19.1.

Table 19.3. Open ERRNO values

ERRNO Description

EINVAL Illegal device name or not available

EBUSY Device already opened

EIO Error when writing to grspw registers

19.2.4. Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the SpaceWire driver.

RCC-UM
September 2020, Version 1.3-rc9

116 www.cobhamaes.com/gaisler

19.2.5. I/O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most operating systems
support at least two arguments to ioctl, the first being an integer which selects ioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

The commands may differ slightly between the operating systems but is mainly the same. The unique ioctl com-
mands are described last in this section.

All supported commands and their data structures are defined in the GRSPW driver's header file grspw.h. In
functions where only one argument in needed the pointer (void *arg) may be converted to an integer and interpreted
directly, thus simplifying the code.

19.2.5.1. Data structures

The spw_ioctl_packetsize data structure is used when changing the size of the driver's receive and transmit
buffers.

typedef struct {
 unsigned int rxsize;
 unsigned int txdsize;
 unsigned int txhsize;
} spw_ioctl_packetsize;

Table 19.4. spw_ioctl_packetsize member descriptions.

Member Description

rxsize Sets the size of the receiver descriptor buffers.

txdsize Sets the size of the transmitter data buffers.

txhsize Sets the size of the transmitter header buffers.

The spw_ioctl_pkt_send struct is used for transmissions through the ioctl call. Se the transmission section for
more information. The sent variable is set by the driver when returning from the ioctl call while the other are set
by the caller.

typedef struct {
 unsigned int hlen;
 char *hdr;
 unsigned int dlen;
 char *data;
 unsigned int sent;
} spw_ioctl_pkt_send;

Table 19.5. spw_ioctl_pkt_send member descriptions.

Member Description

hlen Number of bytes that shall be transmitted from the header buffer.

hdr Pointer to the header buffer.

dlen Number of bytes that shall be transmitted from the data buffer.

data Pointer to the data buffer.

sent Number of bytes transmitted.

The spw_stats struct contains various statistics gathered from the GRSPW.

typedef struct {
 unsigned int tx_link_err;
 unsigned int rx_rmap_header_crc_err;
 unsigned int rx_rmap_data_crc_err;
 unsigned int rx_eep_err;
 unsigned int rx_truncated;
 unsigned int parity_err;
 unsigned int escape_err;
 unsigned int credit_err;

RCC-UM
September 2020, Version 1.3-rc9

117 www.cobhamaes.com/gaisler

 unsigned int write_sync_err;
 unsigned int disconnect_err;
 unsigned int early_ep;
 unsigned int invalid_address;
 unsigned int packets_sent;
 unsigned int packets_received;
} spw_stats;

Table 19.6. spw_stats member descriptions.

Member Description

tx_link_err Number of link-errors detected during transmission.

rx_rmap_header_crc_err Number of RMAP header CRC errors detected in received packets.

rx_rmap_data_crc_err Number of RMAP data CRC errors detected in received packets.

rx_eep_err Number of EEPs detected in received packets.

rx_truncated Number of truncated packets received.

parity_err Number of parity errors detected.

escape_err Number of escape errors detected.

credit_err Number of credit errors detected.

write_sync_err Number of write synchronization errors detected.

disconnect_err Number of disconnect errors detected.

early_ep Number of packets received with an early EOP/EEP.

invalid_address Number of packets received with an invalid destination address.

packets_sent Number of packets transmitted.

packets_received Number of packets received.

The spw_config structure holds the current configuration of the GRSPW.

typedef struct {
 unsigned int nodeaddr;
 unsigned int destkey;
 unsigned int clkdiv;
 unsigned int rxmaxlen;
 unsigned int timer;
 unsigned int disconnect;
 unsigned int promiscuous;
 unsigned int timetxen;
 unsigned int timerxen;
 unsigned int rmapen;
 unsigned int rmapbufdis;
 unsigned int linkdisabled;
 unsigned int linkstart;

 unsigned int check_rmap_err;
 unsigned int rm_prot_id;
 unsigned int tx_blocking;
 unsigned int tx_block_on_full;
 unsigned int rx_blocking;
 unsigned int disable_err;
 unsigned int link_err_irq;
 rtems_id event_id;

 unsigned int is_rmap;
 unsigned int is_rxunaligned;
 unsigned int is_rmapcrc;
} spw_config;

Table 19.7. spw_config member descriptions.

Member Description

nodeaddr Node address.

destkey Destination key.

clkdiv Clock division factor.

RCC-UM
September 2020, Version 1.3-rc9

118 www.cobhamaes.com/gaisler

Member Description

rxmaxlen Receiver maximum packet length.

timer Link-interface 6.4 us timer value.

disconnect Link-interface disconnection timeout value.

promiscuous Promiscuous mode.

rmapen RMAP command handler enable.

rmapbufdis RMAP multiple buffer enable.

linkdisabled Linkdisabled.

linkstart Linkstart.

check_rmap_error Check for RMAP CRC errors in received packets.

rm_prot_id Remove protocol ID from received packets.

tx_blocking Select between blocking and non-blocking transmissions.

tx_blocking_on_full Block when all transmit descriptors are occupied.

rx_blocking Select between blocking and non-blocking receptions.

disable_err Disable Link automatically when link-error interrupt occurs.

link_err_irq Enable link-error interrupts.

event_id Task ID to which event is sent when link-error interrupt occurs.

is_rmap RMAP command handler available.

is_rxunaligned RX unaligned support available.

is_rmapcrc RMAP CRC support available.

19.2.5.2. Configuration

The GRSPW core and driver are configured using ioctl calls. Table 19 below lists all supported ioctl calls common
to most operating systems. SPACEWIRE_IOCTRL_ should be concatenated with the call number from the table
to get the actual constant used in the code. Return values for all calls are 0 for success and -1 for failure. Errno
is set after a failure as indicated in Table 19.3.

result = ioctl(fd, SPACEWIRE_IOCTRL_SET_NODEADDR, 0xFE);

Operating system specific calls are described last in this section.

Table 19.8. ERRNO values for ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY Only used for SEND. Returned when no descriptors are available in non-blocking mode.

ENOSYS Returned for SET_DESTKEY if RMAP command handler is not available or if a non-im-
plemented call is used.

ETIMEDOUT Returned for SET_PACKETSIZE and START if the link could not be brought up.

ENOMEM Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.

EIO Error when writing to grspw hardware registers.

Table 19.9. ioctl calls supported by the GRSPW driver.

Call Number Description

START Bring up link after open or STOP

STOP Stops the SpaceWire receiver and transmitter, this makes the following read
and write calls fail until START is called.

SET_NODEADDR Change node address.

RCC-UM
September 2020, Version 1.3-rc9

119 www.cobhamaes.com/gaisler

Call Number Description

SET_RXBLOCK Change blocking mode of receptions.

SET_DESTKEY Change destination key.

SET_CLKDIV Change clock division factor.

SET_TIMER Change timer setting.

SET_DISCONNECT Change disconnection timeout.

SET_COREFREQ Calculates TIMER and DISCONNECT from a user provided SpaceWire core
frequency. Frequency is given in KHz.

SET_PROMISCUOUS Enable/Disable promiscuous mode.

SET_RMAPEN Enable/Disable RMAP command handler.

SET_RMAPBUFDIS Enable/Disable multiple RMAP buffer utilization.

SET_CHECK_RMAP Enable/Disable RMAP CRC error check for reception.

SET_RM_PROT_ID Enable/Disable protocol ID removal for reception.

SET_TXBLOCK Change blocking mode of transmissions.

SET_TXBLOCK_ON_FULL Change the blocking mode when all descriptors are in use.

SET_DISABLE_ERR Enable/Disable automatic link disabling when link error occurs.

SET_LINK_ERR_IRQ Enable/Disable link error interrupts.

SET_PACKETSIZE Change buffer sizes.

GET_LINK_STATUS Read the current link status.

SET_CONFIG Set all configuration parameters with one call.

GET_CONFIG Read the current configuration parameters.

GET_STATISTICS Read the current configuration parameters.

CLR_STATISTICS Clear all statistics

SEND Send a packet with both header and data buffers.

LINKDISABLE Disable the link.

LINKSTART Start the link.

SET_EVENT_ID Change the task ID to which link error events are sent.

SET_TCODE_CTRL Control timecode interrupt and timecode reception/transmission enable.

SET_TCODE Optionally set timecode register and optionally generate a tick-in.

GET_TCODE Read GRSPW timecode register (get last timecode received).

19.2.5.2.1. START

This call try to bring the link up. The call returns successfully when the link enters the link state [run]. START
is typically called after open and the ioctl commands SET_DISCONNECT, SET_TIMER or SET_COREFREQ.
Calls to write or read will fail unless START is successfully called first.

Table 19.10. START argument description

Argument Timeout function

-1 Default hard coded driver timeout. Can be set with a define.

less than -1 Wait for link forever, the link is checked every 10 ticks.

0 No timeout is used, if link is not up when entering START the call will fail with errno set
to EINVAL.

positive The argument specifies the number of clock ticks the driver will wait before START re-
turns with error status. The link is checked every 10 ticks.

RCC-UM
September 2020, Version 1.3-rc9

120 www.cobhamaes.com/gaisler

19.2.5.2.2. STOP

STOP disables the GRSPW receiver and transmitter it does not effect link state. After calling STOP subsequent
calls to read and write will fail until START has successfully returned. The call takes no arguments. STOP never
fail.

19.2.5.2.3. SET_NODEADDR

This call sets the node address of the device. It is only used to check the destination of incoming packets. It is also
possible to receive packets from all addresses, see SET_PROMISCUOUS.

The argument must be an integer in the range 0 to 255. The call will fail if the argument contains an illegal value
or if the register can not be written.

19.2.5.2.4. SET_RXBLOCK

This call sets the blocking mode for receptions. Setting this flag makes calls to read blocking when there is no
available packets. If the flag is not set read will return EBUSY when there are no incoming packets available.

The argument must be an integer in the range 0 to 1. 0 selects non blocking mode while 1 selects blocking mode.
The call will fail if the argument contains an illegal value.

19.2.5.2.5. SET_DESTKEY

This call sets the destination key. It can only be used if the RMAP command handler is available. The argument
must be an integer in the range 0 to 255. The call will fail if the argument contains an illegal value, if the RMAP
command handler is not available or if the register cannot be written.

19.2.5.2.6. SET_CLKDIV

This call sets the clock division factor used in the run-state. The argument must be an integer in the range 0 to 255.
The call will fail if the argument contains an illegal value or if the register cannot be written.

19.2.5.2.7. SET_TIMER

This call sets the counter used to generate the 6.4 and 12.8 us time-outs in the link-interface FSM. The argument
must be an integer in the range 0 to 4095. The call will fail if the argument contains an illegal value or if the
register cannot be written. This value can be calculated by the driver, see SET_COREFREQ.

19.2.5.2.8. SET_DISCONNECT

This call sets the counter used to generate the 850 ns disconnect interval in the link-interface FSM. The argument
must be an integer in the range 0 to 1023. The call will fail if the argument contains an illegal value or if the
register cannot be written. This value can be calculated by the driver, see SET_COREFREQ.

19.2.5.2.9. SET_COREFREQ

This call calculates timer and disconnect from the GRSPW core frequency. The call take one unsigned 32-bit
argument, see table below. This call can be used instead of the calls SET_TIMER and SET_DISCONNECT.

Table 19.11. SET_COREFREQ argument description

Argument Value Function

0 The GRSPW core frequency is assumed to be equal to the system frequency. The system
frequency is detected by reading the system tick timer or a hard coded frequency.

all other values The argument is taken as the GRSPW core frequency in KHz.

19.2.5.2.10. SET_PROMISCUOUS

This call sets the promiscuous mode bit. The argument must be an integer in the range 0 to 1. The call will fail if
the argument contains an illegal value or if the register cannot be written.

RCC-UM
September 2020, Version 1.3-rc9

121 www.cobhamaes.com/gaisler

19.2.5.2.11. SET_RMAPEN

This call sets the RMAP enable bit. It can only be used if the RMAP command handler is available. The argument
must be an integer in the range 0 to 1. The call will fail if the argument contains an illegal value, if the RMAP
command handler is not available or if the register cannot be written.

19.2.5.2.12. SET_RMAPBUFDIS

This call sets the RMAP buffer disable bit. It can only be used if the RMAP command handler is available. The
argument must be an integer in the range 0 to 1. The call will fail if the argument contains an illegal value, if the
RMAP command handler is not available or if the register cannot be written.

19.2.5.2.13. SET_CHECK_RMAP

This call selects whether or not RMAP CRC should be checked for received packets. If enabled the header CRC
error and data CRC error bits are checked and if one or both are set the packet will be discarded. The argument
must be an integer in the range 0 to 1. 0 disables and 1 enables the RMAP CRC check. The call will fail if the
argument contains an illegal value.

19.2.5.2.14. SET_RM_PROT_ID

This call selects whether or not the protocol ID should be removed from received packets. It is assumed that all
packets contain a protocol ID so when enabled the second byte (the one after the node address) in the packet will
be removed. The argument must be an integer in the range 0 to 1. 0 disables and 1 enables the RMAP CRC check.
The call will fail if the argument contains an illegal value.

19.2.5.2.15. SET_TXBLOCK

This call sets the blocking mode for transmissions. The calling process will be blocked after each write until the
whole packet has been copied into the GRSPW send FIFO buffer.

The argument must be an integer in the range 0 to 1. 0 selects non blocking mode while 1 selects blocking mode.
The call will fail if the argument contains an illegal value.

19.2.5.2.16. SET_TXBLOCK_ON_FULL

This call sets the blocking mode for transmissions when all transmit descriptors are in use. The argument must
be an integer in the range 0 to 1. 0 selects non blocking mode while 1 selects blocking mode. The call will fail
if the argument contains an illegal value.

19.2.5.2.17. SET_DISABLE_ERR

This call sets automatic link-disabling due to link-error interrupts. Link-error interrupts must be enabled for it to
have any effect. The argument must be an integer in the range 0 to 1. 0 disables automatic link- disabling while
a 1 enables it. The call will fail if the argument contains an illegal value.

19.2.5.2.18. SET_LINK_ERR_IRQ

This call sets the link-error interrupt bit in the control register. The interrupt-handler sends an event to the task
specified with the event_id field when this interrupt occurs. The argument must be an integer in the range 0 to 1.
The call will fail if the argument contains an illegal value or if the register write fails.

19.2.5.2.19. SET_PACKETSIZE

This call changes the size of buffers and consequently the maximum packet sizes. The this cannot be done while
the core accesses the buffers so first the receiver and the transmitter is disabled and ongoing DMA transactions
is waited upon to finish. The time taken to wait for receiving DMA transactions to finish may vary depending
on packet size and SpaceWire core frequency. The old buffers are reallocated and the receiver and transmitter
is enabled again. The configuration before the call will be preserved (except for the packet sizes). The argument
must be a pointer to a spw_ioctl_packetsize struct. The call will fail if the argument contains an illegal
pointer, the requested buffer sizes cannot be allocated or the link cannot be re-started.

RCC-UM
September 2020, Version 1.3-rc9

122 www.cobhamaes.com/gaisler

19.2.5.2.20. GET_LINK_STATUS

This call returns the current link status. The argument must be a pointer to an integer. The return value in the
argument can be one of the following: 0 = Error-reset, 1 = Error-wait, 2 = Ready, 3 = Started, 4 = Connecting, 5
= Run. The call will fail if the argument contains an illegal pointer.

19.2.5.2.21. GET_CONFIG

This call returns all configuration parameters in a spw_config struct which is defined in spacewire.h. The
argument must be a pointer to a spw_config struct. The call will fail if the argument contains an illegal pointer.

19.2.5.2.22. GET_STATISTICS

This call returns all statistics in a spw_stats struct. The argument must be a pointer to a spw_stats struct.
The call will fail if the argument contains an illegal pointer.

19.2.5.2.23. CLR_STATISTICS

This call clears all statistics. No argument is taken and the call always succeeds.

19.2.5.2.24. SEND

This call sends a packet. The difference to the normal write call is that separate data and header buffers can be
used. The argument must be a pointer to a spw_ioctl_send struct. The call will fail if the argument contains an
illegal pointer, or the struct contains illegal values. See the transmission section for more information.

19.2.5.2.25. LINKDISABLE

This call disables the link (sets the linkdisable bit to 1 and the linkstart bit to 0). No argument is taken. The call
fails if the register write fails.

19.2.5.2.26. LINKSTART

This call starts the link (sets the linkdisable bit to 0 and the linkstart bit to 1). No argument is taken. The call fails
if the register write fails.

19.2.5.2.27. SET_EVENT_ID

This call sets the task ID to which an event is sent when a link-error interrupt occurs. The argument can be any
positive integer. The call will fail if the argument contains an illegal value.

19.2.5.2.28. SET_TCODE_CTRL

This call is used to control the timecode functionality of the GRSPW core. The TR (Timecode RX Enable), TT
(Timecode TX enable) and TQ (Tick-out IRQ) bits in the control register can be set or cleared, if tick-out IRQ
is enabled global IRQ is also enabled. The argument is a 12-bit mask, the least significant four bits determines
which bits are written (mask), the upper four bits determine the new register value of the enabled bits, please see
the SPACEWIRE_TCODE_CTRL_* definitions.

When Tick-out interrupt is enabled the grspw_timecode_callback function is called for every tick-out that
is received, it is called from the interrupt service routine in interrupt context. The function pointer must be set
by the user to point to a function to handle tick-in interrupts. The function is global for all GRSPW devices, the
arguments [regs] and [minor] both identify an unique GRSPW core and the [tc] argument determines the current
value of the timecode register upon interrupt.

void (*grspw_timecode_callback)
 (void *pDev, void *regs, int minor, unsigned int tc);

19.2.5.2.29. SET_TCODE

This call sets the timecode register and/or generates a tick-in. The operation is controlled by the argument bit-
mask, setting SPACEWIRE_TCODE_SET will result in the lower 8-bits will be written to the timecode register

RCC-UM
September 2020, Version 1.3-rc9

123 www.cobhamaes.com/gaisler

whereas setting SPACEWIRE_TCODE_TX will result in a tick- in generation. If both operations are enabled the
tick-in is generated after the timecode register is written.

19.2.5.2.30. GET_TCODE

This call reads the current GRSPW timecode register (unsigned int) and stores it in the location provided by the
the user argument. Bit 8 is set if the timecode status register bit 0 (TO) is set, the status bit (TO) is cleared if set,
this is to indicate if the timecode register has been updated since last call. Note that if interrupt is enabled and the
callback function is assigned the TO bit is cleared by the interrupt handler. The argument must be a pointer to an
unsigned integer. The call will fail if the argument contains an illegal pointer.

19.2.6. Transmission

Transmitting single packets are done with either the write [call] or a special ioctl call. There is currently no support
for writing multiple packets in one call. Write calls are used when data only needs to be taken from a single
contiguous buffer. An example of a write call is shown below:

result = write(fd, tx_pkt, 10))

On success the number of transmitted bytes is returned and -1 on failure. Errno is also set in the latter case. Tx_pkt
points to the beginning of the packet which includes the destination node address. The last parameter sets the
number of bytes that the user wants to transmit.

The call will fail if the user tries to send more bytes than is allocated for a single packet (this can be changed with
the SET_PACKETSIZE ioctl call) or if a NULL pointer is passed. Write also fails if the link has not been started
with the ioctl command START.

The write call can be configured to block in different ways. If normal blocking is enabled the call will only return
when the packet has been transmitted. In non-blocking mode, the transmission is only set up in the hardware and
then the function returns immediately (that is before the packet is actually sent). If there are no resources available
in the non- blocking mode the call will return with an error.

There is also a feature called Tx_block_on_full which means that the write call blocks when all descriptors are
in use.

The ioctl call used for transmissions is SPACEWIRE_IOCTRL_SEND. A spw_ioctl_send struct is used as argu-
ment and contains length, and pointer fields. The structure is shown in the data structures section. This ioctl call
should be used when a header is taken from one buffer and datafrom another. The header part is always transmitted
first. The hlen field sets the number of header bytes to be transmitted from the hdr pointer. The dlen field sets the
number of data bytes to be transmitted from the data pointer. Afterwards the sent field contains the total number
(header + data) of bytes transmitted.

The blocking behavior is the same as for write calls. The call fails if hlen+dlen is 0, one of the buffer pointer is
zero and its corresponding length variable is nonzero.

Table 19.12. ERRNO values for write and ioctl send.

ERRNO Description

EINVAL An invalid argument was passed or link is not started. The buffers must not be null
pointers and the length parameters must be larger that zero and less than the maxi-
mum allowed size.

EBUSY The packet could not be transmitted because all descriptors are in use (only in non-
blocking mode).

19.2.7. Reception

Reception is done using the read call. An example is shown below:

len = read(fd, rx_pkt, tmp);

The requested number of bytes to be read is given in tmp. The packet will be stored in rx_pkt. The actual number
of received bytes is returned by the function on success and -1 on failure. In the latter case errno is also set.

RCC-UM
September 2020, Version 1.3-rc9

124 www.cobhamaes.com/gaisler

The call will fail if a null pointer is passed.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until a packet has been
received. In non-blocking mode, the call will return immediately and if no packet was available -1 is returned and
errno set appropriately. The table below shows the different errno values that can be returned.

Table 19.13. ERRNO values for read calls.

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer, the length was illegal or the link
hasn't been started with the ioctl command START.

EBUSY No data could be received (no packets available) in non-blocking mode.

19.3. Receiver example

#include <grspw.h>

/* Open device */
fd = open("/dev/grspw0",O_RDWR);
if (fd < 0) {
 printf("Error Opening /dev/grspw0, errno: %d\n",errno);
 return -1;
}

/* Set basic parameters */
if (ioctl(fd, SPACEWIRE_IOCTRL_SET_COREFREQ,0) == -1)
 printf("SPACEWIRE_IOCTRL_SET_COREFREQ, errno: %d\n",errno);

/* Make sure link is up */
while(ioctl(fd, SPACEWIRE_IOCTRL_START,0) == -1) {
 sched_yield();
}
/* link is up => continue */

/* Set parameters */
...

/* Set blocking receiving mode */
if (ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK,1) == -1)
 printf("SPACEWIRE_IOCTRL_SET_RXBLOCK, errno: %d\n",errno);

/* Read/Write */
while(1) {
 unsigned char buf[256];
 if (read(fd,buf,256) < 0) {
 printf("Error during read, errno: %d\n",errno);
 continue;
 }
 /* Handle incoming packet */
 ...
}

RCC-UM
September 2020, Version 1.3-rc9

125 www.cobhamaes.com/gaisler

Chapter 20. GRSPW ROUTER driver

20.1. Introduction

This section describes the GRSPW ROUTER driver for SPARC/LEON processors in RTEMS. The router does
not have to be located on the same bus as the processor running RTEMS. The RTEMS driver manager abstracts
the actual location of the device allowing application software to access the router resources always using the
same API. Two different drivers, the GRSPW router driver and GRSPW driver, are needed to utilize the complete
functionality of the router.

• GRSPW router driver: The main functionality of the router is to transfer packets between the SpaceWire
ports. This ability is functional after reset without any configuration. The router driver can be used to change
the configuration, enable/disable links, collect statistics, fault detection etc.

• GRSPW driver: There are three different port types in the router: SpW ports, FIFO ports and AMBA ports.
The data path of SpW and FIFO ports are not (directly) accessible from the processor. If the router has AMBA
ports they can be used for transferring packets. The AMBA ports have identical interfaces to the GRSPW
core so they use the same driver. To transfer packets through an AMBA port a file handle should be opened to
it and then read and write calls can be used to receive and send packets. The driver also allows configuration
and status options in the AMBA port to be accessed.

20.1.1. Hardware Support

The GRSPW ROUTER core hardware interface is documented in the GRIP Core User's manual. Below is a list
of the major hardware features it supports:

• Multiple Spacewire ports.
• Multiple AMBA ports.
• Multiple FIFO ports.
• RMAP support.
• Group adaptive routing.
• Packet distribution.
• System time distribution.
• Distributed interrupts.

20.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
tree rtems-5/c/src/lib/libbsp/sparc.

Table 20.1. GRSPW ROUTER driver source location

Location Description

shared/include/grspw_router.h GRSPW ROUTER user interface definition

.../libbsp/sparc/shared/spw/
grspw_router.c

GRSPW ROUTER driver implementation

20.1.3. Examples

There is an example available that uses the GRSPW ROUTER driver to configure the router in a SPW performance
test. The example is part of the RCC distribution, it can be found under /opt/rtems-5/src/samples/spw/
router_demo/test.c.

20.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing a IO system device. The API is designed for multi-threadding, i.e.
multiple threads operating on the driver independently. The driver supports multiple routers in the system. The
driver contains lock or protection for SMP environments, see Section 20.2.3 for more information.

RCC-UM
September 2020, Version 1.3-rc9

126 www.cobhamaes.com/gaisler

20.2.1. Driver usage

The driver provides a set of functions that allow to configure the GRSPW ROUTER. The following list summarizes
the available actions.

• Setting up the GRSPW ROUTER core (see Section 20.3.3).
• Setting up the routing table (see Section 20.3.5).
• Managing a port (see Section 20.3.7).
• Managing time codes (see Section 20.3.10).
• Managing interrupt code generation (see Section 20.3.11).

The normal use case for the GRSPW ROUTER is the following: First we should open the router we want to use
(see Section 20.3.2). Then we configure the GRSPW ROUTER with the wanted configuration (see Section 20.3.3)
and set up the routing table (see Section 20.3.5). Once the GRSPW ROUTER is configured, we can configure the
ports we are interested on (see Section 20.3.7). We can start or stop the link, and check the link status on each
port (see Section 20.3.8).

The driver provides support for port counters (see Section 20.3.9) It also offers support for timecodes (see Sec-
tion 20.3.10) and interrupt generation (see Section 20.3.11).

When dealing with errors, the driver allows to generate SpW interrupt codes for different types of interrupts and
ports (see Section 20.3.11). The driver also allows the user to poll the port status to check if an error (or multiple)
have occurred (see Section 20.3.12).

The different errors that the GRSPW ROUTER can report are:

• SpaceWire Plug-and-Play error.
• Spill-if-not-ready.
• Run-state entry.
• Time code/distributed interrupt code tick truncation.
• Packet length truncation.
• Timeout spill.
• Auxiliary configuration port error.
• RMAP error.
• Invalid address.
• Link error.
• Memory error.

20.2.2. Initialization

During early initialization when the operating system boots the GRSPW ROUTER driver, the driver does not
modify the hardware state of the GRSPW ROUTER apart from masking and clearing interrupts.

20.2.3. SMP Support and thread safe

The driver has been designed to be SMP and thread safe. This means that multiple tasks can configure the router
and ports at the same time. Driver data structures and interrupt handling routines are protected by a semaphore.
Each port and its data structure have its own lock.

20.3. GRSPW ROUTER user interface

20.3.1. Return values

 ROUTER_ERR_OK
 ROUTER_ERR_EINVAL
 ROUTER_ERR_ERROR
 ROUTER_ERR_TOOMANY
 ROUTER_ERR_IMPLEMENTED

All the driver function calls return the following values when an error occurred:

• ROUTER_ERR_OK - Successful execution.
• ROUTER_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.

RCC-UM
September 2020, Version 1.3-rc9

127 www.cobhamaes.com/gaisler

• ROUTER_ERR_ERROR - Internal error. Can have different causes.
• ROUTER_ERR_TOOMANY - Index exceeded the valid value, such an invalid port index.
• ROUTER_ERR_IMPLEMENTED - Feature not supported or implemented.

Some functions also return a positive value upon successful execution, such as the time counter.

20.3.2. Opening/closing a router

 void * router_open(int dev_no)
 int router_close(void * router)
 int router_hwinfo_get(void * router, struct router_hw_info * hwinfo)

The driver provides the open and close functions to manage the registered GRSPW routers. All driver functions
operating on the router require the router pointer returned by the open function.

The hwinfo function returns the hardware information of the GRSPW router.

The open function returns a NULL pointer if something went wrong, otherwise it returns the router pointer. The
other functions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table 20.2. router_open function declaration

Proto void * router_open(int dev_no)

About Opens a router with the given dev_no index. It returns a pointer to the router when successfull. See
Section 20.3.2.

dev_no [IN] IntegerParam

Registration index of the router.

Return void *. Router pointer when successful. Otherwise, returns a NULL pointer.

Table 20.3. router_close function declaration

Proto int router_close(void * router)

About Closes a router. See Section 20.3.2.

router [IN] PointerParam

Pointer to the router.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

struct router_hw_info {
 uint8_t nports_spw;
 uint8_t nports_amba;
 uint8_t nports_fifo;
 int8_t timers_avail;
 int8_t pnp_avail;
 uint8_t ver_major;
 uint8_t ver_minor;
 uint8_t ver_patch;
 uint8_t iid;
};

Table 20.4. router_hw_info data structure declaration

nports_spw Number of spw ports.

nports_amba Number of amba ports.

nports_fifo Number of fifo ports.

timers_avail Indicates if the router has support for timers, as described in the manual.

pnp_avail Indicates if the router has support for SpW Plug and Play, as described in the manual.

ver_major Major version of the router.

RCC-UM
September 2020, Version 1.3-rc9

128 www.cobhamaes.com/gaisler

ver_minor Minor version of the router.

ver_patch Patch number of the router.

iid Instance ID of the router.

Table 20.5. router_hwinfo_get function declaration

Proto int router_hwinfo_get(void * router, struct router_hw_info * hwin-
fo)

About Get the hardware info of a given router. See Section 20.3.2.

router [IN] PointerParam

Pointer to the router.

hwinfo [IN] PointerParam

Pointer to the harware info structure.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.3.3. Configuring the router

 int router_config_set(void * router, struct router_config * cfg)
 int router_config_get(void * router, struct router_config * cfg)
 int router_reset(void * router)

The driver provides the config set and get functions to configure the different GRSPW router registers, including:

• Configuration register.
• Instance ID.
• Initial divisor.
• Timer prescaler.
• Timer reload.

The router_config structure is used to pass the configuration. The structure has a flags member that indicates which
parts of the configuration are going to be set or get.

The driver also provides a reset function that resets the whole GRSPW router. Please note, that reseting the GRSPW
router, also resets the GRSPW2 cores, including the DMA interfaces.

The driver provides an equivalent API that allow to configure each register individually as explained in Sec-
tion 20.3.4.

These functions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

struct router_config {
 uint32_t flags;
 uint32_t config;
 uint8_t iid;
 uint8_t idiv;
 uint32_t timer_prescaler;
};

Table 20.6. router_config data structure declaration

Flags that determine what configuration should be updated. All flags must be prefixed with
ROUTER_FLG_

Flag Description

CFG Set/Get router configuration register.

IID Set/Get router instance ID register.

flags

IDIV Set/Get router initial divisor register.

RCC-UM
September 2020, Version 1.3-rc9

129 www.cobhamaes.com/gaisler

TPRES Set/Get router timer prescaler register.

TRLD Set/Get router timer reload register.

ALL All of the above.

config Router Configuration Register.

iid Set Instance ID.

idiv SpaceWire Link Initialization Clock Divisor.

timer_prescaler Timer prescaler.

Table 20.7. router_config_set function declaration

Proto int router_config_set(void * router, struct router_config * cfg)

About Set the configuration of a given router. See Section 20.3.3.

router [IN] PointerParam

Pointer to the router.

cfg [IN] PointerParam

Pointer to the router configuration structure.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.8. router_config_get function declaration

Proto int router_config_get(void * router, struct router_config * cfg)

About Get the configuration of a given router. See Section 20.3.3.

router [IN] PointerParam

Pointer to the router.

cfg [IN] PointerParam

Pointer to the router configuration structure.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.9. router_reset function declaration

Proto int router_reset(void * router)

About Reset a given router. See Section 20.3.3.

router [IN] PointerParam

Pointer to the router.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.3.4. Configuring the router registers

 int router_write_enable(void * router)
 int router_write_disable(void * router)
 int router_cfgsts_set(void * router, uint32_t cfgsts)
 int router_cfgsts_get(void * router, uint32_t * cfgsts)
 int router_instance_set(void * router, uint8_t iid)
 int router_instance_get(void * router, uint8_t * iid)
 int router_idiv_set(void * router, uint8_t idiv)
 int router_idiv_get(void * router, uint8_t * idiv)
 int router_tpresc_set(void * router, uint32_t prescaler)
 int router_tpresc_get(void * router, uint32_t * prescaler)

The driver provides this collection of get and set functions to configure the different GRSPW router registers
individually, including:

RCC-UM
September 2020, Version 1.3-rc9

130 www.cobhamaes.com/gaisler

• Configuration port write enable register.
• Configuration register.
• Instance ID.
• Initial divisor.
• Timer prescaler.
• Timer reload.

This function returns a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table 20.10. router_write_enable function declaration

Proto int router_write_enable(void * router)

About Enable configuration port writes for a given router. See Section 20.3.4.

router [IN] PointerParam

Pointer to the router.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.11. router_write_disable function declaration

Proto int router_write_disable(void * router)

About Disable configuration port writes for a given router. See Section 20.3.4.

router [IN] PointerParam

Pointer to the router.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.12. router_cfgsts_set function declaration

Proto int router_cfgsts_set(void * router, uint32_t cfgsts)

About Set the router configuration/status register of a given router. See Section 20.3.4.

router [IN] PointerParam

Pointer to the router.

cfgsts [IN] IntegerParam

Configuration/status value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.13. router_cfgsts_get function declaration

Proto int router_cfgsts_get(void * router, uint32_t * cfgsts)

About Get the router configuration/status register of a given router. See Section 20.3.4.

router [IN] PointerParam

Pointer to the router.

cfgsts [IN] IntegerParam

Configuration/status value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.14. router_instance_set function declaration

Proto int router_instance_set(void * router, uint8_t iid)

RCC-UM
September 2020, Version 1.3-rc9

131 www.cobhamaes.com/gaisler

About Set the instance ID number of a given router. See Section 20.3.4.

router [IN] PointerParam

Pointer to the router.

iid [IN] IntegerParam

Instance ID number.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.15. router_instance_get function declaration

Proto int router_instance_get(void * router, uint8_t * iid)

About Get the instance ID number of a given router. See Section 20.3.4.

router [IN] PointerParam

Pointer to the router.

iid [IN] IntegerParam

Instance ID number.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.16. router_idiv_set function declaration

Proto int router_idiv_set(void * router, uint8_t idiv)

About Set the initialization divisor of a given router. See Section 20.3.4.

router [IN] PointerParam

Pointer to the router.

idiv [IN] IntegerParam

Initialization divisor.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.17. router_idiv_get function declaration

Proto int router_idiv_get(void * router, uint8_t * idiv)

About Get the initialization divisor of a given router. See Section 20.3.4.

router [IN] PointerParam

Pointer to the router.

idiv [IN] IntegerParam

Initialization divisor.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.18. router_tpresc_set function declaration

Proto int router_tpresc_set(void * router, uint32_t prescaler)

About Set the global prescaler reload value of a given router. See Section 20.3.4.

router [IN] PointerParam

Pointer to the router.

prescaler [IN] IntegerParam

Timer prescaler.

RCC-UM
September 2020, Version 1.3-rc9

132 www.cobhamaes.com/gaisler

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.19. router_tpresc_get function declaration

Proto int router_tpresc_get(void * router, uint32_t * prescaler)

About Get the global prescaler reload value of a given router. See Section 20.3.4.

router [IN] PointerParam

Pointer to the router.

prescaler [IN] IntegerParam

Timer prescaler.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.3.5. Configuring the routing table

 int router_routing_table_set(void * router, struct router_routing_table * cfg)
 int router_routing_table_get(void * router, struct router_routing_table * cfg)

The driver provides the routing table set and get functions to configure the GRSPW routing table registers at once,
including for each route:

• Address control.
• Port mapping.

The router_routing_table structure is used to pass the configuration. The structure has a flags member that indicates
which parts of the configuration are going to be set or get.

This function returns a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

struct router_route_acontrol {
 uint32_t control[31];
 uint32_t control_logical[224];
};

Table 20.20. router_route_acontrol data structure declaration

control Routing table address control for addresses 1-31.

control_logical Routing table address control for logical addresses 32-255.

struct router_route_portmap {
 uint32_t pmap[31];
 uint32_t pmap_logical[224];
};

Table 20.21. router_route_portmap data structure declaration

pmap Routing table port mapping for ports 1-31.

pmap_logical Routing table port mapping for logical ports 32-255.

struct router_routing_table {
 uint32_t flags;
 struct router_route_acontrol acontrol;
 struct router_route_portmap portmap;
};

Table 20.22. router_routing_table data structure declaration

Flags that determine what configuration should be updated. All flags must be prefixed with
ROUTER_ROUTE_FLG_

flags

Flag Description

RCC-UM
September 2020, Version 1.3-rc9

133 www.cobhamaes.com/gaisler

MAP Set/Get routing table port mapping registers.

CTRL Set/Get routing table address control registers.

ALL All of the above.

acontrol Routing table address control structure.

portmap Routing table port mapping structure.

Table 20.23. router_routing_table_set function declaration

Proto int router_routing_table_set(void * router, struct
router_routing_table * rt)

About Set the routing table of a given router. See Section 20.3.5.

router [IN] PointerParam

Pointer to the router.

rt [IN] PointerParam

Pointer to the routing table structure.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.24. router_routing_table_get function declaration

Proto int router_routing_table_get(void * router, struct
router_routing_table * rt)

About Get the routing table of a given router. See Section 20.3.5.

router [IN] PointerParam

Pointer to the router.

rt [IN] PointerParam

Pointer to the routing table structure.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.3.6. Individual route configuration

 int router_route_set(void * router, struct router_route * route)
 int router_route_get(void * router, struct router_route * route)

The driver provides the route set and get functions to configure each individual route of the GRSPW routing table.

The router_route structure is used to pass the configuration of the route. If contains the source address,
from_address, and the destination ports, to_port, which can be several, as indicated by the count param-
eter. The structure has an options member that indicates the configuration of the route.

This function returns a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

struct router_route {
 uint8_t from_address;
 uint8_t to_port[32];
 int count;
 int options;
};

Table 20.25. router_route data structure declaration

from_address Source address.

to_port Destination ports.

RCC-UM
September 2020, Version 1.3-rc9

134 www.cobhamaes.com/gaisler

count Number of valid destination ports.

Configuration of the route. All options must be prefixed with ROUTER_ROUTE_ prefix.
Default options are assumed if not specified otherwise.

Option Description

PACKETDISTRIBUTION_ENABLE Enable packet distribution for this route.

PACKETDISTRIBUTION_DISABLE Disable packet distribution for this route (de-
fault).

SPILLIFNOTREADY_ENABLE Enable spill-if-not-ready.

SPILLIFNOTREADY_DISABLE Disable spill-if-not-ready (default).

ENABLE Enable this route.

DISABLE Disable this route (default).

PRIORITY_HIGH Set high priority for this route.

PRIORITY_LOW Set low priority for this route (default).

HEADERDELETION_ENABLE Enable header deletion for this route.

options

HEADERDELETION_DISABLE Disable header deletion for this route (de-
fault).

Table 20.26. router_route_set function declaration

Proto int router_route_set(void * router, struct router_route * route)

About Set a specific route of a given router. See Section 20.3.5.

router [IN] PointerParam

Pointer to the router.

route [IN] PointerParam

Pointer to the route structure.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.27. router_route_get function declaration

Proto int router_route_get(void * router, struct router_route * route)

About Get a specific route of a given router. See Section 20.3.5.

router [IN] PointerParam

Pointer to the router.

route [IN] PointerParam

Pointer to the route structure.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.3.7. Port configuration

 int router_port_ioc(void * router, int port, struct router_port * cfg)
 int router_port_ctrl_rmw(void * router, int port, uint32_t * oldvalue, uint32_t bitmask, uint32_t value);
 int router_port_ctrl2_rmw(void * router, int port, uint32_t * oldvalue, uint32_t bitmask, uint32_t value);
 int router_port_ctrl_set(void * router, int port, uint32_t mask, uint32_t ctrl)
 int router_port_ctrl_get(void * router, int port, uint32_t * ctrl)
 int router_port_ctrl2_set(void * router, int port, uint32_t mask, uint32_t ctrl2)
 int router_port_ctrl2_get(void * router, int port, uint32_t * ctrl2)
 int router_port_treload_set(void * router, int port, uint32_t reload)
 int router_port_treload_get(void * router, int port, uint32_t * reload)
 int router_port_maxplen_set(void * router, int port, uint32_t length)
 int router_port_maxplen_get(void * router, int port, uint32_t * length)

RCC-UM
September 2020, Version 1.3-rc9

135 www.cobhamaes.com/gaisler

The driver provides the port ioc function to configure each port port of the GRSPW routing table. This function
allows to set or get the different GRSPW router port registers, including:

• Port control.
• Port status.
• Port control 2.
• Timer reload.
• Maximum packet length.

The router_port structure is used to pass the configuration of the port. The structure has a flag member that
indicates which parts of the configuration are going to be set or get.

The driver also provides individual set and get functions for each different GRSPW router port register.

These functions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

struct router_port {
 uint32_t flag;
 uint32_t ctrl;
 uint32_t sts;
 uint32_t ctrl2;
 uint32_t timer_reload;
 uint32_t packet_length;
};

Table 20.28. router_port data structure declaration

Configuration of the port. All flags must be prefixed with ROUTER_PORT_FLG_ prefix.

Option Description

SET_CTRL Set the port control register.

GET_CTRL Get the port control register.

SET_STS Set the port status register.

GET_STS Get the port status register.

SET_CTRL2 Set the port control 2 register.

GET_CTRL2 Get the port control 2 register.

SET_TIMER Set the port timer reload register.

GET_TIMER Get the port timer reload register.

SET_PKTLEN Set the port packet length register.

flag

GET_PKTLEN Get the port packet length register.

ctrl Port control register value.

sts Port status register value.

ctrl2 Port control 2 register value.

timer_reload Port timer reload register value.

packet_length Port packet length register value.

Table 20.29. router_port_ioc function declaration

Proto int router_port_ioc(void * router, int port, struct router_port *
cfg)

About Configure a given port of a given router. See Section 20.3.7.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

RCC-UM
September 2020, Version 1.3-rc9

136 www.cobhamaes.com/gaisler

cfg [IN] PointerParam

Pointer to the router port configuration structure.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.30. router_port_ctrl_rmw function declaration

Proto int router_port_ctrl_rmw(void * router, int port, uint32_t * old-
value, uint32_t mask, uint32_t value)

About Read the current value and write a new value to the control register of a given port of a given router.
See Section 20.3.7.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

oldvalue [IN] PointerParam

If a non-NULL pointer is given, the old control register value is saved to this pointer.

mask [IN] IntegerParam

The mask that indicates which bits are set. The rest of bits are left untouched. There are defines on the
header file that help with the bit definitions. The bit definitions are the same as the hardware port con-
trol register. See the hardware manual or GRLIB manual for reference.

value [IN] IntegerParam

The control register value to be written. Same bit definition as the mask. Only the bits set in mask are
effective.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.31. router_port_ctrl_set function declaration

Proto int router_port_ctrl_set(void * router, int port, uint32_t mask,
uint32_t ctrl)

About Set the control register of a given port of a given router. See Section 20.3.7.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

mask [IN] IntegerParam

The mask that indicates which bits are set. The rest of bits are left untouched. There are defines on the
header file that help with the bit definitions. The bit definitions are the same as the hardware port con-
trol register. See the hardware manual or GRLIB manual for reference.

ctrl [IN] IntegerParam

The control register value. Same bit definition as the mask. Only the bits set in mask are effective.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.32. router_port_ctrl_get function declaration

Proto int router_port_ctrl_get(void * router, int port, uint32_t * ctrl)

About Get the control register of a given port of a given router. See Section 20.3.7.

RCC-UM
September 2020, Version 1.3-rc9

137 www.cobhamaes.com/gaisler

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

ctrl [IN] PointerParam

Pointer to the control value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.33. router_port_ctrl2_rmw function declaration

Proto int router_port_ctrl2_rmw(void * router, int port, uint32_t * old-
value, uint32_t mask, uint32_t value)

About Read the current value and write a new value to the control 2 register of a given port of a given router.
See Section 20.3.7.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

oldvalue [IN] PointerParam

If a non-NULL pointer is given, the old control 2 register value is saved to this pointer.

mask [IN] IntegerParam

The mask that indicates which bits are set. The rest of bits are left untouched. There are defines on the
header file that help with the bit definitions. The bit definitions are the same as the hardware port con-
trol 2 register. See the hardware manual or GRLIB manual for reference.

value [IN] IntegerParam

The control 2 register value to be written. Same bit definition as the mask. Only the bits set in mask
are effective.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.34. router_port_ctrl2_set function declaration

Proto int router_port_ctrl2_set(void * router, int port, uint32_t mask,
uint32_t ctrl2)

About Set the control 2 register of a given port of a given router. See Section 20.3.7.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

mask [IN] IntegerParam

The mask that indicates which bits are set. The rest of bits are left untouched. There are defines on the
header file that help with the bit definitions. The bit definitions are the same as the hardware port con-
trol 2 register. See the hardware manual or GRLIB manual for reference.

ctrl2 [IN] IntegerParam

The control 2 register value. Same bit definition as the mask. Only the bits set in mask are effective.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

RCC-UM
September 2020, Version 1.3-rc9

138 www.cobhamaes.com/gaisler

Table 20.35. router_port_ctrl2_get function declaration

Proto int router_port_ctrl2_get(void * router, int port, uint32_t *
ctrl2)

About Get the control 2 register of a given port of a given router. See Section 20.3.7.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

ctrl2 [IN] PointerParam

Pointer to the control 2 value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.36. router_port_treload_set function declaration

Proto int router_port_treload_set(void * router, int port, uint32_t
reload)

About Set the timer reload register of a given port of a given router. See Section 20.3.7.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

reload [IN] IntegerParam

The timer reload register value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.37. router_port_treload_get function declaration

Proto int router_port_treload_get(void * router, int port, uint32_t *
reload)

About Get the timer reload register of a given port of a given router. See Section 20.3.7.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

reload [IN] PointerParam

Pointer to the timer reload register value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.38. router_port_maxplen_set function declaration

Proto int router_port_maxplen_set(void * router, int port, uint32_t
length)

About Set the maximum packet length of a given port of a given router. See Section 20.3.7.

router [IN] PointerParam

Pointer to the router.

RCC-UM
September 2020, Version 1.3-rc9

139 www.cobhamaes.com/gaisler

port [IN] IntegerParam

Port index.

length [IN] IntegerParam

The packet length value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.39. router_port_maxplen_get function declaration

Proto int router_port_maxplen_get(void * router, int port, uint32_t *
length)

About Set the maximum packet length of a given port of a given router. See Section 20.3.7.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

length [IN] PointerParam

Pointer to the packet length value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.3.8. Link configuration

 int router_port_enable(void * router, int port)
 int router_port_disable(void * router, int port)
 int router_port_link_status(void * router, int port)
 int router_port_link_stop(void * router, int port)
 int router_port_link_start(void * router, int port)
 int router_port_link_receive_spill(void * router, int port)
 int router_port_link_transmit_reset(void * router, int port)

The driver provides the link functions to operate each port port link of the GRSPW router.

The port enable and disable functions allow to enable or disable all data transfer to and from the port.

The link status function is used to get the status of the link.

The link start and stop allow to enable or disable the link interface FSM.

The link receive spill and transmit reset clear the receive and transmit FIFO queues respectively.

These functions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table 20.40. router_port_enable function declaration

Proto int router_port_enable(void * router, int port)

About Enable data transfers to and from a given port of a given router. See Section 20.3.8.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

RCC-UM
September 2020, Version 1.3-rc9

140 www.cobhamaes.com/gaisler

Table 20.41. router_port_disable function declaration

Proto int router_port_disable(void * router, int port)

About Disable data transfers to and from a given port of a given router. See Section 20.3.8.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.42. router_port_link_status function declaration

Proto int router_port_link_status(void * router, int port)

About Get the link status from a given port of a given router. See Section 20.3.8.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

int. When successful returns the link status. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Value Description

ROUTER_LINK_STATUS_ERROR_RESET Error reset status.

ROUTER_LINK_STATUS_ERROR_WAIT Error wait status.

ROUTER_LINK_STATUS_READY Ready status.

ROUTER_LINK_STATUS_STARTED Started status.

ROUTER_LINK_STATUS_CONNECTING Connecting status.

Return

ROUTER_LINK_STATUS_RUN_STATE Run state status.

Table 20.43. router_port_stop function declaration

Proto int router_port_stop(void * router, int port)

About Stop link interface FSM from a given port of a given router. See Section 20.3.8.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.44. router_port_start function declaration

Proto int router_port_start(void * router, int port)

About Start link interface FSM from a given port of a given router. See Section 20.3.8.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

RCC-UM
September 2020, Version 1.3-rc9

141 www.cobhamaes.com/gaisler

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.45. router_port_receive_spill function declaration

Proto int router_port_receive_spill(void * router, int port)

About Spill the receive FIFO from a given port of a given router. See Section 20.3.8.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.46. router_port_transmit_reset function declaration

Proto int router_port_transmit_reset(void * router, int port)

About Reset the transmit FIFO from a given port of a given router. See Section 20.3.8.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.3.9. Port counters

 int router_port_cred_get(void * router, int port, uint32_t * cred)

The driver provides the port counter functions to get credit counters for each port port of the GRSPW router.

This function returns a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table 20.47. router_port_cred_get function declaration

Proto int router_port_cred_get(void * router, int port, uint32_t * cred)

About Get the credit counter from a given port of a given router. See Section 20.3.9.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

cred [IN] PointerParam

Pointer to the count value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.3.10. Timecode handling

 int router_tc_enable(void * router)
 int router_tc_disable(void * router)
 int router_tc_reset(void * router)

RCC-UM
September 2020, Version 1.3-rc9

142 www.cobhamaes.com/gaisler

 int router_tc_get(void * router)

The driver provides the timecode functions to enable and disable timecode, reset the timecode value and get the
current timecode.

These functions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table 20.48. router_tc_enable function declaration

Proto int router_tc_enable(void * router)

About Enable time-codes in a given router. See Section 20.3.10.

router [IN] PointerParam

Pointer to the router.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.49. router_tc_disable function declaration

Proto int router_tc_disable(void * router)

About Disable time-codes in a given router. See Section 20.3.10.

router [IN] PointerParam

Pointer to the router.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.50. router_tc_reset function declaration

Proto int router_tc_reset(void * router)

About Reset the time counter in a given router. See Section 20.3.10.

router [IN] PointerParam

Pointer to the router.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.51. router_tc_get function declaration

Proto int router_tc_get(void * router)

About Get the time counter (with control flags) of a given router. See Section 20.3.10.

router [IN] PointerParam

Pointer to the router.

Return int. A positive value value when successful, which is the time counter value with the time control
flags. Otherwise, returns a negative value if something went wrong, as explained in Section 20.3.1.

20.3.11. Interrupt code generation

 int router_port_interrupt_mask(void * router, int port);
 int router_port_interrupt_unmask(void * router, int port);
 int router_interrupt_mask(void * router, int options)
 int router_interrupt_unmask(void * router, int options)
 int router_icodegen_enable(void * router, uint8_t intn, uint32_t aitimer, int options)
 int router_icodegen_disable(void * router)
 int router_isrctimer_set(void * router, uint32_t reloadvalue)
 int router_isrctimer_get(void * router, uint32_t * reloadvalue)
 int router_isrtimer_set(void * router, uint32_t reloadvalue)
 int router_isrtimer_get(void * router, uint32_t * reloadvalue)

RCC-UM
September 2020, Version 1.3-rc9

143 www.cobhamaes.com/gaisler

The driver provides this set of functions to handle interrupts and interrupt code generation. It also provides func-
tions to get and set the ISR change and ISR timers. There are eleven sources of interrupt in the GRSPW router:

• SpaceWire Plug-and-Play error.
• Spill-if-not-readu.
• Run-state entry.
• Time code / distributed interrupt code tick truncation.
• Packet length truncation.
• Timeout spill.
• Auxiliary configuration port error.
• RMAP error.
• Invalid address.
• Link error.
• Memory error.

These functions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table 20.52. router_port_interrupt_mask function declaration

Proto int router_port_interrupt_mask(void * router, int port)

About Mask interrupts for a given port of the given router. The port parameter defines which port . See
Section 20.3.11.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.53. router_port_interrupt_unmask function declaration

Proto int router_port_interrupt_unmask(void * router, int port)

About Unmask interrupts for a given port of the given router. The port parameter defines which port . See
Section 20.3.11.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.54. router_interrupt_mask function declaration

Proto int router_interrupt_mask(void * router, int options)

About Mask certain interrupts (i.e. disable), leaving the rest in their current state. The options parameter
defines which interrupts are going to be masked. See Section 20.3.11.

router [IN] PointerParam

Pointer to the router.

options [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of these flags is accepted.

Value Description

Param

ROUTER_INTERRUPT_ALL Mask all interrupts.

RCC-UM
September 2020, Version 1.3-rc9

144 www.cobhamaes.com/gaisler

ROUTER_INTERRUPT_SPWPNP_ERROR Mask parity error interrupts.

ROUTER_INTERRUPT_SPILLED Mask spill-if-not-ready.

ROUTER_INTERRUPT_RUNSTATE Mask run-state entry

ROUTER_INTERRUPT_TC_TRUNCATION Mask time-code/distributed interrupt code
truncation.

ROUTER_INTERRUPT_PACKET_TRUNCATION Mask packet-length truncation.

ROUTER_INTERRUPT_TIMEOUT Mask timeout spills.

ROUTER_INTERRUPT_CFGPORT Mask auxiliary configuration port error.

ROUTER_INTERRUPT_RMAP_ERROR Mask rmap error.

ROUTER_INTERRUPT_INVALID_ADDRESS Mask invalid address error.

ROUTER_INTERRUPT_LINK_ERROR Mask link error.

ROUTER_INTERRUPT_MEMORY_ERROR Mask memory error.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.55. router_interrupt_unmask function declaration

Proto int router_interrupt_unmask(void * router, int options)

About Unmask certain interrupts (i.e. enable), leaving the rest in their current state. The options parameter
defines which interrupts are going to be unmasked. See Section 20.3.11.

router [IN] PointerParam

Pointer to the router.

options [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of these flags is accepted.

Value Description

ROUTER_INTERRUPT_ALL Unmask all interrupts.

ROUTER_INTERRUPT_SPWPNP_ERROR Unmask parity error interrupts.

ROUTER_INTERRUPT_SPILLED Unmask spill-if-not-ready.

ROUTER_INTERRUPT_RUNSTATE Unmask run-state entry

ROUTER_INTERRUPT_TC_TRUNCATION Unmask time-code/distributed interrupt code
truncation.

ROUTER_INTERRUPT_PACKET_TRUNCATION Unmask packet-length truncation.

ROUTER_INTERRUPT_TIMEOUT Unmask timeout spills.

ROUTER_INTERRUPT_CFGPORT Unmask auxiliary configuration port error.

ROUTER_INTERRUPT_RMAP_ERROR Unmask rmap error.

ROUTER_INTERRUPT_INVALID_ADDRESS Unmask invalid address error.

ROUTER_INTERRUPT_LINK_ERROR Unmask link error.

Param

ROUTER_INTERRUPT_MEMORY_ERROR Unmask memory error.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.56. router_icodegen_enable function declaration

Proto int router_icodegen_enable(void * router, uint8_t intn, uint32_t
aitimer, int options)

About Enable interrupt code generation in a given router. See Section 20.3.11.

Param router [IN] Pointer

RCC-UM
September 2020, Version 1.3-rc9

145 www.cobhamaes.com/gaisler

Pointer to the router.

intn [IN] IntegerParam

Interrupt number to generate.

aitimer [IN] IntegerParam

Interrupt acknowledgement code to interrupt code timer reload value (if enabled).

options [IN] Integer

Interrupt code generation options. Any combinations (by OR operation) of this flags is accepted.

Value Description

ROUTER_ICODEGEN_ITYPE_EDGE Interrupt type is edge.

ROUTER_ICODEGEN_ITYPE_LEVEL (default) Interrupt type is level.

ROUTER_ICODEGEN_AUTOUNACK_ENABLE Interrupt code generation un-acknowledge
mode enable.

ROUTER_ICODEGEN_AUTOUNACK_DISABLE
(default)

Interrupt code generation un-acknowledge
mode disable.

ROUTER_ICODEGEN_AUTOACK_ENABLE Interrupt acknowledgement code handling en-
able.

Param

ROUTER_ICODEGEN_AUTOACK_DISABLE (de-
fault)

Interrupt acknowledgement code handling
disable.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.57. router_icodegen_disable function declaration

Proto int router_icodegen_disable(void * router)

About Disable interrupt code generation in a given router. See Section 20.3.11.

router [IN] PointerParam

Pointer to the router.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.58. router_isrctimer_set function declaration

Proto int router_isrctimer_set(void * router, uint32_t reload)

About Set the interrupt code distribution ISR change timer in a given router. See Section 20.3.11.

router [IN] PointerParam

Pointer to the router.

reload [IN] IntegerParam

Timer reload value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.59. router_isrctimer_get function declaration

Proto int router_isrctimer_get(void * router, uint32_t * reload)

About Get the interrupt code distribution ISR change timer in a given router. See Section 20.3.11.

router [IN] PointerParam

Pointer to the router.

Param reload [IN] Pointer

RCC-UM
September 2020, Version 1.3-rc9

146 www.cobhamaes.com/gaisler

Pointer to the reload value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.60. router_isrtimer_set function declaration

Proto int router_isrtimer_set(void * router, uint32_t reload)

About Set the interrupt code distribution ISR timer in a given router. See Section 20.3.11.

router [IN] PointerParam

Pointer to the router.

reload [IN] IntegerParam

Timer reload value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.61. router_isrtimer_get function declaration

Proto int router_isrtimer_get(void * router, uint32_t * reload)

About Get the interrupt code distribution ISR timer in a given router. See Section 20.3.11.

router [IN] PointerParam

Pointer to the router.

reload [IN] PointerParam

Pointer to the reload value.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.3.12. Polling the error status of a port

 int router_port_status(void * router, int port, uint32_t * status, uint32_t clrmsk);

The driver provides this function to check the port status. It can be used to detect errors. There are eleven sources
of errors in the GRSPW router:

• SpaceWire Plug-and-Play error.
• Spill-if-not-readu.
• Run-state entry.
• Time code / distributed interrupt code tick truncation.
• Packet length truncation.
• Timeout spill.
• Auxiliary configuration port error.
• RMAP error.
• Invalid address.
• Link error.
• Memory error.

If an error has been detected, this function can internally clear the port status register bits to be able to catch new
errors, if the clear mask has been set to clear them.

This function returns a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table 20.62. router_port_status function declaration

Proto int router_port_status(void * router, int port, uint32_t * status,
uint32_t clrmsk)

RCC-UM
September 2020, Version 1.3-rc9

147 www.cobhamaes.com/gaisler

About Get the status register of a given port of a given router. Clears errors if detected. See Section 20.3.7.

router [IN] PointerParam

Pointer to the router.

port [IN] IntegerParam

Port index.

status [IN] PointerParam

Pointer to the status value.

clrmsk [IN] Integer

Mask of error status bits to be cleared. Please note that port 0 (configuration port) is different from the
rest of ports. The following values can be ORed:

Value Description

PSTSCFG_WCLEAR Clear all (port 0).

PSTSCFG_EO Clear early EOP (port 0).

PSTSCFG_EE Clear early EEP (port 0).

PSTSCFG_PL Clear packet-length truncation (port 0).

PSTSCFG_TT Clear time-code/distributed interrupt code truncation error (port 0).

PSTSCFG_PT Clear packet type error (port 0).

PSTSCFG_HC Clear header CRC error (port 0).

PSTSCFG_PI Clear protocol ID error (port 0).

PSTSCFG_CE Clear error code (port 0).

PSTSCFG_TS Clear timeout spill (port 0).

PSTSCFG_ME Clear memory error (port 0).

PSTSCFG_CP Clear SpW PnP error code (port 0).

PSTS_WCLEAR Clear all.

PSTS_PL Clear packet-length truncation.

PSTS_TT Clear time-code/distributed interrupt code truncation.

PSTS_RS Clear rmap spill.

PSTS_SR Clear spill-if-not-ready.

PSTS_TS Clear timeout spills.

PSTS_ME Clear memory error.

PSTS_IA Clear invalid address error.

PSTS_CE Clear credit error.

PSTS_ER Clear escape error.

PSTS_DE Clear disconnect error.

Param

PSTS_PE Clear parity error.

Return int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.4. API reference

This section lists all data structures and functions part of the GRSPW router driver API, and in which section(s)
they are described. The API is also documented in the source header file of the driver, see Section 20.1.2.

20.4.1. Data structures

The data structures used together with the driver are summarized in the table below.

RCC-UM
September 2020, Version 1.3-rc9

148 www.cobhamaes.com/gaisler

Table 20.63. Data structures reference

Data structure name Section

struct router_hw_info 20.3.2

struct router_config 20.3.3

struct router_route_acontrol 20.3.5

struct router_route_portmap 20.3.5

struct router_routing_table 20.3.5

struct router_route 20.3.6

struct router_port 20.3.7

20.4.2. Device functions

The GRSPW router driver API. The functions listed in the table below operates on the router common registers
and driver set up.

Table 20.64. GRSPW router function reference

Prototype Section

void * router_open(int dev_no) 20.3.2

int router_close(void * router) 20.3.2

int router_hwinfo_get(void * router, struct router_hw_info * hwin-
fo)

20.3.2

int router_config_set(void * router, struct router_config * cfg) 20.3.3

int router_config_get(void * router, struct router_config * cfg) 20.3.3

int router_reset(void * router) 20.3.3

int router_write_enable(void * router) 20.3.4

int router_write_disable(void * router) 20.3.4

int router_cfgsts_set(void * router, uint32_t cfgsts) 20.3.4

int router_cfgsts_get(void * router, uint32_t * cfgsts) 20.3.4

int router_instance_set(void * router, uint8_t iid) 20.3.4

int router_instance_get(void * router, uint8_t * iid) 20.3.4

int router_idiv_set(void * router, uint8_t idiv) 20.3.4

int router_idiv_get(void * router, uint8_t * idiv) 20.3.4

int router_tpresc_set(void * router, uint32_t prescaler) 20.3.4

int router_tpresc_get(void * router, uint32_t * prescaler) 20.3.4

int router_routing_table_set(void * router, struct
router_routing_table * cfg)

20.3.5

int router_routing_table_get(void * router, struct
router_routing_table * cfg)

20.3.5

int router_route_set(void * router, struct router_route * route) 20.3.6

int router_route_get(void * router, struct router_route * route) 20.3.6

int router_port_ioc(void * router, int port, struct router_port *
cfg)

20.3.7

int router_port_ctrl_rmw(void * router, int port, uint32_t * old-
value, uint32_t mask, uint32_t value)

20.3.7

int router_port_ctrl_set(void * router, int port, uint32_t mask,
uint32_t ctrl)

20.3.7

RCC-UM
September 2020, Version 1.3-rc9

149 www.cobhamaes.com/gaisler

Prototype Section

int router_port_ctrl_get(void * router, int port, uint32_t * ctrl) 20.3.7

int router_port_ctrl2_rmw(void * router, int port, uint32_t * old-
value, uint32_t mask, uint32_t value)

20.3.7

int router_port_ctrl2_set(void * router, int port, uint32_t mask,
uint32_t ctrl2)

20.3.7

int router_port_ctrl2_get(void * router, int port, uint32_t *
ctrl2)

20.3.7

int router_port_treload_set(void * router, int port, uint32_t
reload)

20.3.7

int router_port_treload_get(void * router, int port, uint32_t *
reload)

20.3.7

int router_port_maxplen_set(void * router, int port, uint32_t
length)

20.3.7

int router_port_maxplen_get(void * router, int port, uint32_t *
length)

20.3.7

int router_port_enable(void * router, int port) 20.3.8

int router_port_disable(void * router, int port) 20.3.8

int router_port_link_status(void * router, int port) 20.3.8

int router_port_link_start(void * router, int port) 20.3.8

int router_port_link_stop(void * router, int port) 20.3.8

int router_port_link_receive_spill(void * router, int port) 20.3.8

int router_port_link_transmit_reset(void * router, int port) 20.3.8

int router_port_cred_get(void * router, int port, uint32_t * cred) 20.3.9

int router_tc_enable(void * router) 20.3.10

int router_tc_disable(void * router) 20.3.10

int router_tc_reset(void * router) 20.3.10

int router_tc_get(void * router) 20.3.10

int router_icodegen_enable(void * router, uint8_t intn, uint32_t
aitimer, int options)

20.3.11

int router_icodegen_disable(void * router) 20.3.11

int router_isrctimer_set(void * router, uint32_t reloadvalue) 20.3.11

int router_isrctimer_get(void * router, uint32_t * reloadvalue) 20.3.11

int router_isrtimer_set(void * router, uint32_t reloadvalue) 20.3.11

int router_isrtimer_get(void * router, uint32_t * reloadvalue) 20.3.11

int router_port_interrupt_mask(void * router, router_isr_t isr,
void * arg, int port)

20.3.11

int router_port_interrupt_unmask(void * router, int port) 20.3.11

int router_interrupt_mask(void * router, int options) 20.3.11

int router_interrupt_unmask(void * router, int options) 20.3.11

int router_port_status(void * router, int port, uint32_t * status,
uint32_t clrmsk)

20.3.12

RCC-UM
September 2020, Version 1.3-rc9

150 www.cobhamaes.com/gaisler

Chapter 21. SPWTDP driver

21.1. Introduction

This section describes the SPWTDP driver for SPARC/LEON processors.

21.1.1. Hardware Support

The SPWTDP core hardware interface is documented in the GRIP Core User's manual. The SPWTDP core im-
plements the Spacewire time distribution protocol.

21.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
tree rtems-5/c/src/lib/libbsp/sparc.

Table 21.1. SPWTDP driver source location

Location Description

shared/include/spwtdp.h SPWTDP user interface definition

.../libbsp/sparc/shared/spw/spwtdp.c SPWTDP driver implementation

21.1.3. Examples

There is a simple example available that uses the SPWTDP driver to measure the latency between two boards.
The example is part of the RCC distribution, it can be found under /opt/rtems-5/src/samples/spw/
spwtdp/.

21.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing a IO system device. The API is SMP safe. The driver contains a
semaphore locking mechanism for SMP environments.

21.2.1. Driver usage

The driver provides a set of functions that allow to configure and operate the SPWTDP as initiator or target.

First of all, we need to open the SPWTDP device before using it. If we want to put it at a known state, the SPWTDP
device can be reset. See Section 21.3.2.

Once the SPWTDP is open, we need to setup the time generation. See Section 21.3.3.

After this, we can configure the SPWTDP device as either initiator or target. We can also configure the distributed
interrupt, SPW time-code synchronization, command control and time-stamping. Once the device is configured
as initiator or target, it can be enabled to start working. See Section 21.3.4.

To check for status and/or events, we cam use the functions in Section 21.3.7, or use interrupt service routines.
See Section 21.3.6.

Once the SPWTDP device is working, we can get elapsed times and timestamps. See Section 21.3.5.

When we are finished, we can disable the initiator/target, see Section 21.3.4, and close the SPWTDP device, see
Section 21.3.2.

21.2.2. Initialization

During early initialization when the operating system boots the SPWTDP driver, the driver resets the SPWTDP
core.

RCC-UM
September 2020, Version 1.3-rc9

151 www.cobhamaes.com/gaisler

21.3. SPWTDP user interface

21.3.1. Return values

 SPWTDP_ERR_OK
 SPWTDP_ERR_EINVAL
 SPWTDP_ERR_ERROR
 SPWTDP_ERR_NOINIT

All the driver function calls return the following values when an error occurred:

• SPWTDP_ERR_OK - Successful execution.
• SPWTDP_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
• SPWTDP_ERR_ERROR - Internal error. Can have different causes.
• SPWTDP_ERR_NOINIT - Driver not initialized.

21.3.2. Opening a SPWTDP device

 void * spwtdp_open(int dev_no)
 int spwtdp_close(void * spwtdp)
 int spwtdp_reset(void * spwtdp)

The driver uses these functions to open/close/reset a given SPTDP device. Only previously opened devices can be
configured and used. Reseting the SPWTDP device also clears all driver state, such as previous configurations. If
an ISR is registered, it must be unregistered prior to a reset (see Section 21.3.6).

These functions return a negative value if something went wrong, as explained in Section 21.3.1. Otherwise, the
function returns SPWTDP_ERR_OK when successful.

Table 21.2. spwtdp_open function declaration

Proto void * spwtdp_open(int dev_no)

About Open a SPWTDP device by registration order index. A SPWTDP device can only be opened once.
The handle returned must be used as the input parameter 'spwtdp' in the rest of the calls in the function
interface. See Section 21.3.2.

dev_no [IN] IntegerParam

Registration index of the device.

Return void *. SPWTDP pointer when successful. Otherwise, returns a NULL pointer.

Table 21.3. spwtdp_close function declaration

Proto int spwtdp_close(void * spwtdp)

About Close a previously opened SPWTDP device. See Section 21.3.2.

spwtdp [IN] PointerParam

SPWTDP pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.4. spwtdp_reset function declaration

Proto int spwtdp_reset(void * spwtdp)

About Reset a previously opened SPWTDP device. See Section 21.3.2.

spwtdp [IN] PointerParam

SPWTDP pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

RCC-UM
September 2020, Version 1.3-rc9

152 www.cobhamaes.com/gaisler

21.3.3. Setting up the frequency and time generation

 int spwtdp_freq_setup(void * spwtdp, uint32_t fsinc, uint32_t cv, uint8_t etinc)

The driver uses this functions to setup the time generation of the SPWTDP device.

These functions return a negative value if something went wrong, as explained in Section 21.3.1. Otherwise, the
function returns SPWTDP_ERR_OK when successful.

Table 21.5. spwtdp_freq_setup function declaration

Proto int spwtdp_freq_setup(void * spwtdp, uint32_t fsinc, uint32_t cv,
uint8_t etinc)

About Setup the frequency of a previously opened SPWTDP device. See Section 21.3.3.

spwtdp [IN] PointerParam

SPWTDP pointer.

fsinc [IN] IntegerParam

Frequency synthesizer (FSINC) value.

cv [IN] IntegerParam

Compensation Value (CV).

etinc [IN] IntegerParam

Elapsed Time Increment (ETINC) value.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

21.3.4. Configuring as initiator or target

 int spwtdp_initiator_conf(void * spwtdp, uint8_t mapping, uint32_t options)
 int spwtdp_initiator_int_conf(void * spwtdp, uint8_t stm, uint8_t inrx, uint8_t intx)
 int spwtdp_initiator_cmd_et_set(void * spwtdp, spwtdp_time_t val)
 int spwtdp_initiator_cmd_spwtc_set(void * spwtdp, uint8_t spwtc)
 int spwtdp_initiator_tstx_conf(void * spwtdp, uint8_t tstc)
 int spwtdp_initiator_enable(void * spwtdp)
 int spwtdp_initiator_disable(void * spwtdp)
 int spwtdp_target_conf(void * spwtdp, uint8_t mapping, uint32_t options)
 int spwtdp_target_int_conf(void * spwtdp, uint8_t inrx, uint8_t intx, uint32_t options)
 int spwtdp_target_cmd_conf(void * spwtdp, uint8_t spwtc, uint16_t cpf, uint32_t options)
 int spwtdp_target_enable(void * spwtdp)
 int spwtdp_target_disable(void * spwtdp)

The driver uses this functions to configure the SPWTDP device as initiator or target. A SPWTDP device can
only work either as initiator or target at a given time. Before enabling an initiator/target, the SPWTDP has to be
configured as initiator/target respectively with the configuration functions.

These functions return a negative value if something went wrong, as explained in Section 21.3.1. Otherwise, the
function returns SPWTDP_ERR_OK when successful.

Table 21.6. spwtdp_initiator_conf function declaration

Proto int spwtdp_initiator_conf(void * spwtdp, uint8_t mapping, uint32_t
options)

About Configure and set the SPWTDP as initiator. See Section 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

mapping [IN] IntegerParam

Mapping of SPW time-codes versus CCSDS time-code.

RCC-UM
September 2020, Version 1.3-rc9

153 www.cobhamaes.com/gaisler

options [IN] Integer

Initiator options. Any combination (by OR operation) of these flags is accepted.

Value Description

SPWTDP_TDP_ENABLE Enable TDP.

SPWTDP_TDP_DISABLE Disable TDP (default).

SPWTDP_LATENCY_ENABLE Latency enable.

SPWTDP_LATENCY_DISABLE Latency disable (default).

SPWTDP_EXTET_INC_ENABLE Ext. ET increment enable.

SPWTDP_EXTET_INC_DISABLE Ext. ET increment disable (default).

SPWTDP_EXTET_INC_POLARITY_RISING Ext. ET increment polarity rising.

SPWTDP_EXTET_INC_POLARITY_FALLING Ext. ET increment polarity falling (default).

SPWTDP_EXTET_ENABLE Ext. ET enable.

SPWTDP_EXTET_DISABLE Ext. ET disable (default).

SPWTDP_EXTET_POLARITY_RISING Ext. ET polarity rising.

Param

SPWTDP_EXTET_POLARITY_FALLING Ext. ET polarity falling (default).

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.7. spwtdp_initiator_int_conf function declaration

Proto int spwtdp_initiator_int_conf(void * spwtdp, uint8_t stm, uint8_t
inrx, uint8_t intx)

About Configure the initiator distributed interrupts. See Section 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

stm [IN] IntegerParam

SPW time-code mask.

inrx [IN] IntegerParam

Interrupt received.

intx [IN] IntegerParam

Interrupt transmitted.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.8. spwtdp_initiator_cmd_et_set function declaration

Proto int spwtdp_initiator_cmd_et_set(void * spwtdp, spwtdp_time_t val)

About Set the command elapsed time. See Section 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

val [IN] IntegerParam

Elapsed time value.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.9. spwtdp_initiator_cmd_spwtc_set function declaration

Proto int spwtdp_initiator_cmd_spwtc_set(void * spwtdp, uint8_t spwtc)

RCC-UM
September 2020, Version 1.3-rc9

154 www.cobhamaes.com/gaisler

About Set the SPW time-code used for initialization and synchronization. See Section 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

spwtc [IN] IntegerParam

Time-code value.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.10. spwtdp_initiator_tstx_conf function declaration

Proto int spwtdp_initiator_tstx_conf(void * spwtdp, uint8_t tstc)

About Configure the time-stamp SPW time-code of a previously opened SPWTDP device. See Sec-
tion 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

tstc [IN] IntegerParam

Time stamp on this time-code value.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.11. spwtdp_initiator_enable function declaration

Proto int spwtdp_initiator_enable(void * spwtdp)

About Enable the initiator. See Section 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.12. spwtdp_initiator_disable function declaration

Proto int spwtdp_initiator_disable(void * spwtdp)

About Disable the initiator. See Section 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.13. spwtdp_target_conf function declaration

Proto int spwtdp_target_conf(void * spwtdp, uint8_t mapping, uint32_t op-
tions)

About Configure and set the SPWTDP as target. See Section 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

mapping [IN] IntegerParam

Mapping of SPW time-codes versus CCSDS time-code.

options [IN] IntegerParam

Target options. Any combination (by OR operation) of these flags is accepted.

RCC-UM
September 2020, Version 1.3-rc9

155 www.cobhamaes.com/gaisler

Value Description

SPWTDP_TDP_ENABLE Enable TDP.

SPWTDP_TDP_DISABLE Disable TDP (default).

SPWTDP_LATENCY_ENABLE Latency enable.

SPWTDP_LATENCY_DISABLE Latency disable (default).

SPWTDP_EXTET_INC_ENABLE Ext. ET increment enable.

SPWTDP_EXTET_INC_DISABLE Ext. ET increment disable (default).

SPWTDP_EXTET_INC_POLARITY_RISING Ext. ET increment polarity rising.

SPWTDP_EXTET_INC_POLARITY_FALLING Ext. ET increment polarity falling (default).

SPWTDP_EXTET_ENABLE Ext. ET enable.

SPWTDP_EXTET_DISABLE Ext. ET disable (default).

SPWTDP_EXTET_POLARITY_RISING Ext. ET polarity rising.

SPWTDP_EXTET_POLARITY_FALLING Ext. ET polarity falling (default).

SPWTDP_TARGET_SPWSYNC_ENABLE Enable synch. using SPW time-code.

SPWTDP_TARGET_SPWSYNC_DISABLE Disable synch. using SPW time-code (de-
fault).

SPWTDP_TARGET_JITTER_ENABLE Enable jitter correction.

SPWTDP_TARGET_JITTER_DISABLE Disable jitter correction (default).

SPWTDP_TARGET_MITIGATION_ENABLE Enable mitigation.

SPWTDP_TARGET_MITIGATION_DISABLE Disable mitigation (default).

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.14. spwtdp_target_int_conf function declaration

Proto int spwtdp_target_int_conf(void * spwtdp, uint8_t inrx, uint8_t in-
tx, uint32_t options)

About Configure the target distributed interrupts. See Section 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

inrx [IN] IntegerParam

Interrupt received.

intx [IN] IntegerParam

Interrupt transmitted.

options [IN] Integer

Taret options. Any combination (by OR operation) of these flags is accepted.

Value Description

SPWTDP_TARGET_DISTINT_INTACK Interrupt and Acknowledge mode.

Param

SPWTDP_TARGET_DISTINT_INT Interrupt only mode (default).

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.15. spwtdp_target_cmd_conf function declaration

Proto int spwtdp_target_cmd_conf(void * spwtdp, uint8_t spwtc, uint16_t
cpf, uint32_t options)

RCC-UM
September 2020, Version 1.3-rc9

156 www.cobhamaes.com/gaisler

About Configure the target command control. See Section 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

spwtc [IN] IntegerParam

Time-code value.

cpf [IN] IntegerParam

Command preamble value.

options [IN] Integer

Target options. Any combination (by OR operation) of these flags is accepted.

Value Description

SPWTDP_TARGET_CTRL_NEWCOMMAND_ENABLE Enable command.

SPWTDP_TARGET_CTRL_NEWCOMMAND_DISABLE Disable command (default).

SPWTDP_TARGET_CTRL_INIT Initialization mode.

Param

SPWTDP_TARGET_CTRL_SYNC Synchronization mode (default).

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.16. spwtdp_target_enable function declaration

Proto int spwtdp_target_enable(void * spwtdp)

About Enable the target. See Section 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.17. spwtdp_target_disable function declaration

Proto int spwtdp_target_disable(void * spwtdp)

About Disable the target. See Section 21.3.4.

spwtdp [IN] PointerParam

SPWTDP pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

21.3.5. Getting the elapsed time or timestamps

 int spwtdp_dat_et_get(void *spwtdp, spwtdp_time_t * val)
 int spwtdp_tsrx_et_get(void *spwtdp, spwtdp_time_t * val)
 int spwtdp_tstx_et_get(void *spwtdp, spwtdp_time_t * val)
 int spwtdp_lat_et_get(void *spwtdp, spwtdp_time_t * val)
 int spwtdp_cmd_et_get(void *spwtdp, spwtdp_time_t * val)

The driver uses these functions to get the elapsed time value or timestamp.

These functions return a negative value if something went wrong, as explained in Section 21.3.1. Otherwise, the
function returns SPWTDP_ERR_OK when successful.

struct spwtdp_time_t {
 uint8_t data[SPWTDP_TIME_DATA_LENGTH];
 uint32_t preamble;
};

RCC-UM
September 2020, Version 1.3-rc9

157 www.cobhamaes.com/gaisler

Table 21.18. spwtdp_time_t data structure declaration

data Byte array with time value.

preamble Preamble field.

Table 21.19. spwtdp_dat_et_get function declaration

Proto int spwtdp_dat_et_get(void * spwtdp, spwtdp_time_t * val)

About Get datation elapsed time. See Section 21.3.5.

spwtdp [IN] PointerParam

SPWTDP pointer.

sts [IN] PointerParam

Elapsed time value pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.20. spwtdp_tsrx_et_get function declaration

Proto int spwtdp_tsrx_et_get(void * spwtdp, spwtdp_time_t * val)

About Get time-stamp RX elapsed time. See Section 21.3.5.

spwtdp [IN] PointerParam

SPWTDP pointer.

sts [IN] PointerParam

Elapsed time value pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.21. spwtdp_tstx_et_get function declaration

Proto int spwtdp_tstx_et_get(void * spwtdp, spwtdp_time_t * val)

About Get time-stamp TX elapsed time. See Section 21.3.5.

spwtdp [IN] PointerParam

SPWTDP pointer.

sts [IN] PointerParam

Elapsed time value pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.22. spwtdp_lat_et_get function declaration

Proto int spwtdp_lat_et_get(void * spwtdp, spwtdp_time_t * val)

About Get latency elapsed time. See Section 21.3.5.

spwtdp [IN] PointerParam

SPWTDP pointer.

sts [IN] PointerParam

Elapsed time value pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.23. spwtdp_cmd_et_get function declaration

Proto int spwtdp_cmd_et_get(void * spwtdp, spwtdp_time_t * val)

RCC-UM
September 2020, Version 1.3-rc9

158 www.cobhamaes.com/gaisler

About Get command elapsed time. See Section 21.3.5.

spwtdp [IN] PointerParam

SPWTDP pointer.

sts [IN] PointerParam

Elapsed time value pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

21.3.6. Handling SPWTDP AMBA interrupts

 typedef void (*spwtdp_isr_t)(unsigned int ists, void *data)
 int spwtdp_isr_register(void *spwtdp, spwtdp_isr_t isr, void * data)
 int spwtdp_isr_unregister(void *spwtdp)
 int spwtdp_interrupt_mask(void *spwtdp, uint32_t irqmask)
 int spwtdp_interrupt_unmask(void *spwtdp, uint32_t irqmask)

The driver uses these functions to manage interrupts and ISR. To enable interrupts, register an ISR and then unmask
the wanted sources of interrupts. To disable interrupts, mask the unwanted sources of interrupts and ultimately
unregister the ISR (all interrupts are disabled).

These functions return a negative value if something went wrong, as explained in Section 21.3.1. Otherwise, the
function returns SPWTDP_ERR_OK when successful.

Table 21.24. spwtdp_isr_register function declaration

Proto int spwtdp_isr_register(void * spwtdp, spwtdp_isr_t isr, void * da-
ta)

About Register an interrupt handler and custom data. See Section 21.3.6.

spwtdp [IN] PointerParam

SPWTDP pointer.

isr [IN] PointerParam

ISR function pointer.

data [IN] PointerParam

ISR user data pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.25. spwtdp_isr_unregister function declaration

Proto int spwtdp_isr_unregister(void * spwtdp)

About Unregister an interrupt handler. See Section 21.3.6.

spwtdp [IN] PointerParam

SPWTDP pointer.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.26. spwtdp_interrupt_mask function declaration

Proto int spwtdp_interrupt_mask(void * spwtdp, uint32_t irqmask)

About Mask interrupts at the interrupt controller. See Section 21.3.6.

spwtdp [IN] PointerParam

SPWTDP pointer.

RCC-UM
September 2020, Version 1.3-rc9

159 www.cobhamaes.com/gaisler

irqmask [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of these flags is accepted.

Value Description

SPWTDP_IRQ_ALL Mask all interrupts.

SPWTDP_IRQ_S Mask sync interrupt.

SPWTDP_IRQ_TR Mask time-code received interrupt.

SPWTDP_IRQ_TM Mask time message transmit interrupt.

SPWTDP_IRQ_TT Mask time-code transmitted interrupt.

SPWTDP_IRQ_DIR Mask distributed interrupt received interrupt.

SPWTDP_IRQ_DIT Mask distributed interrupt transmitted inter-
rupt.

SPWTDP_IRQ_EDI0 Mask external datation 0 interrupt.

SPWTDP_IRQ_EDI1 Mask external datation 1 interrupt.

SPWTDP_IRQ_EDI2 Mask external datation 2 interrupt.

SPWTDP_IRQ_EDI3 Mask external datation 3 interrupt.

SPWTDP_IRQ_SET Mask set ET external interrupt.

SPWTDP_IRQ_P(0-7) Mask Pulse (0-7) interrupt.

Param

SPWTDP_IRQ_NCTC Mask non consecutive SPW time-code re-
ceived interrupt.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.27. spwtdp_interrupt_unmask function declaration

Proto int spwtdp_interrupt_unmask(void * spwtdp, uint32_t irqmask)

About Unmask interrupts at the interrupt controller. See Section 21.3.6.

spwtdp [IN] PointerParam

SPWTDP pointer.

irqmask [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of these flags is accepted.

Value Description

SPWTDP_IRQ_ALL Unmask all interrupts.

SPWTDP_IRQ_S Unmask sync interrupt.

SPWTDP_IRQ_TR Unmask time-code received interrupt.

SPWTDP_IRQ_TM Unmask time message transmit interrupt.

SPWTDP_IRQ_TT Unmask time-code transmitted interrupt.

SPWTDP_IRQ_DIR Unmask distributed interrupt received inter-
rupt.

SPWTDP_IRQ_DIT Unmask distributed interrupt transmitted in-
terrupt.

SPWTDP_IRQ_EDI0 Unmask external datation 0 interrupt.

SPWTDP_IRQ_EDI1 Unmask external datation 1 interrupt.

SPWTDP_IRQ_EDI2 Unmask external datation 2 interrupt.

SPWTDP_IRQ_EDI3 Unmask external datation 3 interrupt.

Param

SPWTDP_IRQ_SET Unmask set ET external interrupt.

RCC-UM
September 2020, Version 1.3-rc9

160 www.cobhamaes.com/gaisler

SPWTDP_IRQ_P(0-7) Unmask Pulse (0-7) interrupt.

SPWTDP_IRQ_NCTC Unmask non consecutive SPW time-code re-
ceived interrupt.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

21.3.7. Checking the SPWTDP status

 int spwtdp_status(void *spwtdp, uint32_t * sts, uint32_t clrmask)
 int spwtdp_interrupt_status(void *spwtdp, uint32_t * sts, uint32_t clrmask)
 int spwtdp_precision_get(void *spwtdp, uint8_t * fine, uint8_t * coarse)

The driver uses these functions to get the SPWTDP status, interrupt status and precision. Note that the interrupt
status should not be used when an ISR is registered.

These functions return a negative value if something went wrong, as explained in Section 21.3.1. Otherwise, the
function returns SPWTDP_ERR_OK when successful.

Table 21.28. spwtdp_status function declaration

Proto int spwtdp_status(void * spwtdp, uint32_t * sts, uint32_t clrmask)

About Get and clear the SPWTDP status. See Section 21.3.7.

spwtdp [IN] PointerParam

SPWTDP pointer.

sts [IN] PointerParam

Status value pointer. If a non NULL pointer is provided, the SPWTDP status will be saved on the
pointed memory location.

clrmask [IN] IntegerParam

Status clear option.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.29. spwtdp_interrupt_status function declaration

Proto int spwtdp_interrupt_status(void * spwtdp, uint32_t * sts, uint32_t
clrmask)

About Get and clear interrupt status. See Section 21.3.7.

spwtdp [IN] PointerParam

SPWTDP pointer.

sts [IN] PointerParam

Status value pointer. If a non NULL pointer is provided, the interrupt status will be saved on the
pointed memory location.

clrmask [IN] Integer

Interrupt clear option. Any combinations (by OR operation) of these flags is accepted.

Value Description

SPWTDP_IRQ_ALL Clear all interrupts.

SPWTDP_IRQ_S Clear sync interrupt.

SPWTDP_IRQ_TR Clear time-code received interrupt.

SPWTDP_IRQ_TM Clear time message transmit interrupt.

Param

SPWTDP_IRQ_TT Clear time-code transmitted interrupt.

RCC-UM
September 2020, Version 1.3-rc9

161 www.cobhamaes.com/gaisler

SPWTDP_IRQ_DIR Clear distributed interrupt received interrupt.

SPWTDP_IRQ_DIT Clear distributed interrupt transmitted inter-
rupt.

SPWTDP_IRQ_EDI0 Clear external datation 0 interrupt.

SPWTDP_IRQ_EDI1 Clear external datation 1 interrupt.

SPWTDP_IRQ_EDI2 Clear external datation 2 interrupt.

SPWTDP_IRQ_EDI3 Clear external datation 3 interrupt.

SPWTDP_IRQ_SET Clear set ET external interrupt.

SPWTDP_IRQ_P(0-7) Clear Pulse (0-7) interrupt.

SPWTDP_IRQ_NCTC Clear non consecutive SPW time-code re-
ceived interrupt.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

Table 21.30. spwtdp_precision_get function declaration

Proto int spwtdp_precision_get(void * spwtdp, uint8_t * fine, uint8_t *
coarse)

About Get the SPWTDP precision. See Section 21.3.7.

spwtdp [IN] PointerParam

SPWTDP pointer.

fine [IN] PointerParam

Fine precision value pointer. If a non NULL pointer is provided, the fine precision value will be saved
on the pointed memory location.

coarse [IN] PointerParam

Coarse precision value pointer. If a non NULL pointer is provided, the coarse precision value will be
saved on the pointed memory location.

Return int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 21.3.1.

21.4. API reference

This section lists all functions part of the SPWTDP driver API, and in which section(s) they are described. The
API is also documented in the source header file of the driver, see Section 21.1.2.

Table 21.31. SPWTDP function reference

Prototype Section

void * spwtdp_open(int dev_no) 21.3.2

int spwtdp_close(void *spwtdp) 21.3.2

int spwtdp_reset(void *spwtdp) 21.3.2

int spwtdp_freq_setup(void *spwtdp, uint32_t fsinc, uint32_t cv,
uint8_t etinc)

21.3.3

int spwtdp_initiator_conf(void *spwtdp, uint8_t mapping, uint32_t
options)

21.3.4

int spwtdp_initiator_int_conf(void *spwtdp, uint8_t stm, uint8_t
inrx, uint8_t intx)

21.3.4

int spwtdp_initiator_cmd_et_set(void *spwtdp, spwtdp_time_t val) 21.3.4

int spwtdp_initiator_cmd_spwtc_set(void *spwtdp, uint8_t spwtc) 21.3.4

RCC-UM
September 2020, Version 1.3-rc9

162 www.cobhamaes.com/gaisler

Prototype Section

int spwtdp_initiator_tstx_conf(void *spwtdp, uint8_t tstc) 21.3.4

int spwtdp_initiator_enable(void *spwtdp) 21.3.4

int spwtdp_initiator_disable(void *spwtdp) 21.3.4

int spwtdp_target_conf(void *spwtdp, uint8_t mapping, uint32_t op-
tions)

21.3.4

int spwtdp_target_int_conf(void *spwtdp, uint8_t inrx, uint8_t in-
tx, uint32_t options)

21.3.4

int spwtdp_target_cmd_conf(void *spwtdp, uint8_t spwtc, uint16_t
cpf, uint32_t options)

21.3.4

int spwtdp_target_enable(void *spwtdp) 21.3.4

int spwtdp_target_disable(void *spwtdp) 21.3.4

int spwtdp_dat_et_get(void *spwtdp, spwtdp_time_t * val) 21.3.5

int spwtdp_tsrx_et_get(void *spwtdp, spwtdp_time_t * val) 21.3.5

int spwtdp_tstx_et_get(void *spwtdp, spwtdp_time_t * val) 21.3.5

int spwtdp_lat_et_get(void *spwtdp, spwtdp_time_t * val) 21.3.5

int spwtdp_cmd_et_get(void *spwtdp, spwtdp_time_t * val) 21.3.5

int spwtdp_isr_register(void *spwtdp, spwtdp_isr_t isr, void * da-
ta)

21.3.6

int spwtdp_isr_unregister(void *spwtdp) 21.3.6

int spwtdp_interrupt_mask(void *spwtdp, uint32_t irqmask) 21.3.6

int spwtdp_interrupt_unmask(void *spwtdp, uint32_t irqmask) 21.3.6

int spwtdp_status(void *spwtdp, uint32_t * sts, uint32_t clrmask) 21.3.7

int spwtdp_interrupt_status(void *spwtdp, uint32_t * sts, uint32_t
clrmask)

21.3.7

int spwtdp_precision_get(void *spwtdp, uint8_t * fine, uint8_t *
coarse)

21.3.7

RCC-UM
September 2020, Version 1.3-rc9

163 www.cobhamaes.com/gaisler

Chapter 22. GR1553B GRLIB MIL-STD-1553B driver

22.1. Introduction

This document describes the RTEMS 5 drivers specific to the GRLIB GR1553B core. The Remote Terminal(RT),
Bus Monitor (BM and Bus Controller (BC) functionality are supported by the driver. Device discovery and re-
source sharing are commonly controlled by the GR1553B driver described in this chapter. Each 1553 mode is
supported by a separate driver, the drivers are documented in separate chapters.

All the GR1553B drivers relies on the RTEMS Driver Manager for the services: device detection, driver load-
ing/initialization and interrupt management. Driver Manager is responsible for creating GR1553B device instances
and uniting GR1553B devices with the GR1553B low-level driver.

This section gives an brief introduction to the GRLIB GR1553B device allocation driver used internally by the
BC, BM and RT device drivers. This driver controls the GR1553B device regardless of interfaces supported (BC,
RT and/or BM). The device can be located at an on-chip AMBA or an AMBA-over-PCI bus. The driver provides
an interface for the BC, RT and BM drivers.

Since the different interfaces (BC, BM and RT) are accessed from the same register interface on one core, the
APB device must be shared among the BC, BM and RT drivers. The GR1553B driver provides an easy function
interface that allows the APB device to be shared safely between the BC, BM and RT device drivers.

Any combination of interface functionality is supported, but the RT and BC functionality cannot be used simul-
taneously (limited by hardware).

The interface towards to the BC, BM and RT drivers is used internally by the device drivers and is not documented
here. See respective driver for an interface description.

22.2. GR1553B Hardware

The GRLIB GR1553B core may support up to three modes depending on configuration, Bus Controller (BC),
Remote Terminal (RT) or Bus Monitor (BM). The BC and RT functionality may not be used simultaneously, but
the BM may be used together with BC or RT or separately. All three modes are supported by the driver.

Interrupts generated from BC, BM and RT result in the same system interrupt, interrupts are shared.

22.3. Software driver

The driver provides an interface used internally by the BC, BM and RT device drivers, see respective driver for
an interface declaration. The driver sources and definitions are listed in the table below, the path is given relative
to the RTEMS SPARC BSP source tree c/src/lib/libbsp/sparc.

Table 22.1. Source Location

Filename Description

shared/1553/gr1553b.c GR1553B Driver source

share/include/gr1553b.h GR1553B Driver interface declaration

22.4. Driver Registration

The driver must be registered to the driver manager. The registration is performed by calling the
gr1553_register() function. The driver is automatically registered from the BC, BM and the RT device
drivers registration procedure. This means that including the BC, BM and/or the RT driver will automatically
include the GR1553B (this) driver.

22.5. Examples

The RCC distribution contains examples demonstrating how the GR1553B drivers are used. The examples can be
found in /opt/rtems-5/src/samples/1553.

RCC-UM
September 2020, Version 1.3-rc9

164 www.cobhamaes.com/gaisler

Chapter 23. GR1553B remote terminal driver

23.1. Introduction

This section describes the GRLIB GR1553B Remote Terminal (RT) device driver interface. The driver relies on
the GR1553B driver and the Driver Manager. The reader is assumed to be well acquainted with MIL-STD-1553
and the GR1553B core.

23.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and Remote Terminal
(RT) functionality. This driver supports the RT functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the RT interrupts are shared between
the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

23.1.2. Examples

There is an example available that illustrates how the RT driver interface can be used to respond to 1553 BC
commands. The example includes code for Interrupt handling, Event Logging, Synchronize and Synchronize With
Data mode codes, RX/TX data transfers and various driver configuration options. The RT will respond on sub
address 1,2 and 3, see comments in application and BC application. The RT example comes with a matching BC
example that generates BC transfers that is understood by the RT. The RT application use the Eventlog to monitor
certain transfers, the transfers are written to standard out.

The RT example includes a BM logger which can be used for debugging the 1553 bus. All 1553 transfers can be
logged and sent to a Linux PC over a TCP/IP socket and saved to a raw text file for post processing. The default
is however just to enable BM logging, for debugging one can quite easily read the raw BM log by looking at the
BM registers and memory from GRMON.

In order to run all parts of the example a board with GR1553B core with BC and BM support, and a board with
a GR1553B core with RT support is required.

The example is part of the Aeroflex Gaisler RTEMS distribution, it can be found under /opt/rtems-4.10/
src/samples/1553/rtems-gr1553rt.c.

The example can be built by running:

$ cd /opt/rtems-4.10/src/samples/1553
$ make rtems-gr1553rt

23.2. User Interface

23.2.1. Overview

The RT software driver provides access to the RT core and help with creating memory structures accessed by the
RT core. The driver provides the services list below,

• Basic RT functionality (RT address, Bus and RT Status, Enabling core, etc.)
• Event logging support
• Interrupt support (Global Errors, Data Transfers, Mode Code Transfer)
• DMA-Memory configuration
• Sub Address configuration
• Support for Mode Codes
• Transfer Descriptor List Management per RT sub address and transfer type (RX/TX)

RCC-UM
September 2020, Version 1.3-rc9

165 www.cobhamaes.com/gaisler

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
tree c/src/lib/lbbsp/sparc.

Table 23.1. RT driver Source location

Filename Description

shared/1553/gr1553rt.c GR1553B RT Driver source

shared/include/gr1553rt.h GR1553B RT Driver interface declaration

23.2.1.1. Accessing an RT device

In order to access an RT core, a specific core must be identified (the driver support multiple devices). The core
is opened by calling gr1553rt_open(), the open function allocates an RT device by calling the lower level
GR1553B driver and initializes the RT by stopping all activity and disabling interrupts. After an RT has been
opened it can be configured gr1553rt_config(), SA-table configured, descriptor lists assigned to SA, inter-
rupt callbacks registered, and finally communication started by calling gr1553rt_start(). Once the RT is
started interrupts may be generated, data may be transferred and the event log filled. The communication can be
stopped by calling gr1553rt_stop().

When the application no longer needs to access the RT core, the RT is closed by calling gr1553rt_close().

23.2.1.2. Introduction to the RT Memory areas

For the RT there are four different types of memory areas. The access to the areas is much different and involve
different latency requirements. The areas are:

• Sub Address (SA) Table
• Buffer Descriptors (BD)
• Data buffers referenced from descriptors (read or written)
• Event (EV) logging buffer

The memory types are described in separate sections below. Generally three of the areas (controlled by the driver)
can be dynamically allocated by the driver or assigned to a custom location by the user. Assigning a custom address
is typically useful when for example a low-latency memory is required, or the GR1553B core is located on an
AMBA-over- PCI bus where memory accesses over the PCI bus will not satisfy the latency requirements by the
1553 bus, instead a memory local to the RT core can be used to shorten the access time. Note that when providing
custom addresses the alignment requirement of the GR1553B core must be obeyed, which is different for different
areas and sizes. The memory areas are configured using the gr1553rt_config() function.

23.2.1.3. Sub Address Table

The RT core provides the user to program different responses per sub address and transfer type through the sub
address table (SA-table) located in memory. The RT core consult the SA-table for every 1553 data transfer com-
mand on the 1553 bus. The table includes options per sub address and transfer type and a pointer to the next
descriptor that let the user control the location of the data buffer used in the transaction. See hardware manual
for a complete description.

The SA-table is fixed size to 512 bytes.

Since the RT is required to respond to BC request within a certain time, it is vital that the RT has enough time
to lookup user configuration of a transfer, i.e. read SA-table and descriptor and possibly the data buffer as well.
The driver provides a way to let the user give a custom address to the sub address table or dynamically allocate
it for the user. The default action is to let the driver dynamically allocate the SA-table, the SA-table will then be
located in the main memory of the CPU. For RT core's located on an AMBA-over- PCI bus, the default action is
not acceptable due to the latency requirement mentioned above.

The SA-table can be configured per SA by calling the gr1553rt_sa_setopts() function. The mask argu-
ment makes it possible to change individual bit in the SA configuration. This function must be called to enable
transfers from/to a sub address. See hardware manual for SA configuration options. Descriptor Lists are assigned
to a SA by calling gr1553rt_list_sa().

RCC-UM
September 2020, Version 1.3-rc9

166 www.cobhamaes.com/gaisler

The indication service can be used to determine the descriptor used in the next transfer, see Section 23.2.1.8.

23.2.1.4. Descriptors

A GR1553B RT descriptor is located in memory and pointed to by the SA-table. The SA-table points out the
next descriptor used for a specific sub address and transfer type. The descriptor contains three input fields: Con-
trol/Status Word determines options for a specific transfer ans status of a completed transfer; Data buffer pointer,
16-bit aligned; Pointer to next descriptor within sub address and transfer type, or end-of-list marker.

All descriptors are located in the same range of memory, which the driver refers to as the BD memory. The
BD memory can by dynamically allocated (located in CPU main memory) by the driver or assigned to a custom
location by the user. From the BD memory descriptors for all sub addresses are allocated by the driver. The driver
works internally with 16-bit descriptor identifiers allowing 65k descriptor in total. A descriptor is allocated for a
specific descriptor List. Each descriptor takes 32 bytes of memory.

The user can build and initialize descriptors using the API function gr1553rt_bd_init() and update the
descriptor and/or view the status and time of a completed transfer.

Descriptors are managed by a data structure named gr1553rt_list. A List is the software representation of
a chain of descriptors for a specific sub address and transfer type. Thus, 60 lists in total (two lists per SA, SA0
and SA31 are for mode codes) per RT. The List simplifies the descriptor handling for the user by introducing
descriptor numbers (entry_no) used when referring to descriptors rather than the descriptor address. Up to 65k
descriptors are supported per List by the driver. A descriptor list is assigned to a SA and transfer type by calling
gr1553rt_list_sa().

When a List is created and configured a maximal number of descriptors are given, giving the API a possibility to
allocate the descriptors from the descriptor memory area configured.

Circular buffers can be created by a chain of descriptors where each descriptor's data buffer is one element in
the circular buffer.

23.2.1.5. Data Buffers

Data buffers are not accessed by the driver at all, the address is only written to descriptor upon user request. It is
up to the user to provide the driver with valid addresses to data buffers of the required length.

Note that addresses given must be accessible by the hardware. If the RT core is located on a AMBA-over-PCI bus
for example, the address of a data buffer from the RT core's point of view is most probably not the same as the
address used by the CPU to access the buffer.

23.2.1.6. Event Logging

Transfer events (Transmission, Reception and Mode Codes) may be logged by the RT core into a memory area
for (later) processing. The events logged can be controlled by the user at a SA transfer type level and per mode
code through the Mode Code Control Register.

The driver API access the eventlog on two occasions, either when the user reads the eventlog buffer using the
gr1553rt_evlog_read() function or from the interrupt handler, see the interrupt section for more informa-
tion. The gr1553rt_evlog_read() function is called by the user to read the eventlog, it simply copies the
current logged entries to a user buffer. The user must empty the driver eventlog in time to avoid entries to be over-
written. A certain descriptor or SA may be logged to help the application implement communication protocols.

The eventlog is typically sized depending the frequency of the log input (logged transfers) and the frequency of the
log output (task reading the log). Every logged transfer is described with a 32-bit word, making it quite compact.

The memory of the eventlog does not require as tight latency requirement as the SA-table and descriptors. However
the user still is provided the ability to put the eventlog at a custom address, or letting the driver dynamically allocate
it. When providing a custom address the start address is given, the area must have room for the configured number
of entries and have the hardware required alignment.

RCC-UM
September 2020, Version 1.3-rc9

167 www.cobhamaes.com/gaisler

Note that the alignment requirement of the eventlog varies depending on the eventlog length.

23.2.1.7. Interrupt service

The RT core can be programmed to interrupt the CPU on certain events, transfers and errors (SA-table and DMA).
The driver divides transfers into two different types of events, mode codes and data transfers. The three types of
events can be assigned custom callbacks called from the driver's interrupt service routine (ISR), and custom argu-
ment can be given. The callbacks are registered per RT device using the functions gr1553rt_irq_err(),
gr1553rt_irq_mc(), gr1553rt_irq_sa(). Note that the three different callbacks have different argu-
ments.

Error interrupts are discovered in the ISR by looking at the IRQ event register, they are handled first. After the
error interrupt has been handled by the user (user interaction is optional) the RT core is stopped by the driver.

Data transfers and Mode Code transfers are logged in the eventlog. When a transfer-triggered interrupt occurs the
ISR starts processing the event log from the first event that caused the IRQ (determined by hardware register)
calling the mode code or data transfer callback for each event in the log which has generated an IRQ (determined by
the IRQSR bit). Even though both the ISR and the eventlog read function r1553rt_evlog_read() processes
the eventlog, they are completely separate processes - one does not affect the other. It is up to the user to make
sure that events that generated interrupt are not double processed. The callback functions are called in the same
order as the event was generated.

Is is possible to configure different callback routines and/or arguments for different sub addresses (1..30) and
transfer types (RX/TX). Thus, 60 different callback handlers may be registered for data transfers.

23.2.1.8. Indication service

The indication service is typically used by the user to determine how many descriptors have been processed by
the hardware for a certain SA and transfer type. The gr1553rt_indication() function returns the next
descriptor number which will be used next transfer by the RT core. The indication function takes a sub address
and an RT device as input, By remembering which descriptor was processed last the caller can determine how
many and which descriptors have been accessed by the BC.

23.2.1.9. Mode Code support

The RT core a number of registers to control and interact with mode code commands. See hardware manual which
mode codes are available. Each mode code can be disabled or enabled. Enabled mode codes can be logged and
interrupt can be generated upon transmission events. The gr1553rt_config() function is used to configure
the aforementioned mode code options. Interrupt caused by mode code transmissions can be programmed to call
the user through an callback function, see the interrupt Section 23.2.1.7.

The mode codes "Synchronization with data", "Transmit Bit word" and "Transmit Vector word" can be interacted
with through a register interface. The register interface can be read with the gr1553rt_status() function
and selected (or all) bits of the bit word and vector word can be written using gr1553rt_set_vecword()
function.

Other mode codes can interacted with using the Bus Status Register of the RT core. The register
can be read using the gr1553rt_status() function and written selectable bit can be written using
gr1553rt_set_bussts().

23.2.1.10. RT Time

The RT core has an internal time counter with a configurable time resolution. The finest time resolution of the
timer counter is one microsecond. The resolution is configured using the gr1553rt_config() function. The
current time is read by calling the gr1553rt_status() function.

23.2.2. Application Programming Interface

The RT driver API consists of the functions in the table below.

RCC-UM
September 2020, Version 1.3-rc9

168 www.cobhamaes.com/gaisler

Table 23.2. Data structures

Protoype Description
void *gr1553rt_open(int minor) Open an RT device by instance number. Returns a handle identifying

the specific RT device. The handle is given as input in most func-
tions of the API

void gr1553rt_close(void *rt) Close a previously opened RT device

int gr1553rt_config(
 void *rt,
 struct gr1553rt_cfg *cfg)

Configure the RT device driver and allocate device memory

int gr1553rt_start(void *rt) Start RT communication, enables Interrupts

void gr1553rt_stop(void *rt) Stop RT communication, disables interrupts

void gr1553rt_status(
 void *rt,
 struct gr1553rt_status *status)

Get Time, Bus/RT Status and mode code status

int gr1553rt_indication(
 void *rt,
 int subadr,
 int *txeno,
 int *rxeno)

Get the next descriptor that will processed of an RT sub-address and
transfer type

int gr1553rt_evlog_read(
 void *rt,
 unsigned int *dst,
 int max)

Copy contents of event log to a user provided data buffer

void gr1553rt_set_vecword(
 void *rt,
 unsigned int mask,
 unsigned int words)

Set all or a selection of bits in the Vector word and Bit word used by
the "Transmit Bit word" and "Transmit Vector word" mode codes

void gr1553rt_set_bussts(
 void *rt,
 unsigned int mask,
 unsigned int sts)

Modify a selection of bits in the RT Bus Status register

void gr1553rt_sa_setopts(
 void *rt,
 int subadr,
 unsigned int mask,
 unsigned int options)

Configures a sub address control word located in the SA-table.

void gr1553rt_list_sa(
 struct gr1553rt_list *list,
 int *subadr,
 int *tx)

Get the Sub address and transfer type of a scheduled list

void gr1553rt_sa_schedule(
 void *rt,
 int subadr,
 int tx,
 struct gr1553rt_list *list)

Schedule a RX or TX descriptor list on a sub address of a certain
transfer type

int gr1553rt_irq_err(
 void *rt,
 gr1553rt_irqerr_t func,
 void *data)

Assign an Error Interrupt handler callback routine and custom argu-
ment

int gr1553rt_irq_mc(
 void *rt,
 gr1553rt_irqmc_t func,
 void *data)

Assign a Mode Code Interrupt handler callback routine and custom
argument

int gr1553rt_irq_sa(
 void *rt,
 int subadr,
 int tx,
 gr1553rt_irq_t func,
 void *data)

Assign a Data Transfer Interrupt handler callback routine and custom
argument to a certain sub address and transfer type

int gr1553rt_list_init(
 void *rt,
 struct gr1553rt_list **plist,
 struct gr1553rt_list_cfg *cfg)

Initialize and allocate a descriptor List according to configuration.
The List can be used for RX/TX on any sub address.

int gr1553rt_bd_init(
 struct gr1553rt_list *list,
 unsigned short entry_no,
 unsigned int flags,
 uint16_t *dptr,

Initialize a Descriptor in a List identified by number.

RCC-UM
September 2020, Version 1.3-rc9

169 www.cobhamaes.com/gaisler

Protoype Description
 unsigned short next)

int gr1553rt_bd_update(
 struct gr1553rt_list *list,
 int entry_no,
 unsigned int *status,
 uint16_t **dptr)

Update the status and/or the data buffer pointer of a descriptor.

23.2.2.1. Data structures

The gr1553rt_cfg data structure is used to configure an RT device. The configuration parameters are described
in the table below.

struct gr1553rt_cfg {
 unsigned char rtaddress;
 unsigned int modecode;
 unsigned short time_res;
 void *satab_buffer;
 void *evlog_buffer;
 int evlog_size;
 int bd_count;
 void *bd_buffer;
};

Table 23.3. gr1553rt_cfg member descriptions

Member Description

rtaddress RT Address on 1553 bus [0..30]

modecode Mode codes enable/disable/IRQ/EV-Log. Each mode code has a 2-bit configura-
tion field. Mode Code Control Register in hardware manual

time_res Time tag resolution in microseconds

satab_buffer Sub Address Table (SA-table) allocation setting. Can be dynamically allocated (zero) or
custom location (non-zero). If custom location of SA-table is given, the address must be
aligned to 10-bit (1kB) boundary and at least 16*32 bytes.

evlog_buffer Eventlog DMA buffer allocation setting. Can be dynamically allocated (zero) or cus-
tom location (non-zero). If custom location of eventlog is given, the address must be of
evlog_size and aligned to evlog_size. See hardware manual.

evlog_size Length in bytes of Eventlog, length must be a power of 2. If set to zero event log is dis-
abled, note that enabling logging in SA-table or descriptors will cause failure when event-
log is disabled.

bd_count Number of descriptors for RT device. All descriptor lists share the descriptors. Maximum
is 65K descriptors.

bd_buffer Descriptor memory area allocation setting. Can be dynamically allocated (zero) or custom
location (non-zero). If custom location of descriptors is given, the address must be aligned
to 32 bytes and of (32 * bd_count) bytes size.

The gr1553rt_list_cfg data structure hold the configuration parameters of a descriptor List.

struct gr1553rt_list_cfg {
 unsigned int bd_cnt;
};

Table 23.4. gr1553rt_list_cfg member descriptions

Member Description

bd_cnt Number of descriptors in List

The current status of the RT core is stored in the gr1553rt_status data structure by the function
gr1553rt_status(). The fields are described below.

struct gr1553rt_status {
 unsigned int status;
 unsigned int bus_status;

RCC-UM
September 2020, Version 1.3-rc9

170 www.cobhamaes.com/gaisler

 unsigned short synctime;
 unsigned short syncword;
 unsigned short time_res;
 unsigned short time;
};

Table 23.5. gr1553rt_status member descriptions

Member Description

status Current value of RT Status Register

bus_status Current value of RT Bus Status Register

synctime Time Tag when last synchronize with data was received

syncword Data of last mode code synchronize with data

time_res Time resolution in microseconds (set by config)

time Current Time Tag. (time_res * time) gives the number of microseconds since last
time overflow.

23.2.2.2. gr1553rt_open

Opens a GR1553B RT device identified by instance number, minor. The instance number is determined by the
order in which GR1553B cores with RT functionality are found, the order of the Plug & Play.

A handle is returned identifying the opened RT device, the handle is used internally by the RT driver, it is used
as an input parameter rt to all other functions that manipulate the hardware.

Close and Stop an RT device identified by input argument rt previously returned by gr1553rt_open().

23.2.2.3. gr1553rt_close

Close and Stop an RT device identified by input argument rt previously returned by gr1553rt_open().

23.2.2.4. gr1553rt_config

Configure and allocate memory for an RT device. The configuration parameters are stored in the location pointed
to by cfg. The layout of the parameters must follow the gr1553rt_cfg data structure, described in Table 23.3.

If memory allocation fails (in case of dynamic memory allocation) the function return -1, it returns -2 if the memory
is not aligned or on success zero is returned.

23.2.2.5. gr1553rt_start

Starts RT communication by enabling the core and enabling interrupts. The user must have configured the driver
(RT address, Mode Code, SA-table, lists, descriptors, etc.) before calling this function.

After the RT has been started the configuration function can not be called.

On success this function returns zero, on failure a negative result is returned.

23.2.2.6. gr1553rt_stop

Stops RT communication by disabling the core and disabling interrupts. Further 1553 commands to the RT will
be ignored.

23.2.2.7. gr1553rt_status

Read current status of the RT core. The status is written to the location pointed to by status in the format determined
by the gr1553rt_status structure described in Table 23.5.

23.2.2.8. gr1553rt_indication

Get the next descriptor that will be processed for a specific sub address. The descriptor number is looked up from
the descriptor address found the SA-table for the sub address specified by subadr argument.

RCC-UM
September 2020, Version 1.3-rc9

171 www.cobhamaes.com/gaisler

The descriptor number of respective transfer type (RX/TX) will be written to the address given by txeno and/or
rxeno. If end-of-list has been reached, -1 is stored into txeno or rxeno.

If the request is successful zero is returned, otherwise a negative number is returned (bad sub address or descriptor).

23.2.2.9. gr1553rt_evlog_read

Copy up to max number of entries from eventlog into the address specified by dst. The actual number of entries
read is returned. It is important to read out the eventlog entries in time to avoid data loss, the eventlog can be sized
so that data loss can be avoided.

Zero is returned when entries are available in the log, negative on failure.

23.2.2.10. gr1553rt_set_vecword

Set a selection of bits in the RT Vector and/or Bit word. The words are used when,

• Vector Word is used in response to "Transmit vector word" BC commands
• Bit Word is used in response to "Transmit bit word" BC commands

The argument mask determines which bits are written, and words determines the value of the bits written. The
lower 16-bits are the Vector Word, the higher 16-bits are the Bit Word.

23.2.2.11. gr1553rt_set_bussts

Set a selection of bits of the Bus Status Register. The bits written is determined by the mask bit-mask and the
values written is determined by sts. Operation:

 bus_status_reg = (bus_status_reg & ~mask) | (sts & mask)

23.2.2.12. gr1553rt_sa_setopts

Configure individual bits of the SA Control Word in the SA-table. One may for example Enable or Disable a SA
RX and/or TX. See hardware manual for SA-Table configuration options.

The mask argument is a bit-mask, it determines which bits are written and options determines the value written.

The subadr argument selects which sub address is configured.

Note that SA-table is all zero after configuration, every SA used must be configured using this function.

23.2.2.13. gr1553rt_list_sa

This function looks up the SA and the transfer type of the descriptor list given by list. The SA is stored into
subadr, the transfer type is written into tx (TX=1, RX=0).

23.2.2.14. gr1553rt_sa_schedule

This function associates a descriptor list with a sub address (given by subadr) and a transfer type (given by tx).
The first descriptor in the descriptor list is written to the SA-table entry of the SA.

23.2.2.15. gr1553rt_irq_err

his function registers an interrupt callback handler of the Error Interrupt. The handler func is called with the
argument data when a DMA error or SA-table access error occurs. The callback must follow the prototype of
gr1553rt_irqerr_t :

typedef void (*gr1553rt_irqerr_t)(int err, void *data);

Where err is the value of the GR1553B IRQ register at the time the error was detected, it can be used to determine
what kind of error occurred.

RCC-UM
September 2020, Version 1.3-rc9

172 www.cobhamaes.com/gaisler

23.2.2.16. gr1553rt_irq_mc

This function registers an interrupt callback handler for Logged Mode Code transmission Interrupts. The han-
dler func is called with the argument data when a Mode Code transmission event occurs, note that inter-
rupts must be enabled per Mode Code using gr1553rt_config(). The callback must follow the prototype of
gr1553rt_irqmc_t:

typedef void (*gr1553rt_irqmc_t)(
 int mcode,
 unsigned int entry,
 void *data
);

Where mcode is the mode code causing the interrupt, entry is the raw event log entry.

23.2.2.17. gr1553rt_irq_sa

Register an interrupt callback handler for data transfer triggered Interrupts, it is possible to assign a unique function
and/or data for every SA (given by subadr) and transfer type (given by tx). The handler func is called with the
argument data when a data transfer interrupt event occurs. Interrupts is configured on a descriptor or SA basis.
The callback routine must follow the prototype of gr1553rt_irq_t:

typedef void (*gr1553rt_irq_t)(
 struct gr1553rt_list *list,
 unsigned int entry,
 int bd_next,
 void *data
);

Where list indicates which descriptor list (Sub Address, transfer type) caused the interrupt event, entry is the
raw event log entry, bd_next is the next descriptor that will be processed by the RT for the next transfer of the
same sub address and transfer type.

23.2.2.18. gr1553rt_list_init

Allocate and configure a list structure according to configuration given in cfg, see the gr1553rt_list_cfg
data structure in Table 23.4. Assign the list to an RT device, however not to a sub address yet. The rt handle
is stored within list.

The resulting descriptor list is written to the location indicated by the plist argument.

Note that descriptor are allocated from the RT device, so the RT device itself must be configured using
gr1553rt_config() before calling this function.

A negative number is returned on failure, on success zero is returned.

23.2.2.19. gr1553rt_bd_init

Initialize a descriptor entry in a list. This is typically done prior to scheduling the list. The descriptor and the next
descriptor is given by descriptor indexes relative to the list (entry_no and next), see table below for options
on next. Set bit 30 of the argument flags in order to set the IRQEN bit of the descriptor's Control/Status Word.
The argument dptr is written to the descriptor's Data Buffer Pointer Word.

Note that the data pointer is accessed by the GR1553B core and must therefore be a valid address for the core. This
is only an issue if the GR1553B core is located on a AMBA- over-PCI bus, the address may need to be translated
from CPU accessible address to hardware accessible address.

Table 23.6. gr1553rt_bd_init next argument description

Values of next Description

0xffff Indicate to hardware that this is the last entry in the list, the next descriptor is set to end-
of-list mark (0x3).

0xfffe Next descriptor (entry_no+1) or 0 is last descriptor in list.

other The index of the next descriptor.

RCC-UM
September 2020, Version 1.3-rc9

173 www.cobhamaes.com/gaisler

A negative number is returned on failure, on success a zero is returned.

23.2.2.20. gr1553rt_bd_update

Manipulate and read the Control/Status and Data Pointer words of a descriptor.

If status is non-zero, the Control/Status word is swapped with the content pointed to by status.

If dptr is non-zero, the Data Pointer word is swapped with the content pointed to by dptr.

A negative number is returned on failure, on success a zero is returned.

RCC-UM
September 2020, Version 1.3-rc9

174 www.cobhamaes.com/gaisler

Chapter 24. GR1553B bus monitor driver

24.1. Introduction

This section describes the GRLIB GR1553B Bus Monitor (BM) device driver interface. The driver relies on the
GR1553B driver and the driver manager. The reader is assumed to be well acquainted with MIL-STD-1553 and
the GR1553B core.

24.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BM functionality of the hardware, it can be used simultaneously
with the RT or BC functionality, but not both simultaneously. When the BM is used together with the RT or BC
interrupts are shared between the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

24.1.2. Examples

There is an example available that illustrates how the BM driver interface can be used to log transfers seen on
the 1553 bus. All 1553 transfers is be logged, by configuring the config_bm.h file the logger application can
"compress" the log and send it to a Linux PC over a TCP/IP socket. The Linux application save the log to a raw
text file for post processing.

The default BM example behaviour is however just to enable BM logging, for debugging one can quite easily read
the raw BM log by looking at the BM registers and memory from GRMON.

The BM logger application can be run separately or together with the BC or RT examples.

In order to run all parts of the example a board with GR1553B core with BC and BM support, and a board with
a GR1553B core with RT support is required.

The example is part of the Aeroflex Gaisler RTEMS distribution, it can be found under /opt/
rtems-4.10/src/samples/1553 named rtems-gr1553bm.c, rtems-gr1553bcbm.c or rtems-
gr1553rtbm.c.

The example can be built by running:

$ cd /opt/rtems-4.10/src/samples/1553
$ make rtems-gr1553bm

24.2. User Interface

24.2.1. Overview

The BM software driver provides access to the BM core and help with accessing the BM log memory buffer. The
driver provides the services list below,

• Basic BM functionality (Enabling/Disabling, etc.)
• Filtering options
• Interrupt support (DMA Error, Timer Overflow)
• 1553 Timer handling
• Read BM log

The driver sources and interface definitions are listed in the table below, the path is given relative to the RTEMS
source tree c/src/lib/libbsp/sparc.

RCC-UM
September 2020, Version 1.3-rc9

175 www.cobhamaes.com/gaisler

Table 24.1. BM driver Source location

Filename Description

shared/1553/gr1553bm.c GR1553B BM Driver source

shared/include/gr1553bm.h GR1553B BM Driver interface declaration

24.2.1.1. Accessing a BM device

In order to access a BM core a specific core must be identified (the driver support multiple devices). The core
is opened by calling gr1553bm_open(), the open function allocates a BM device by calling the lower level
GR1553B driver and initializes the BM by stopping all activity and disabling interrupts. After a BM has been
opened it can be configured gr1553bm_config() and then started by calling gr1553bm_start(). Once
the BM is started the log is filled by hardware and interrupts may be generated. The logging can be stopped by
calling gr1553bm_stop().

When the application no longer needs to access the BM driver services, the BM is closed by calling
gr1553bm_close().

24.2.1.2. BM Log memory

The BM log memory is written by the BM hardware when transfers matching the filters are detected. Each com-
mand, Status and Data 16-bit word takes 64-bits of space in the log, into the first 32-bits the current 24-bit 1553
timer is written and to the second 32-bit word status, word type, Bus and the 16-bit data is written. See hardware
manual.

The BM log DMA-area can be dynamically allocated by the driver or assigned to a custom location by the user.
Assigning a custom address is typically useful when the GR1553B core is located on an AMBA-over-PCI bus
where memory accesses over the PCI bus will not satisfy the latency requirements by the 1553 bus, instead a
memory local to the BM core can be used to shorten the access time. Note that when providing custom addresses
the 8-byte alignment requirement of the GR1553B BM core must be obeyed. The memory areas are configured
using the gr1553bm_config() function.

24.2.1.3. Accessing the BM Log memory

The BM Log is filled as transfers are detected on the 1553 bus, if the log is not emptied in time the log may
overflow and data loss will occur. The BM log can be accessed with the functions listed below.

• gr1553bm_available()
• gr1553bm_read()

A custom handler responsible for copying the BM log can be assigned in the configuration of the driver. The
custom routine can be used to optimize the BM log read, for example one may not perhaps not want to copy all
entries, search the log for a specific event or compress the log before storing to another location.

24.2.1.4. Time

Th BM core has a 24-bit time counter with a programmable resolution through the gr1553bm_config()
function. The finest resolution is a microsecond. The BM driver maintains a 64-bit 1553 time. The time can be
used by an application that needs to be able to log for a long time. The driver must detect every overflow in order
maintain the correct 64-bit time, the driver gives users two different approaches. Either the timer overflow interrupt
is used or the user must guarantee to call the gr1553bm_time() function at least once before the second time
overflow happens. The timer overflow interrupt can be enabled from the gr1553bm_config() function.

The current 64-bit time can be read by calling gr1553bm_time().

The application can determine the 64-bit time of every log entry by emptying the complete log at least once per
timer overflow.

24.2.1.5. Filtering

The BM core has support for filtering 1553 transfers. The filter options can be controlled by fields in the config-
uration structure given to gr1553bm_config().

RCC-UM
September 2020, Version 1.3-rc9

176 www.cobhamaes.com/gaisler

24.2.1.6. Interrupt service

The BM core can interrupt the CPU on DMA errors and on Timer overflow. The DMA error is unmasked by
the driver and the Timer overflow interrupt is configurable. For the DMA error interrupt a custom handler may
be installed through the gr1553bm_config() function. On DMA error the BM logging will automatically be
stopped by a call to gr1553bm_stop() from within the ISR of the driver.

24.2.2. Application Programming Interface

The BM driver API consists of the functions in the table below.

Table 24.2. function prototypes

Prototype Description
void *gr1553bm_open(int minor) Open a BM device by instance number. Returns a handle identifying the

specific BM device opened. The handle is given as input parameter bm in
all other functions of the API

void gr1553bm_close(void *bm) Close a previously opened BM device

int gr1553bm_config(
 void *bm,
 struct gr1553bm_cfg *cfg)

Configure the BM device driver and allocate BM log DMA-memory

int gr1553bm_start(void *bm) Start BM logging, enables Interrupts

void gr1553bm_stop(void *bm) Stop BM logging, disables interrupts

void gr1553bm_time(
 void *bm,
 uint64_t *time)

Get 1553 64-bit Time maintained by the driver. The lowest 24-bits are tak-
en directly from the BM timer register, the most significant 40-bits are tak-
en from a software counter.

int gr1553bm_available(
 void *bm,
 int *nentries)

The current number of entries in the log is stored into nentries.

int gr1553bm_read(
 void *bm,
 struct gr1553bm_entry *dst,
 int *max)

Copy contents a maximum number (max) of entries from the BM log to
a user provided data buffer (dst). The actual number of entries copied is
stored into max.

24.2.2.1. Data structures

The gr1553bm_cfg data structure is used to configure the BM device and driver. The configuration parameters
are described in the table below.

struct gr1553bm_config {
 uint8_t time_resolution;
 int time_ovf_irq;
 unsigned int filt_error_options;
 unsigned int filt_rtadr;
 unsigned int filt_subadr;
 unsigned int filt_mc;
 unsigned int buffer_size;
 void *buffer_custom;
 bmcopy_func_t copy_func;
 void *copy_func_arg;
 bmisr_func_t dma_error_isr;
 void *dma_error_arg;
};

Table 24.3. gr1553bm_config member descriptions.

Member Description

time_resolution 8-bit time resolution, the BM will update the time according to this setting. 0 will make
the time tag be of highest resolution (no division), 1 will make the BM increment the time
tag once for two time ticks (div with 2), etc.

time_ovf_irq Enable Time Overflow IRQ handling. Setting this to 1 makes the driver to update the 64-
bit time by it self, it will use time overflow IRQ to detect when the 64-bit time counter
must be incremented. If set to zero, the driver expect the user to call gr1553bm_time()
regularly, it must be called more often than the time overflows to avoid an incorrect time.

RCC-UM
September 2020, Version 1.3-rc9

177 www.cobhamaes.com/gaisler

Member Description

filt_error_options Bus error log options:

bit0,4-31 = reserved, set to zero Bit1 = Enables logging of Invalid mode code errors Bit2
= Enables logging of Unexpected Data errors Bit3 = Enables logging of Manchester/pari-
tyerrors

filt_rtadr RT Subaddress filtering bit mask, bit definition:

31: Enables logging of mode commands on subadr 31 1..30: BitN enables/disables log-
ging of RT subadr N 0: Enables logging of mode commands on subadr 0

filt_mc Mode code Filter, is written into "BM RT Mode code filter" register, please see hardware
manual for bit declarations.

buffer_size Size of buffer in bytes, must be aligned to 8-byte boundary.

buffer_custom Custom BM log buffer location, must be aligned to 8-byte and be of buffer_size length. If
NULL dynamic memory allocation is used.

copy_func Custom Copy function, may be used to implement a more effective/ custom way of copy-
ing the DMA buffer. For example the DMA log may need to processed at the same time
when copying.

copy_func_arg Optional Custom Data passed onto copy_func()

dma_error_isr Custom DMA error function, note that this function is called from Interrupt Context. Set
to NULL to disable this callback.

dma_error_arg COptional Custom Data passed on to dma_error_isr()

struct gr1553bm_entry {
 uint32_t time;
 uint32_t data;
};

Table 24.4. gr1553bm_entry member descriptions.

Member Description

time Time of word transfer entry. Bit31=1, bit 30..24=0, bit 23..0=time

data Transfer status and data word

Bits Description

31 Zero

30..20 Zero

19 0=BusA, 1=BusB

18..17 Word Status: 00=Ok, 01=Manchester error, 10=Parity error

16 Word type: 0=Data, 1=Command/ Status

15..0 16-bit Data on detected on bus

24.2.2.2. gr1553bm_open

Opens a GR1553B BM device identified by instance number, minor. The instance number is determined by the
order in which GR1553B cores with BM functionality are found, the order of the Plug & Play.

A handle is returned identifying the opened BM device, the handle is used internally by the driver, it is used as an
input parameter bm to all other functions that manipulate the hardware.

This function initializes the BM hardware to a stopped/disable level.

24.2.2.3. gr1553bm_close

Close and Stop a BM device identified by input argument bm previously returned by gr1553bm_open().

RCC-UM
September 2020, Version 1.3-rc9

178 www.cobhamaes.com/gaisler

24.2.2.4. gr1553bm_config

Configure and allocate the log DMA-memory for a BM device. The configuration parameters are stored in the
location pointed to by cfg. The layout of the parameters must follow the gr1553bm_config data structure,
described in Table 24.3.

If BM device is started or memory allocation fails (in case of dynamic memory allocation) the function returns -1,
it returns -2 if the memory is not aligned or on success zero is returned.

24.2.2.5. gr1553bm_start

Starts 1553 logging by enabling the core and enabling interrupts. The user must have configured the driver (log
buffer, timer, filtering, etc.) before calling this function.

After the BM has been started the configuration function can not be called.

On success this function returns zero, on failure a negative result is returned.

24.2.2.6. gr1553bm_stop

Stops 1553 logging by disabling the core and disabling interrupts. Further 1553 transfers will be ignored.

24.2.2.7. gr1553bm_time

This function reads the driver's internal 64-bit 1553 Time. The low 24-bit time is acquired from BM hardware,
the MSB is taken from a software counter internal to the driver. The counter is incremented every time the Time
overflows by:

• using "Time overflow" IRQ if enabled in user configuration
• by checking "Time overflow" IRQ flag (IRQ is disabled), it is required that user calls this function before

the next timer overflow. The software can not distinguish between one or two timer overflows. This function
will check the overflow flag and increment the driver internal time if overflow has occurred since last call.

This function update software time counters and store the current time into the address indicated by the argument
time.

24.2.2.8. gr1553bm_available

Copy up to max number of entries from BM log into the address specified by dst. The actual number of entries
read is returned in the location of max (zero when no entries available). The max argument is thus in/out. It is
important to read out the log entries in time to avoid data loss, the log can be sized so that data loss can be avoided.

Zero is returned on success, on failure a negative number is returned.

24.2.2.9. gr1553bm_read

Copy up to max number of entries from BM log into the address specified by dst. The actual number of entries
read is returned in the location of max (zero when no entries available). The max argument is thus in/out. It is
important to read out the log entries in time to avoid data loss, the log can be sized so that data loss can be avoided.

Zero is returned on success, on failure a negative number is returned.

RCC-UM
September 2020, Version 1.3-rc9

179 www.cobhamaes.com/gaisler

Chapter 25. GR1553B bus controller driver

25.1. Introduction

This section describes the GRLIB GR1553B Bus Controller (BC) device driver interface. The driver relies on the
GR1553B driver and the driver manager. The reader is assumed to be well acquainted with MIL-STD-1553 and
the GR1553B core.

25.1.1. GR1553B Bus Controller Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BC functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the BC, interrupts are shared between
the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to share hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see Chapter 22.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

25.1.2. Software driver

The BC driver is split in two parts, one where the driver access the hardware device and one part where the
descriptors are managed. The two parts are described in two separate sections below.

Transfer and conditional descriptors are collected into a descriptor list. A descriptor list consists of a set of Major
Frames, which consist of a set of Minor Frames which in turn consists of up to 32 descriptors (also called Slots).
The composition of Major/Minor Frames and slots is configured by the user, and is highly dependent of application.

The Major/Minor/Slot construction can be seen as a tree, the tree does not have to be symmetrically, i.e. Major
frames may contain different numbers of Minor Frames and Minor Frames may contain different numbers of Slot.

GR1553B BC descriptor lists are generated by the list API available in gr1553bc_list.h.

The driver provides the following services:

• Start, Stop, Pause and Resume descriptor list execution
• Synchronous and asynchronous descriptor list management
• Interrupt handling
• BC status
• Major/Minor Frame and Slot (descriptor) model of communication
• Current Descriptor (Major/Minor/Slot) Execution Indication
• Software External Trigger generation, used mainly for debugging or custom time synchronization
• Major/Minor Frame and Slot/Message ID
• Minor Frame time slot management

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS SPARC
BSP source tree c/src/lib/libbsp/sparc.

Table 25.1. BC driver Source location

Filename Description

shared/1553/gr1553bc.c GR1553B BC Driver source

shared/1553/gr1553bc_list.c GR1553B BC List handling source

shared/include/gr1553bc.h GR1553B BC Driver interface declaration

shared/include/gr1553bc_list.h GR1553B BC List handling interface declaration

RCC-UM
September 2020, Version 1.3-rc9

180 www.cobhamaes.com/gaisler

25.1.3. Examples

There is an example available that illustrates how the BC driver interface can be used to communicate with one
or more RTs. The descriptor list includes both transfer and conditional descriptors, time slot allocation, interrupt
demonstration, read BC hardware currently executing descriptor by the indication service. The BC example does
not require an RT to respond on the 1553 transfers, however it will be stuck in initialization mode of the 1553 bus.
The BC example comes with a matching RT example that responds to the BC transfers.

The BC example includes a BM logger which can be used for debugging the 1553 bus. All 1553 transfers can be
logged and sent to a Linux PC over a TCP/IP socket and saved to a raw text file for post processing.

In order to run all parts of the example a board with GR1553B core with BC and BM support, and a board with
a GR1553B core with RT support is required.

The example is part of the Aeroflex Gaisler RTEMS distribution, it can be found under /opt/rtems-5/src/
samples/1553/rtems-gr1553bcbm.c.

The example can be built by running:

$ cd /opt/rtems-4.10/src/samples/1553
$ make rtems-gr1553bcbm

25.2. BC Device Handling

The BC device driver's main purpose is to start, stop, pause and resume the execution of descriptor lists. Lists are
described in the Descriptor List section. In this section services related to direct access of BC hardware registers
and Interrupt are described. The function API is declared in gr1553bc.h.

25.2.1. Device API

The device API consists of the functions in the table below.

Table 25.2. Device API function prototyper

Prototype Description
void *gr1553bc_open(int minor) Open a BC device by minor number. Private handle re-

turned used in all other device API functions.

void gr1553bc_close(void *bc) Close a previous opened BC device.

int gr1553bc_start(void *bc,
 struct gr1553bc_list *list,
 struct gr1553bc_list *list_async)

Schedule a synchronous and/or a asynchronous BC
descriptor Lists for execution. This will unmask BC
interrupts and start executing the first descriptor in
respective List. This function can be called multiple
times.

int gr1553bc_pause(void *bc) Pause the synchronous List execution.

int gr1553bc_restart(void *bc) Restart the synchronous List execution.

int gr1553bc_stop(void *bc, int options) Stop Synchronous and/or asynchronous list.

int gr1553bc_indication(void *bc, int async,
 int *mid)

Get the current BC hardware execution position (MID)
of the synchronous or asynchronous list.

void gr1553bc_status(void *bc,
 struct gr1553bc_status *status)

Get the BC hardware status and time.

void gr1553bc_ext_trig(void *bc, int trig) Trigger an external trigger by writing to the BC action
register.

int gr1553bc_irq_setup(void *bc,
 bcirq_func_t func, void *data)

Generic interrupt handler configuration. Handler will
be called in interrupt context on errors and interrupts
generated by transfer descriptors.

25.2.1.1. Data Structures

The gr1553bc_status data structure contains the BC hardware status sampled by the function
gr1553bc_status().

RCC-UM
September 2020, Version 1.3-rc9

181 www.cobhamaes.com/gaisler

struct gr1553bc_status {
 unsigned int status;
 unsigned int time;
};

Table 25.3. gr1553bc_status member descriptions

Member Description

status BC status register

time BC Timer register

25.2.1.2. gr1553bc_open

Opens a GR1553B BC device by device instance index. The minor number relates to the order in which a GR1553B
BC device is found in the Plug&Play information. A GR1553B core which lacks BC functionality does not affect
the minor number.

If a BC device is successfully opened a pointer is returned. The pointer is used internally by the GR1553B BC
driver, it is used as the input parameter bc to all other device API functions.

If the driver failed to open the device, NULL is returned.

25.2.1.3. gr1553bc_close

Closes a previously opened BC device. This action will stop the BC hardware from processing descriptors/lists,
disable BC interrupts, and free dynamically memory allocated by the driver.

25.2.1.4. gr1553bc_start

Calling this function starts the BC execution of the synchronous list and/or the asynchronous list. At least one list
pointer must be non-zero to affect BC operation. The BC communication is enabled depends on list, and Interrupts
are enabled.

This function can be called multiple times. If a list (of the same type) is already executing it will be replaced
with the new list.

25.2.1.5. gr1553bc_pause

Pause the synchronous list. It may be resumed by gr1553bc_resume(). See hardware documentation.

25.2.1.6. gr1553bc_resume

Resume the synchronous list, must have been previously paused by gr1553bc_pause(). See hardware doc-
umentation.

25.2.1.7. gr1553bc_stop

Stop synchronous and/or asynchronous list execution. The second argument is a 2-bit bit-mask which determines
the lists to stop, see table below for a description.

Table 25.4. gr1553bc_stop second argument

Member Description

Bit 0 Set to one to stop the synchronous list.

Bit 1 Set to one to stop the asynchronous list.

25.2.1.8. gr1553bc_indication

Retrieves the current Major/Minor/Slot (MID) position executing into the location indicated by mid. The async
argument determines which type of list is queried, the Synchronous (async=0) list or the Asynchronous
(async=1).

RCC-UM
September 2020, Version 1.3-rc9

182 www.cobhamaes.com/gaisler

Note that since the List API internally adds descriptors the indication may seem to be out of bounds.

25.2.1.9. gr1553bc_status

This function retrieves the current BC hardware status. Second argument determine where the hardware status
is stored, the layout of the data stored follows the gr1553bc_status data structure. The data structure is
described in Table 25.3.

25.2.1.10. gr1553bc_ext_trig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
external trigger is normally generated by some kind of Time Master. A message slot may be programmed to wait for
an external trigger before being executed, this feature allows the user to accurate send time synchronize messages
to RTs. However, during debugging or when software needs to control the time synchronization behaviour the
external trigger pulse can be generated from the BC core itself by writing the BC Action register.

This function sets the external trigger memory to one by writing the BC action register.

25.2.1.11. gr1553bc_irq_setup

Install a generic handler for BC device interrupts. The handler will be called on Errors (DMA errors etc.) resulting
in interrupts or transfer descriptors resulting in interrupts. The handler is not called when an IRQ is generated by
a condition descriptor. Condition descriptors have their own custom handler.

Condition descriptors are inserted into the list by user, each condition may have a custom function and data as-
signed to it, see gr1553bc_slot_irq_prepare(). Interrupts generated by condition descriptors are not
handled by this function.

The third argument is custom data which will be given to the handler on interrupt.

25.3. Descriptor List Handling

The BC device driver can schedule synchronous and asynchronous lists of descriptors. The list contains a descriptor
table and a software description to make certain operations possible, for example translate descriptor address into
descriptor number (MID).

The BC stops execution of a list when a END-OF-LIST (EOL) marker is found. Lists may be configured to jump
to the start of the list (the first descriptor) by inserting an unconditional jump descriptor. Once a descriptor list is
setup the hardware may process the list without the need of software intervention. Time distribution may also be
handled completely in hardware, by setting the "Wait for External Trigger" flag in a transfer descriptor the BC
will wait until the external trigger is received or proceed directly if already received. See hardware manual.

25.3.1. Overview

This section describes the Descriptor List Application Programming Interface (API). It provides functionality to
create and manage BC descriptor lists.

A list is built up by the following building blocks:

• Major Frame (Consists of N Minor Frames)
• Minor Frame (Consists of up to 32 1553 Slots)
• Slot (Transfer/Condition BC descriptor), also called Message Slot

The user can configure lists with different number of Major Frames, Minor Frames and slots within a Minor Frame.
The List manages a strait descriptor table and a Major/Minor/Slot tree in order to easily find it's way through all
descriptor created.

Each Minor frame consist of up to 32 slot and two extra slots for time management and descriptor find operations,
see figure below. In the figure there are three Minor frames with three different number of slots 32, 8 and 4. The
List manage time slot allocation per Minor frame, for example a minor frame may be programmed to take 8ms
and when the user allocate a message slot within that Minor frame the time specified will be subtracted from the
8ms, and when the message slot is freed the time will be returned to the Minor frame again.

RCC-UM
September 2020, Version 1.3-rc9

183 www.cobhamaes.com/gaisler

Figure 25.1. Three consecutive Minor Frames

A specific Slot [Major, Minor, Slot] is identified using a MID (Message-ID). The MID consist of three numbers
Major Frame number, Minor Frame number and Slot Number. The MID is a way for the user to avoid using
descriptor pointers to talk with the list API. For example a condition Slot that should jump to a message Slot can
be created by knowing "MID and Jump-To-MID". When allocating a Slot (with or without time) in a List the user
may specify a certain Slot or a Minor frame, when a Minor frame is given then the API will find the first free Slot
as early in the Minor Frame as possible and return it to the user.

A MID can also be used to identify a certain Major Frame by setting the Minor Frame and Slot number to 0xff.
A Minor Frame can be identified by setting Slot Number to 0xff.

A MID can be created using the macros in the table below.

Table 25.5. Macros for creating MID

MACRO Name Description

GR1553BC_ID(major,minor,slot) ID of a SLOT

GR1553BC_MINOR_ID(major,minor) ID of a MINOR (Slot=0xff)

GR1553BC_MAJOR_ID(major) ID of a Major (Minor=0xff,Slot=0xff)

25.3.2. Example: steps for creating a list

The typical approach when creating lists and executing it:

• gr1553bc_list_alloc(&list, MAJOR_CNT)
• gr1553bc_list_config(list, &listcfg)
• Create all Major Frames and Minor frame, for each major frame:

1. gr1553bc_major_alloc_skel(&major, &major_minor_cfg)
2. gr1553bc_list_set_major(list, &major, MAJOR_NUM)

• Link last and first Major Frames together:
1. gr1553bc_list_set_major(&major7, &major0)

• gr1553bc_list_table_alloc() (Allocate Descriptor Table)

RCC-UM
September 2020, Version 1.3-rc9

184 www.cobhamaes.com/gaisler

• gr1553bc_list_table_build() (Build Descriptor Table from Majors/Minors)
• Allocate and initialize Descriptors pre defined before starting:

1. gr1553bc_slot_alloc(list, &MID, TIME_REQUIRED, ..)
2. gr1553bc_slot_transfer(MID, ..)

• START BC HARDWARE BY SCHDULING ABOVE LIST
• Application operate on executing List

25.3.3. Major Frame

Consists of multiple Minor frames. A Major frame may be connected/linked with another Major frame, this will
result in a Jump Slot from last Minor frame in the first Major to the first Minor in the second Major.

25.3.4. Minor Frame

Consists of up to 32 Message Slots. The services available for Minor Frames are Time-Management and Slot
allocation.

Time-Management is optional and can be enabled per Minor frame. A Minor frame can be assigned a time in
microseconds. The BC will not continue to the next Minor frame until the time specified has passed, the time
includes the 1553 bus transfers. See the BC hardware documentation. Time is managed by adding an extra Dummy
Message Slot with the time assigned to the Minor Frame. Every time a message Slot is allocated (with a certain
time: Slot-Time) the Slot-Time will be subtracted from the assigned time of the Minor Frame's Dummy Message
Slot. Thus, the sum of the Message Slots will always sum up to the assigned time of the Minor Frame, as configured
by the user. When a Message Slot is freed, the Dummy Message Slot's Slot-Time is incremented with the freed
Slot-Time. See figure below for an example where 6 Message Slots has been allocated Slot-Time in a 1 ms Time-
Managed Minor Frame. Note that in the example the Slot-Time for Slot 2 is set to zero in order for Slot 3 to
execute directly after Slot 2.

Figure 25.2. Time-Managed Minor Frame of 1ms

The total time of all Minor Frames in a Major Frame determines how long time the Major Frame is to be executed.

Slot allocation can be performed in two ways. A Message Slot can be allocated by identifying a specific free Slot
(MID identifies a Slot) or by letting the API allocate the first free Slot in the Minor Frame (MID identifies a Minor
Frame by setting Slot-ID to 0xff).

25.3.5. Slot (Descriptor)

The GR1553B BC core supports two Slot (Descriptor) Types:

• Transfer descriptor (also called Message Slot)
• Condition descriptor (Jump, unconditional-IRQ)

See the hardware manual for a detail description of a descriptor (Slot).

The BC Core is unaware of lists, it steps through executing each descriptor as the encountered, in a sequential
order. Conditions resulting in jumps gives the user the ability to create more complex arrangements of buffer
descriptors (BD) which is called lists here.

Transfer Descriptors (TBD) may have a time slot assigned, the BC core will wait until the time has expired before
executing the next descriptor. Time slots are managed by Minor frames in the list. See Minor Frame section. A

RCC-UM
September 2020, Version 1.3-rc9

185 www.cobhamaes.com/gaisler

Message Slot generating a data transmission on the 1553 bus must have a valid data pointer, pointing to a location
from which the BC will read or write data.

A Slot is allocated using the gr1553bc_slot_alloc() function, and configured by calling one of the function
described in the table below. A Slot may be reconfigured later. Note that a conditional descriptor does not have a
time slot, allocating a time for a conditional times slot will lead to an incorrect total time of the Minor Frame.

Table 25.6. Slot configuration

Function Name Description

gr1553bc_slot_irq_prepareUnconditional IRQ slot

gr1553bc_slot_jump Unconditional jump

gr1553bc_slot_exttrig Dummy transfer, wait for EXTERNAL-TRIGGER

gr1553bc_slot_transfer Transfer descriptor

gr1553bc_slot_empty Create Dummy Transfer descriptor

gr1553bc_slot_raw Custom Descriptor handling

Existing configured Slots can be manipulated with the following functions.

Table 25.7. Slot manipulation

Function Name Description

gr1553bc_slot_dummy Set existing Transfer descriptor to Dummy. No 1553 bus transfer will be per-
formed.

gr1553bc_slot_update Update Data Pointer and/or Status of a TBD

25.3.6. Changing a scheduled BC list (during BC-runtime)

Changing a descriptor that is being executed by the BC may result in a race between hardware and software. One
of the problems is that a descriptor contains multiple words, which can not be written simultaneously by the CPU.
To avoid the problem one can use the INDICATION service to avoid modifying a descriptor currently in use by the
BC core. The indication service tells the user which Major/Minor/ Slot is currently being executed by hardware,
from that information an knowing the list layout and time slots the user may safely select which slot to modify
or wait until hardware is finished.

In most cases one can do descriptor initialization in several steps to avoid race conditions. By initializing (allocating
and configuring) a Slot before starting the execution of the list, one may change parts of the descriptor which
are ignored by the hardware. Below is an example approach that will avoid potential races between software and
hardware:

1. Initialize Descriptor as Dummy and allocated time (often done before starting/ scheduling list)
2. The list is started, as a result descriptors in the list are executed by the BC
3. Modify transfer options and data-pointers, but maintain the Dummy bit.
4. Clear the Dummy bit in one atomic data store.

25.3.7. Custom Memory Setup

For designs where dynamically memory is not an option, or the driver is used on an AMBA-over-PCI bus (where
malloc() does not work), the API allows the user to provide custom addresses for the descriptor table and object
descriptions (lists, major frames, minor frames).

Being able to configure a custom descriptor table may for example be used to save space or put the descriptor table
in on-chip memory. The descriptor table is setup using the function gr1553bc_list_table_alloc(list,
CUSTOM_ADDRESS).

Object descriptions are normally allocated during initialization procedure by providing the API with an object
configuration, for example a Major Frame configuration enables the API to dynamically allocate the software
description of the Major Frame and with all it's Minor frames. Custom object allocation requires internal under-
standing of the List management parts of the driver, it is not described in this document.

RCC-UM
September 2020, Version 1.3-rc9

186 www.cobhamaes.com/gaisler

25.3.8. Interrupt handling

There are different types of interrupts, Error IRQs, transfer IRQs and conditional IRQs. Error and transfer Interrupts
are handled by the general callback function of the device driver. Conditional descriptors that cause Interrupts
may be associated with a custom interrupt routine and argument.

Transfer Descriptors can be programmed to generate interrupt, and condition descriptors can be programmed to
generate interrupt unconditionally (there exists other conditional types as well). When a Transfer descriptor causes
interrupt the general ISR callback of the BC driver is called to let the user handle the interrupt. Transfers descriptor
IRQ is enabled by configuring the descriptor.

When a condition descriptor causes an interrupt a custom IRQ handler is called (if assigned) with a custom ar-
gument and the descriptor address. The descriptor address my be used to lookup the MID of the descriptor. The
API provides functions for placing unconditional IRQ points anywhere in the list. Below is an pseudo example
of adding an unconditional IRQ point to a list:

void funcSetup()
{
 int MID;

 /* Allocate Slot for IRQ Point */
 gr1553bc_slot_alloc(&MID, TIME=0, ..);

 /* Prepare unconditional IRQ at allocated SLOT */
 gr1553bc_slot_irq_prepare(MID, funcISR, data);

 /* Enabling the IRQ may be done later during list
 * execution */
 gr1553bc_slot_irq_enable(MID);
}
void funcISR(*bd, *data)
{
 /* HANDLE ONE OR MULTIPLE DESCRIPTORS
 *(MULTIPLE IN THIS EXAMPLE): */
 int MID;

 /* Lookup MID from descriptor address */
 gr1553bc_mid_from_bd(bd, &MID, NULL);

 /* Print MID which caused the Interrupt */
 printk("IRQ ON %06x\n", MID);
}

25.3.9. List API

Table 25.8. List API function prototypes

Prototype Description
int gr1553bc_list_alloc(
 struct gr1553bc_list **list,
 int max_major)

Allocate a List description structure. First step in creating a descrip-
tor list.

void gr1553bc_list_free(
 struct gr1553bc_list *list)

Free a List previously allocated using
gr1553bc_list_alloc().

int gr1553bc_list_config(
 struct gr1553bc_list *list,
 struct gr1553bc_list_cfg *cfg,
 void *bc)

Configure List parameters and associate it with a BC device that will
execute the list later on. List parameters are used when generating
descriptors.

void gr1553bc_list_link_major(
 struct gr1553bc_major *major,
 struct gr1553bc_major *next)

Links two Major frames together, the Major frame indicated by next
will be executed after the Major frame indicated by major. A uncon-
ditional jump is inserted to implement the linking.

int gr1553bc_list_set_major(
 struct gr1553bc_list *list,
 struct gr1553bc_major *major,
 int no)

Assign a Major Frame a Major Frame number in a list. This will link
Major (no-1) and Major (no+1) with the Major frame, the linking
can be changed by calling gr1553bc_list_link_major() af-
ter all major frames have been assigned a number.

int gr1553bc_minor_table_size(
 struct gr1553bc_minor *minor)

Calculate the size required in the descriptor table by one minor
frame.

int gr1553bc_list_table_size(
 struct gr1553bc_list *list)

Calculate the size required for the complete descriptor list.

RCC-UM
September 2020, Version 1.3-rc9

187 www.cobhamaes.com/gaisler

Prototype Description
int gr1553bc_list_table_alloc(
 struct gr1553bc_list *list,
 void *bdtab_custom)

Allocate and initialize a descriptor list. The bdtab_custom argu-
ment can be used to assign a custom address of the descriptor list.

void gr1553bc_list_table_free(
 struct gr1553bc_list *list)

Free descriptor list memory previously allocated by
gr1553bc_list_table_alloc().

int gr1553bc_list_table_build(
 struct gr1553bc_list *list)

Build all descriptors in a descriptor list. Unused descriptors will be
initialized as empty dummy descriptors. After this call descriptors
can be initialized by user.

int gr1553bc_major_alloc_skel(
 struct gr1553bc_major **major,
 struct gr1553bc_major_cfg *cfg)

Allocate and initialize a software description skeleton of a Major
Frame and it's Minor Frames.

int gr1553bc_list_freetime(
 struct gr1553bc_list *list,
 int mid)

Get total unused slot time of a Minor Frame. Only available if time
management has been enabled for the Minor Frame.

int gr1553bc_slot_alloc(
 struct gr1553bc_list *list,
 int *mid,
 int timeslot,
 union gr1553bc_bd **bd)

Allocate a Slot from a Minor Frame. The Slot location is identified
by MID. If the MID identifies a Minor frame the first free slot is al-
located within the minor frame.

int gr1553bc_slot_free(
 struct gr1553bc_list *list,
 int mid)

Return a previously allocated Slot to a Minor Frame. The slot-time is
also returned.

int gr1553bc_mid_from_bd(
 union gr1553bc_bd *bd,
 int *mid,
 int *async)

Get Slot/Message ID from descriptor address.

union gr1553bc_bd *gr1553bc_slot_bd(
 struct gr1553bc_list *list,
 int mid)

Get descriptor address from MID.

int gr1553bc_slot_irq_prepare(
 struct gr1553bc_list *list,
 int mid,
 bcirq_func_t func,
 void *data)

Prepare a condition Slot for generating interrupt. Interrupt is dis-
abled. A custom callback function and data is assigned to Slot.

int gr1553bc_slot_irq_enable(
 struct gr1553bc_list *list,
 int mid)

Enable interrupt of a previously interrupt-prepared Slot.

int gr1553bc_slot_irq_disable(
 struct gr1553bc_list *list,
 int mid)

Disable interrupt of a previously interrupt-prepared Slot.

int gr1553bc_slot_jump(
 struct gr1553bc_list *list,
 int mid,
 uint32_t condition,
 int to_mid)

Initialize an allocated Slot, the descriptor is initialized as a condi-
tional Jump Slot. The conditional is controlled by the third argu-
ment. The Slot jumped to is determined by the fourth argument.

int gr1553bc_slot_exttrig(
 struct gr1553bc_list *list,
 int mid)

Create a dummy transfer with the "Wait for external trigger" bit set.

int gr1553bc_slot_transfer(
 struct gr1553bc_list *list,
 int mid,
 int options,
 int tt,
 uint16_t *dptr)

Create a transfer descriptor.

int gr1553bc_slot_dummy(
 struct gr1553bc_list *list,
 int mid,
 unsigned int *dummy)

Manipulate the DUMMY bit of a transfer descriptor. Can be used to
enable or disable a transfer descriptor.

int gr1553bc_slot_empty(
 struct gr1553bc_list *list,
 int mid)

Create an empty transfer descriptor, with the DUMMY bit set. The
time- slot previously allocated is preserved.

int gr1553bc_slot_update(
 struct gr1553bc_list *list,
 int mid,
 uint16_t *dptr,
 unsigned int *stat)

Update a transfer descriptors data pointer and/or status field.

int gr1553bc_slot_raw(
 struct gr1553bc_list *list,
 int mid,

Custom descriptor initialization. Note that a bad initialization may
break the BC driver.

RCC-UM
September 2020, Version 1.3-rc9

188 www.cobhamaes.com/gaisler

Prototype Description
 unsigned int flags,
 uint32_t word0,
 uint32_t word1,
 uint32_t word2,
 uint32_t word3)

void gr1553bc_show_list(
 struct gr1553bc_list *list,
 int options)

Print information about a descriptor list to standard out. Used for de-
bugging.

25.3.9.1. Data structures

The gr1553bc_major_cfg data structure hold the configuration parameters of a Major frame and all it's Minor
frames. The gr1553bc_minor_cfg data structure contain the configuration parameters of one Minor Frame.

struct gr1553bc_minor_cfg {
 int slot_cnt;
 int timeslot;
};

struct gr1553bc_major_cfg {
 int minor_cnt;
 struct gr1553bc_minor_cfg minor_cfgs[1];
};

Table 25.9. gr1553bc_minor_cfg member descriptions.

Member Description

slot_cnt Number of Slots in Minor Frame

timeslot Total time-slot of Minor Frame [us]

Table 25.10. gr1553bc_major_cfg member descriptions.

Member Description

minor_cnt Number of Minor Frames in Major Frame.

minor_cfgs Array of Minor Frame configurations. The length of the array is determined by
minor_cnt.

The gr1553bc_list_cfg data structure hold the configuration parameters of a descriptor List. The Major and
Minor Frames are configured separately. The configuration parameters are used when generating descriptor.

struct gr1553bc_list_cfg {
 unsigned char rt_timeout[31];
 unsigned char bc_timeout;
 int tropt_irq_on_err;
 int tropt_pause_on_err;
 int async_list;
};

Table 25.11. gr1553bc_list_cfg member descriptions.

Member Description

rt_timeout Number of us timeout tolerance per RT address. The BC has a resolution of 4us.

bc_timeout Number of us timeout tolerance of broadcast transfers

tropt_irq_on_err Determines if transfer descriptors should generate IRQ on transfer errors

tropt_pause_on_err Determines if the list should be paused on transfer error

async_list Set to non-zero if asynchronous list

25.3.9.2. gr1553bc_list_alloc

Dynamically allocates a List structure (no descriptors) with a maximum number of Major frames supported. The
first argument is a pointer to where the newly allocated list pointer will be stored. The second argument determines
the maximum number of major frames the List will be able to support.

RCC-UM
September 2020, Version 1.3-rc9

189 www.cobhamaes.com/gaisler

The list is initialized according to the default configuration.

If the list allocation fails, a negative result will be returned.

25.3.9.3. gr1553bc_list_free

Free a List that has been previously allocated with gr1553bc_list_alloc().

25.3.9.4. gr1553bc_list_config

This function configures List parameters and associate the list with a BC device. The BC device may be used to
translate addresses from CPU address to addresses the GR1553B core understand, therefore the list must not be
scheduled on another BC device.

Some of the List parameters are used when generating descriptors, as global descriptor parameters. For example
all transfer descriptors to a specific RT result in the same time out settings.

The first argument points to a list that is configure. The second argument points to the configuration description,
the third argument identifies the BC device that the list will be scheduled on. The layout of the list configuration
is described in Table 25.11.

25.3.9.5. gr1553bc_list_link_major

At the end of a Major Frame a unconditional jump to the next Major Frame is inserted by the List API. The List
API assumes that a Major Frame should jump to the following Major Frame, however for the last Major Frame
the user must tell the API which frame to jump to. The user may also connect Major frames in a more complex
way, for example Major Frame 0 and 1 is executed only once so the last Major frame jumps to Major Frame 2.

The Major frame indicated by next will be executed after the Major frame indicated by major. A unconditional
jump is inserted to implement the linking.

25.3.9.6. gr1553bc_list_set_major

Major Frames are associated with a number, a Major Frame Number. This function creates an association between
a Frame and a Number, all Major Frames must be assigned a number within a List.

The function will link Major[no-1] and Major[no+1] with the Major frame, the linking can be changed by calling
gr1553bc_list_link_major() after all major frames have been assigned a number.

25.3.9.7. gr1553bc_minor_table_size

This function is used internally by the List API, however it can also be used in an application to calculate the space
required by descriptors of a Minor Frame.

The total size of all descriptors in one Minor Frame (in number of bytes) is returned. Descriptors added internally
by the List API are also counted.

25.3.9.8. gr1553bc_list_table_size

This function is used internally by the List API, however it can also be used in an application to calculate the total
space required by all descriptors of a List.

The total descriptor size of all Major/Minor Frames of the list (in number of bytes) is returned.

25.3.9.9. gr1553bc_list_table_alloc

This function allocates all descriptors needed by a List, either dynamically or by a user provided address. The List
is initialized with the new descriptor table, i.e. the software's internal representation is initialized. The descriptors
themselves are not initialized.

The second argument bdtab_custom determines the allocation method. If NULL the API will allocate memory
using malloc(), if non-zero the value will be taken as the base descriptor address. If bit zero is set the address

RCC-UM
September 2020, Version 1.3-rc9

190 www.cobhamaes.com/gaisler

is assumed to be readable by the GR1553B core, if bit zero is cleared the address is assumed to be readable by
the CPU and translated for the GR1553B core. Bit zero makes sense to use on a GR1553B core located on a
AMBA-over-PCI bus.

If memory allocation fails (in case of dynamic memory allocation) the function return -1, it returns -2 if the memory
is not aligned or on success zero is returned.

25.3.9.10. gr1553bc_list_table_free

Free previously allocated descriptor table memory.

25.3.9.11. gr1553bc_list_table_build

This function builds all descriptors in a descriptor list. Unused descriptors will be initialized as empty dummy
descriptors. Jumps between Minor and Major Frames will be created according to user configuration.

After this call descriptors can be initialized by user.

25.3.9.12. gr1553bc_major_alloc_skel

Allocate a Major Frame and it's Minor Frames according to the configuration pointed to by the second argument.

The pointer to the allocated Major Frame is stored into the location pointed to by the major argument.

The configuration of the Major Frame is determined by the gr1553bc_major_cfg structure, described in Ta-
ble 25.10.

On success zero is returned, on failure a negative value is returned.

25.3.9.13. gr1553bc_list_freetime

Minor Frames can be configured to handle time slot allocation. This function returns the number of microseconds
that is left/unused. The second argument mid determines which Minor Frame.

25.3.9.14. gr1553bc_slot_alloc

Allocate a Slot from a Minor Frame. The Slot location is identified by mid. If the MID identifies a Minor frame
the first free slot is allocated within the minor frame.

The resulting MID of the Slot is stored back to mid, the MID can be used in other function call when setting up
the Slot. The mid argument is thus of in and out type.

The third argument, timeslot, determines the time slot that should be allocated to the Slot. If time management
is not configured for the Minor Frame a time can still be assigned to the Slot. If the Slot should step to the next Slot
directly when finished (no assigned time-slot), the argument must be set to zero. If time management is enabled for
the Minor Frame and the requested time-slot is longer than the free time, the call will result in an error (negative
result).

The fourth and last argument can optionally be used to get the address of the descriptor used.

25.3.9.15. gr1553bc_slot_free

Return Slot and timeslot allocated from the Minor Frame.

25.3.9.16. gr1553bc_mid_from_bd

Looks up the Slot/Message ID (MID) from a descriptor address. This function may be useful in the interrupt
handler, where the address of the descriptor is given.

25.3.9.17. gr1553bc_slot_bd

Looks up descriptor address from MID.

RCC-UM
September 2020, Version 1.3-rc9

191 www.cobhamaes.com/gaisler

25.3.9.18. gr1553bc_slot_irq_prepare

Prepares a condition descriptor to generate interrupt. Interrupt will not be enabled until
gr1553bc_slot_irq_enable() is called. The descriptor will be initialized as an unconditional jump to
the next descriptor. The Slot can be associated with a custom callback function and an argument. The callback
function and argument is stored in the unused fields of the descriptor.

Once enabled and interrupt is generated by the Slot, the callback routine will be called from interrupt context.

The function returns a negative result if failure, otherwise zero is returned.

25.3.9.19. gr1553bc_slot_irq_enable

Enables interrupt of a previously prepared unconditional jump Slot. The Slot is expected to be initialized with
gr1553bc_slot_irq_prepare(). The descriptor is changed to do a unconditional jump with interrupt.

The function returns a negative result if failure, otherwise zero is returned.

25.3.9.20. gr1553bc_slot_irq_disable

Disable unconditional IRQ point, the descriptor is changed to unconditional JUMP to the following descriptor,
without generating interrupt. After disabling the Slot it can be enabled again, or freed.

The function returns a negative result if failure, otherwise zero is returned.

25.3.9.21. gr1553bc_slot_jump

Initialize a Slot with a custom jump condition. The arguments are declared in the table below.

Table 25.12. gr1553bc_list_cfg member descriptions.

Argument Description

list List that the Slot is located at.

mid Slot Identification.

condition Custom condition written to descriptor. See hardware documentation for options.

to_mid Slot Identification of the Slot that the descriptor will be jumping to.

Returns zero on success.

25.3.9.22. gr1553bc_slot_exttrig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
external trigger is normally generated by some kind of Time Master. A message slot may be programmed to
wait for an external trigger before being executed, this feature allows the user to accurate send time synchronize
messages to RTs.

This function initializes a Slot to a dummy transfer with the "Wait for external trigger" bit set.

Returns zero on success.

25.3.9.23. gr1553bc_slot_transfer

Initializes a descriptor to a transfer descriptor. The descriptor is initialized according to the function arguments an
the global List configuration parameters. The settings that are controlled on a global level (and not by this function):

• IRQ after transfer error
• IRQ after transfer (not supported, insert separate IRQ slot after this)
• Pause schedule after transfer error
• Pause schedule after transfer (not supported)
• Slot time optional (set when MID allocated), otherwise 0

RCC-UM
September 2020, Version 1.3-rc9

192 www.cobhamaes.com/gaisler

• (OPTIONAL) Dummy Bit, set using slot_empty() or ..._TT_DUMMY
• RT time out tolerance (managed per RT)

The arguments are declared in the table below.

Table 25.13. gr1553bc_slot_transfer argument descriptions.

Argument Description

list List that the Slot is located at

mid Slot Identification

options Options:

• Retry Mode
• Number of retires
• Bus selection (A or B)
• Dummy bit

tt Transfer options, see BC transfer type macros in header file:

• transfer type
• RT src/dst address
• RT subaddress
• word count
• mode code

dptr Descriptor Data Pointer. Used by Hardware to read or write data to the 1553 bus. If bit zero is
set the address is translated by the driver into an address which the hardware can access(may
be the case if BC device is located on an AMBA-over-PCI bus), if cleared it is assumed that
no translation is required(typical case)

Returns zero on success.

25.3.9.24. gr1553bc_slot_dummy

Manipulate the DUMMY bit of a transfer descriptor. Can be used to enable or disable a transfer descriptor.

The dummy argument points to an area used as input and output, as input bit 31 is written to the dummy bit of the
descriptor, as output the old value of the descriptor's dummy bit is written.

Returns zero on success.

25.3.9.25. gr1553bc_slot_empty

Create an empty transfer descriptor, with the DUMMY bit set. The time-slot previously allocated is preserved.

Returns zero on success.

25.3.9.26. gr1553bc_slot_update

This function will update a transfer descriptor's status and/or update the data pointer.

If the dptr pointer is non-zero the Data Pointer word of the descriptor will be updated with the value of dptr.
If bit zero is set the driver will translate the data pointer address into an address accessible by the BC hardware.
Translation is an option only for AMBA-over-PCI.

If the stat pointer is non-zero the Status word of the descriptor will be updated according to the content of stat.
The old Status will be stored into stat. The lower 24-bits of the current Status word may be cleared, and the
dummy bit may be set:

bd->status = *stat & (bd->status 0xffffff) | (*stat & 0x80000000);

Note that the status word is not written (only read) when value pointed to by stat is zero.

RCC-UM
September 2020, Version 1.3-rc9

193 www.cobhamaes.com/gaisler

Returns zero on success.

25.3.9.27. gr1553bc_slot_raw

Custom descriptor initialization. Note that a bad initialization may break the BC driver.

The arguments are declared in the table below.

Table 25.14. gr1553bc_slot_transfer argument descriptions.

Argument Description

list List that the Slot is located at

mid Slot Identification

flags Determine which words are updated. If bit N is set wordN is written into descriptor wordN, if
bit N is zero the descriptor wordN is not modified.

word0 32-bit Word written to descriptor address 0x00

word1 32-bit Word written to descriptor address 0x04

word2 32-bit Word written to descriptor address 0x08

word3 32-bit Word written to descriptor address 0x0C

Returns zero on success.

25.3.9.28. gr1553bc_show_list

Print information about a List to standard out. Each Major Frame's first descriptor for example is printed. This
function is used for debugging only.

RCC-UM
September 2020, Version 1.3-rc9

194 www.cobhamaes.com/gaisler

Chapter 26. B1553BRM GRLIB Actel Core1553BRM driver

26.1. Introduction

This document is intended as an aid in getting started developing with GRLIB B1553BRM core using the driver
described in this document. It briefly takes the reader through some of the most important steps in using the driver
such as setting up a connection, configuring the driver, reading and writing messages between Bus Controllers
(BC), Remote Terminals (RT) and Bus Monitors (BM). The reader is assumed to be well acquainted with MIL-
STD-1553 and RTEMS.

The B1553BRM driver require the RTEMS Driver Manager.

26.1.1. BRM Hardware

The BRM hardware can operate in one of three modes, Bus Controller (BC), Remote Terminal (RT) or Bus
Monitor (BM). All three modes are supported by the driver. The software interface of the BRM-RT is similar to
the B1553RT software interface to simplify software development.

The B1553BRM core is present in GR712RC. In many newer systems the GR1553B IP core replaces the
B1553BRM which has a different software interface documented in the Chapter 22.

26.1.2. Software Driver

The driver provides means for processes and threads to send, receive and monitor messages.

• Bus Controller
• Remote Terminal
• Bus monitor

26.1.3. Supported OS

There is a simple example available it illustrates how to set up a connection between a BC and a RT monitored by
a BM. The BC sends the RT receive and transmit messages for a number of different sub addresses. The BM is
set up to print messages from the BC and the RT. To be able to run the example one must have at least two boards
connected together via the B1553BRM interfaces. To fully run the example three BRM boards is needed.

The example is part of the Gaisler RTEMS distribution, it can be found under /opt/rtems-5/src/sam-
ples/rtems-brm.c, brm_lib.c and brm_lib.h.

The example can be built by running:

cd /opt/rtems-5/src/samples make clean rtems-brm_rt rtems-brm_bc rtems-brm_bm

26.2. User Intrerface

The RTEMS MIL-STD-1553B BRM driver supports standard accesses to file descriptors such as read, write
and ioctl. User applications include the [brm] driver's header file which contains definitions of all necessary data
structures and bit masks used when accessing the driver. An example application using the driver is provided in
the examples directory.

The driver for the MIL-STD-1553 B BRM has three different operating modes, Remote Terminal, Bus Controller
or Bus Monitor. It defaults to Remote Terminal (RT) with address 1, MIL- STD-1553 B standard, both buses
enabled, and broadcasts enabled. The operating mode and settings can be changed with ioctl calls as described
later.

26.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using stan-
dard means, such as open. The RTEMS I/O driver registration is performed automatically by the driver when
B1553BRM hardware is found for the first time. The driver is called from the driver manager to handle detected

RCC-UM
September 2020, Version 1.3-rc9

195 www.cobhamaes.com/gaisler

B1553BRM hardware. In order for the driver manager to unite the B1553BRM driver with the B1553BRM hard-
ware one must register the driver to the driver manager. This process is described in the driver manager chapter.

26.2.2. Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter. Below is a descrip-
tion of configurable driver parameters. The driver parameters is unique per B1553BRM device. The parameters
are all optional, the parameters only overrides the default values.

Table 26.1. B1553BRM driver parameter description

Name Type Parameter description

clkSel INT Selects clock source (input value to the clock MUX)

clkDiv INT Selects clock prescaler, may not be available for all clock sources

coreFreq INT The input clock frequency to the BRM core. 0 = 12MHz, 1 = 16MHz, 2=
20MHz, 3 = 24MHz.

dmaArea INT Custom DMA area address. See note below.

26.2.2.1. Custom DMA area parameter

The DMA area can be configured to be located at a custom address. The standard configuration is to leave it up
to the driver to do dynamic allocation of the areas. However in some cases it may be required to locate the DMA
area on a custom location, the driver will not allocate memory but will assume that enough memory is available
and that the alignment needs of the core on the address given is fulfilled. The memory required is either 16K or
128K bytes depending on how the driver has been compiled.

For some systems it may be convenient to give the addresses as seen by the B1553BRM core. This can be done
by setting the LSB bit in the address to one. For example a GR-RASTA-IO board with a B1553BRM core doesn't
read from the same address as the CPU in order to access the same data. This is dependent on the PCI mappings.
Translation between CPU and B1553BRM addresses must be done. The B1553BRM driver automatically trans-
lates the DMA base address. This requires the bus driver, in this case the GR- RASTA-IO driver, to set up trans-
lation addresses correctly.

26.2.3. Opening the device

Opening the device enables the user to access the hardware of a certain BRM device. The driver is used for all
BRM devices available. The devices is separated by assigning each device a unique name and a number called
[minor]. The name is passed during the opening of the driver. Some example device names are printed out below.

Table 26.2. Device number to device name conversion

Device number Filesystem name Location

0 /dev/b1553brm0 On-Chip Bus

1 /dev/b1553brm1 On-Chip Bus

2 /dev/b1553brm2 On-Chip Bus

Depends on system configuration /dev/rastaio0/b1553brm0 GR-RASTA-IO

An example of an RTEMS open call is shown below.

fd = open("/dev/b1553brm0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as indicated in table Ta-
ble 26.3.

Table 26.3. Open errno values

Errno Description

ENODEV Illegal device name or not available

RCC-UM
September 2020, Version 1.3-rc9

196 www.cobhamaes.com/gaisler

Errno Description

EBUSY Device already opened

26.2.4. Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the [brm] driver.

26.2.5. I/O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most operating systems
support at least two arguments to ioctl, the first being an integer which selects ioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global [errno] variable is set accordingly.

All supported commands and their data structures are defined in the BRM driver's header file [brm.h]. In functions
where only one argument is needed the pointer (...,void *arg) may be converted to an integer and interpreted
directly, thus simplifying the code.

26.2.5.1. Data structures

26.2.5.1.1. Remote Terminal operating mode

The structure below is used for RT operating mode for all received events as well as to put data in the transmit
buffer.

struct rt_msg {
 unsigned short miw;
 unsigned short time;
 unsigned short data[32];
 unsigned short desc;
};

Table 26.4. rt_msg member descriptions.

Member Description

miw
Bit(s) Description

15-11 Word count / mode code - For subaddresses this is the number of
received words. For mode codes it is the receive/transmit mode
code.

10 -

9 A/B - 1 if message receive on bus A, 0 if received on bus B.

8 RTRT - 1 if message is part of an RT to RT transfer

7 ME - 1 if an error was encountered during message processing. Bit
4-0 gives the details of the error.

6-5 -

4 ILL - 1 if received command is illegalized.

3 TO - If set, the number of received words was less than the amount
specified by the word count.

2 OVR - If set, the number of received words was more than amount
specified by the word count.

1 PRTY - 1 if the RT detected a parity error in the received data.

RCC-UM
September 2020, Version 1.3-rc9

197 www.cobhamaes.com/gaisler

Member Description

Bit(s) Description

0 MAN - 1 if a Manchester decoding error was detected during data
reception.

time Time Tag - Contains the value of the internal timer register when the message was re-
ceived.

data An array of 32 16 bit words. The word count specifies how many data words that are
valid. For receive mode codes with data the first data word is valid.

desc Bit 6-0 is the descriptor used.

The last variable in the [struct rt_msg] shows which descriptor (i.e rx subaddress, tx subaddress, rx mode code or
tx mode code) that the message was for. They are defined as shown in the table below:

Table 26.5. Descriptor table

Descriptor Description

0 Reserved for RX mode codes

1-30 Receive subaddress 1-30

31 Reserved for RX mode codes

32 Reserved for TX mode codes

33-62 Transmit subaddress 1-30

63 Reserved for TX mode codes

64-95 Receive mode code

96-127 Transmit mode code

If there has occurred an event queue overrun bit 15 of this variable will be set in the first event read out. All events
received when the queue is full are lost.

26.2.5.1.2. Bus Controller operating mode

When operating as BC the command list that the BC is to process is described in an array of BC messages as
defined by the struct [bc_msg].

struct bc_msg {
 unsigned char rtaddr[2];
 unsigned char subaddr[2];
 unsigned short wc;
 unsigned short ctrl;
 unsigned short tsw[2];
 unsigned short data[32];
};

Table 26.6. struct bc_msg member description

Member Description

rtaddr Remote terminal address - For non RT to RT message only rtaddr[0] is used. It specifies
the address of the remote terminal to which the message should be sent. For RT to RT
messages rtaddr[0] specifies the receive address and rtaddr[1] the transmit address.

subaddr The subaddr array works in the same manner as rtaddr but for the subaddresses.

wc Word Count - Specifies the word count, or mode code if subaddress is 0 or 31.

ctrl
Bit(s) Description

15 Message Error. Set by BRM while traversing list if protocol error is de-
tected.

RCC-UM
September 2020, Version 1.3-rc9

198 www.cobhamaes.com/gaisler

Member Description

Bit(s) Description

14-6 -

5 END. Indicates end of list

4-3 Retry, Number of retries, 0=4, 1=1, 2=2, 3=3. BC will alternate buses dur-
ing retries.

2 AB, 1 – Bus B, 0 - Bus A

1 1 RT to RT, 0 normal

0 0 RT Transmit, 1 RT receive (ignored for RT to RT)

tsw Status words

data Data in message, not used for RT receive (ctrl.0 = 1).

26.2.5.1.3. Bus Monitor operating mode

The structure below is used for BM operating mode for all received events as well as to put data in the transmit
buffer.

struct bm_msg {
 unsigned short miw;
 unsigned short cw1;
 unsigned short cw2;
 unsigned short sw1;
 unsigned short sw2;
 unsigned short time;
 unsigned short data[32];
};

Table 26.7. struct bm_msg member description

Member Description

miq
Bit(s) Description

15 Overrun- Indicates that the monitor message queue has been overrun.

14-10 -

9 Channel A/B -1 if message captured on bus A, 0 if captured on bus B.

8 RT to RT transfer - 1 if message is part of an RT to RT transfer

7 Message Error - 1 if an error was encountered during message processing.
Bit 4-0 gives the details of the error.

6 Mode code without data - 1 if a mode code without data word was cap-
tured.

5 Broadcast - 1 if a broadcast message was captured.

4 -

3 Time out - If set, the number of captured data words was less than the
amount specified by the word count.

2 Overrun -If set, the number of captured data words was more than amount
specified by the word count.

1 Parity- 1 if the BM detected a parity error in the received data.

0 Manchester error - 1 if a Manchester decoding error was detected during
data reception.

cw1 1553 Command word 1

cw2 1553 Command word 2, only used for RT to RT transfers and then holds the transmit
command.

RCC-UM
September 2020, Version 1.3-rc9

199 www.cobhamaes.com/gaisler

Member Description

sw1 1553 Status word 1

sw2 1553 Status word 2, is only used for RT to RT transfers and then holds the status word
from the transmitting RT.

time Time tag (time) Contains the value of the internal timer register when the message was
captured.

data An array of 32 16 bit words. The command word specifies how many data words that are
valid. For receive mode codes with data the first data word is valid.

26.2.6. Configuration

The BRM core and driver are configured using ioctl calls. The Table 26.9 below lists all supported ioctl calls.
BRM_ should be concatenated with the call number from the table to get the actual constant used in the code.
Return values for all calls are 0 for success and -1 on failure. Errno is set after a failure as indicated in Table 26.8.

An example is shown below where the operating mode is set to Bus Controller (BC) by using an ioctl call:

unsigned int mode = BRM_MODE_BC;
result = ioctl(fd, BRM_SET_MODE, &mode);

Table 26.8. ERRNO values for ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The BRM hardware is not in the correct state to accept this command.
Errno is set to EBUSY when issuing a BRM_DO_LIST before the last
BRM_DO_LIST command has finished its execution.

ENOMEM Not enough memory for driver to complete request.

Table 26.9. ioctlcalls supported by the BRM driver.

Call Number Description ERRNO

SET_MODE Set operating mode (0=BC, 1=RT, 2=BM) EINVAL, ENOMEM

SET_BUS Enable/disable buses

SET_MSGTO Set message timeout

SET_RT_ADDR Get Remote Terminal address

SET_STD Get bus standard

SET_BCE Enable/disable broadcasts

TX_BLOCK Set blocking/non-blocking mode for RT write calls and BC
DO_LIST commands.

RX_BLOCK Set blocking/non-blocking mode for RT and BM read calls

CLR_STATUS Clear status flag

GET_STATUS Read status flag EINVAL

SET_EVENTID Set event id

DO_LIST Execute list (BC mode) EINVAL, EBUSY

LIST_DONE Wait for list to finish execution (BC mode) EINVAL, EBUSY

All ioctl requests takes as parameter the address to an unsigned int where data will be read from or written to
depending on the request.

There are two more ioctl requests but they are not for configuration and are described later in Bus Controller
Operation.

RCC-UM
September 2020, Version 1.3-rc9

200 www.cobhamaes.com/gaisler

26.2.6.1. SET_MODE

Sets the operating mode of the BRM. Data should be 0 for BC, 1 for RT and 2 for BM.

26.2.6.2. SET_BUS

For RT mode only. Sets which buses that are enabled.

0 - none, 1 - bus B, 2 - bus A and 3 both bus A and B.

26.2.6.3. SET_MSGTO

For BC and BM mode. Sets the RT no response time out. If in MIL-STD-1553 B mode it is either 14 us or 30
us. In MIL-STD-1553 A mode either 9 us or 21 us.

26.2.6.4. SET_RT_ADDR

Sets the remote address for the RT. 0 - 30 if broadcasts enabled, 0 - 31 otherwise.

26.2.6.5. BRM_SET_STD

Sets the bus standard. 0 for MIL-STD-1553 B, 1 for MIL-STD-1553 A.

26.2.6.6. BRM_SET_BCE

Enable/disable broadcasts. 1 enables them, 0 disables.

26.2.6.7. BRM_TX_BLOCK

Set blocking/non blocking mode for RT write calls and BC ioctls. Blocking is default.

26.2.6.8. BRM_RX_BLOCK

Set blocking/non blocking mode for RT read calls. Blocking is default.

26.2.6.9. BRM_CLR_STATUS

Clears status bit mask. No input is needed it always succeeds.

26.2.6.10. BRM_GET_STATUS

Reads the status bit mask. The status bit mask is modified when an error interrupt is received. This ioctl command
can be used to poll the error status by setting the argument to an [unsigned int] pointer.

Table 26.10. Status bit mask

Bit(s) Description Modes

31-16 The last descriptor that caused an error. Is not set for hardware
errors.

BC, RT

BRM_DMAF_IRQ DMA Fail all

BRM_WRAPF_IRQ Wrap Fail BC, RT

BRM_TAPF_IRQ Terminal Address Parity Fail RT

BRM_MERR_IRQ Message Error all

BRM_RT_ILLCMD_IRQ Illegal Command RT

BRM_BC_ILLCMD_IRQ Illogical Command BC

BRM_ILLOP_IRQ Illogical Opcode BC

26.2.6.11. BRM_EST_EVENTID

Sets the event id to an event id external to the driver. It is possible to stop the event signalling by setting the event
id to zero.

RCC-UM
September 2020, Version 1.3-rc9

201 www.cobhamaes.com/gaisler

When the driver notifies the user (using the event id) the bit mask that caused the interrupt is sent along as an
argument. Note that it may be different from the status mask read with BRM_GET_STATUS since previous
error interrupts may have changed the status mask. Thus there is no need to clear the status mask after an event
notification if only the notification argument is read.

See table Table 26.10 for the description of the notification argument.

26.2.7. Remote Terminal operation

When operating as Remote Terminal (RT) the driver maintains a receive event queue. All events such as receive
commands, transmit commands, broadcasts, and mode codes are put into the event queue. Each event is described
using a struct rt_msg as defined earlier in the data structure subsection.

The events are read of the queue using the read() call. The buffer should point to the beginning of one or several
struct rt_msg. The number of events that can be received is specified with the length argument. E.g:

struct rt_msg msg[2];
n = read(brm_fd, msg, 2);

The above call will return the number of events actually placed in msg. If in non- blocking mode -1 will be returned
if the receive queue is empty and errno set to EBUSY. Note that it is possible also in blocking mode that not all
events specified will be received by one call since the read call will cease to block as soon as there is one event
available.

What kind of event that was received can be determined by looking at the [desc] member of a rt_msg. It should
be interpreted according to Table 26.8. How the rest of the fields should be interpreted depends on what kind of
event it was, e.g if the event was a reception to subaddress 1 to 30 the word count field in the message information
word gives the number of received words and the data array contains the received data words.

To place data in the transmit buffers the write() call is used. The buffer should point to the beginning of one or
several struct rt_msg. The number of messages is specified with the length argument. E.g:

struct rt_msg msg;
msg.desc = 33; /* transmit for subaddress 1 */
msg.miw = (16 << 11) | (1 << 9) /* 16 words on bus A */
msg.data[0] = 0x1234;
...
msg.data[15] = 0xAABB;
n = write(brm_fd, msg, 1);

The number of messages actually placed in the transmit queue is returned. If the device is in blocking mode it
will block until there is room for at least one message. When the buffer is full and the device is in non-blocking
mode -1 will be returned and [errno] set to EBUSY. Note that it is possible also in blocking mode that not all
messages specified will be transmitted by one call since the write call will cease to block as soon as there is room
for one message.

Each subaddress has its own set of buffers used for transmission. The transmit buffers are implemented as a
circular buffer with room for 8 messages with 32 data words each. Each write() call appends a message to the
circular buffer of the subaddress specified by the arguments. The order in which the messages are actually sent is
determined by the order of the 1553 commands sent by the BC. RT-to-BC or RT-to-RT commands trigger the RT
to send the buffered messages. As a result of the DMA buffer implementation write() could fail writing to one
subaddress being out of buffers but succeed when writing to another subaddress which has free buffers.

26.2.8. Bus Controller operation

To use the BRM as Bus Controller one first has to use an ioctl() call to set BC mode. Command lists that the BC
should process are then built using arrays of struct bc_msg described earlier in the data structure subsection.
To start the list processing the ioctl() request BRM_DO_LIST is used. The ioctl() request BRM_LIST_DONE is
used to check when the list processing is done. It returns 1 in the supplied argument if operation has finished. Note
that BRM_LIST_DONE must be called before traversing the list to check results since this operation also copies
the results into the array. Errno is set to EBUSY when issuing a BRM_DO_LIST before the last BRM_DO_LIST
command has finished its execution.

Example use:

RCC-UM
September 2020, Version 1.3-rc9

202 www.cobhamaes.com/gaisler

struct bc_msg msg[2];
int done, data, k;
data = 0;
ioctl(brm_fd, BRM_SET_MODE, &data); /* set BC mode */
bc_msg[0].rtaddr[0] = 1;
bc_msg[0].subaddr[0] = 1;
bc_msg[0].wc = 32;
bc_msg[0].ctrl = BC_BUSA; /* rt receive on bus a */
for (k = 0; k < 32; k++)
 bc_msg[0].data[k] = k;
bc_msg[1].ctrl |= BC_EOL; /* end of list */
ioctl(brm_fd, BRM_DO_LIST, bc_msg);
ioctl(brm_fd, BRM_LIST_DONE, &done);

If in blocking mode the BRM_LIST_DONE ioctl will block until the BC has processed the list. When the BC
is finished and BRM_LIST_DONE has returned 1 in the argument the status words and received data can be
interpreted by the application. During blocking mode BRM_LIST_DONE may set errno to EINVAL if an illogical
opcode or an illogical command is detected by the hardware during the list execution.

26.2.9. Bus monitor operation

When operating as Bus Monitor (BM) the driver maintains a capture event queue. All events such as receive
commands, transmit commands, broadcasts, and mode codes are put into the event queue. Each event is described
using a struct bm_msg as defined in the data structure subsection.

The events are read of the queue using the read() call. The buffer should point to the beginning of one or several
struct bm_msg. The number of events that can be received is specified with the length argument. E.g:

struct bm_msg msg[2];
n = read(brm_fd, msg, 2);

The above call will return the number of events actually placed in [msg]. If in non- blocking mode -1 will be
returned if the receive queue is empty and [errno] set to EBUSY. Note that it is possible also in blocking mode
that not all events specified will be received by one call since the read call will cease to block as soon as there
is one event available.

RCC-UM
September 2020, Version 1.3-rc9

203 www.cobhamaes.com/gaisler

Chapter 27. B1553RT GRLIB Actel Core1553 RT driver

27.1. Introduction

This section describes the B1553RT Remote Terminal driver available for RTEMS. The reader is assumed to be
well acquainted with MIL-STD-1553 and RTEMS.

The B1553RT driver require the RTEMS Driver Manager.

27.1.1. RT Hardware

The B1553RT core operate at the same frequency as the bus, it must be 12, 16, 20 or 24MHz. It requires a 4KByte
DMA buffer area that must be aligned properly.

27.1.2. 1.1.2 Examples

There is a simple example available, it illustrates how to set up RT for reception and transmission of messages
sent by a BC. Received messages are handled by updating the transmission DMA Area for respective sub address.
The example collects statistics for received mode codes that the BC can read at sub address 30.

The example is part of the Gaisler RTEMS distribution, it can be found under /opt/rtems-5/src/sam-
ples/rtems-b1553rt.c.

27.2. User interface

The RTEMS MIL-STD-1553B RT driver supports standard accesses to file descriptors such as read, write and
ioctl. User applications include the rt driver's header file which contains definitions of all necessary data structures
and bit masks used when accessing the driver. An example application using the driver is provided in the examples
directory.

27.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using standard
means, such as open. The RTEMS I/O driver registration is performed automatically by the driver when B1553RT
hardware is found for the first time. The driver is called from the driver manager to handle detected B1553RT
hardware. In order for the driver manager to unite the B1553RT driver with the B1553RT hardware one must
register the driver to the driver manager. This process is described in the driver manager chapter.

27.2.2. Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter. Below is a de-
scription of configurable driver parameters. The driver parameters is unique per B1553RT device. The parameters
are all optional, the parameters only overrides the default values.

Table 27.1. B1553RT driver parameter description

Name Type Parameter description

coreFreq INT The input clock frequency to the RT core. 0 = 12MHz, 1 = 16MHz, 2= 20MHz,
3 = 24MHz. The default is 24MHz. The driver auto detect the bus frequency and
override the default if the bus frequency is 20MHz, 16MHz or 12MHz. This pa-
rameter override the default and the auto detected value.

dmaBaseAdr INT Custom DMA area address. See note below.

27.2.2.1. Custom DMA area parameter

The DMA area can be configured to be located at a custom address. The standard configuration is to leave it up
to the driver to do dynamic allocation of the areas. However in some cases it may be required to locate the DMA
area on a custom location, the driver will not allocate memory but will assume that enough memory is available
and that the alignment needs of the core on the address given is fulfilled. The memory required is either 4K bytes.

RCC-UM
September 2020, Version 1.3-rc9

204 www.cobhamaes.com/gaisler

For some systems it may be convenient to give the addresses as seen by the B1553RT core. This can be done by
setting the LSB bit in the address to one. For example a PCI Target board with a AMBA bus with a B1553RT
core doesn't read from the same address as the CPU in order to access the same data. This is dependent on the PCI
mappings. Translation between CPU and B1553RT addresses must be done. The B1553RT driver automatically
translates the DMA base address. This requires the bus driver, in this case the PCI Target driver, to set up translation
addresses correctly.

27.2.3. Opening the device

Opening the device enables the user to access the hardware of a certain RT device. The driver is used for all RT
devices available. The devices is separated by assigning each device a unique name and a number called [minor].
The name is passed during the opening of the driver. Some example device names are printed out below.

Table 27.2. Device number to device name conversion.

Device number Filesystem name Location

0 /dev/b1553rt0 On-Chip Bus

1 /dev/b1553rt1 On-Chip Bus

2 /dev/b1553rt2 On-Chip Bus

An example of an RTEMS open call is shown below.

fd = open("/dev/b1553rt0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as indicated in Table 27.3.

Table 27.3. Open[errno] values.

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

27.2.4. Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the rt driver.

27.2.5. I/O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most operating systems
support at least two arguments to ioctl, the first being an integer which selects ioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global [errno] variable is set accordingly.

All supported commands and their data structures are defined in the RT driver's header file b1553rt.h.

27.2.5.1. Data structures

27.2.5.1.1. Remote Terminal operating mode

The structure below is used for all received events as well as to put data in the transmit buffer.

struct rt_msg {
 unsigned short miw;
 unsigned short time;
 unsigned short data[32];

RCC-UM
September 2020, Version 1.3-rc9

205 www.cobhamaes.com/gaisler

 unsigned short desc;
};

Table 27.4. [rt_msg] member descriptions.

Member Description

miw Message Information Word.

Bit(s) Description

15-11 Word count / mode code - For sub addresses this is the number of received words.
For mode codes it is the receive/transmit mode code.

10 -

9 A/B - 1 if message receive on bus A, 0 if received on bus B.

8 reserved

7 ME - 1 if an error was encountered during message processing. Bit 4-0 gives the
details of the error.

6-5 -

4 ILL - 1 if received command is illegalized.

3 reserved

2 reserved

1 PRTY - 1 if the RT detected a parity error in the received data.

0 MAN - 1 if a Manchester decoding error was detected during data reception.

time Time Tag - Contains the value of the internal timer register when the message was received.

data An array of 32 16 bit words. The word count specifies how many data words that are valid. For
receive mode codes with data the first data word is valid.

desc Bit 6-0 is the descriptor used. Bit 15 indicates software buffer overrun when set, the messages
was not read out in time which lead to the driver needed to skip at least one received message.

The last variable in the struct rt_msg shows which descriptor (i.e rx subaddress, tx subaddress, rx mode code or
tx mode code) that the message was for. They are defined as shown in the table below:

Table 27.5. Descriptor table

Descriptor Description

0 Reserved for RX mode codes

1-30 Receive subaddress 1-30

31 Reserved for RX mode codes

32 Reserved for TX mode codes

33-62 Transmit subaddress 1-30

63 Reserved for TX mode codes

64-95 Receive mode code

96-127 Transmit mode code

If there has occurred an event queue overrun bit 15 of this variable will be set in the first event read out. All events
received when the queue is full are lost.

The RT core and driver are configured using ioctl calls. The table Table 27.7 below lists all supported ioctl calls.
RT_ should be concatenated with the call number from the table to get the actual constant used in the code. Return
values for all calls are 0 for success and -1 on failure. Errno is set after a failure as indicated in Table 27.6.

An example is shown below where the Remote Terminal Address is set to one by using an ioctl call:

RCC-UM
September 2020, Version 1.3-rc9

206 www.cobhamaes.com/gaisler

Table 27.6. ERRNO values for ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

ENOSYS Invalid request, now such ioctl command.

Table 27.7. ERRNO values for ioctl calls.

Call Number Description ERRNO

SET_ADDR Set Remote Terminal address

SET_BCE Enable/disable broadcast

SET_VECTORW Set VECTOR WORD register in RT core

SET_EXTMDATA Set/Clear EXTMDATA bit in RT core

RX_BLOCK Set blocking/non-blocking mode for read calls

CLR_STATUS Reset status flag

GET_STATUS Read status flag EINVAL

SET_EVENTID Set event id used to signal detected errors with

All ioctl requests takes as parameter the address to [an unsigned int] where data will be read from or written to
depending on the request.

27.2.6.1. RT_SET_ADDR

Sets the remote address for the RT. 0 - 30 if broadcasts enabled, 0 - 31 otherwise.

27.2.6.2. RT_SET_BCE

Enable/disable broadcasts. 1 enables them, 0 disables.

27.2.6.3. RT_SET_VECTORW

Set the vector word register in the RT core. This might not have an effect depending on how the RT core register
have been set up.

27.2.6.4. RT_RX_BLOCK

Set blocking/non blocking mode for RT read calls. Blocking is default.

27.2.6.5. RT_SET_EXTMDATA

Set or clear the EXTMDATA bit of the RT core. The input is a pointer to a integer which determines the EXTM-
DATA bit.

27.2.6.6. RT_SET_STATUS

Clears status bit mask. No input is needed it always succeeds.

27.2.6.7. RT_GET_STATUS

Reads the status bit mask. The status bit mask is modified when an error interrupt is received. This ioctl command
can be used to poll the error status by setting the argument to an unsigned int pointer.

Table 27.8. Status bit mask

Bit(s) Description

31-16 The last descriptor that caused an error. Is not set for hardware errors.

RT_DMAF_IRQ DMA Fail, AHB error from AMBA wrapper or Memory failure indicated by the RT
Core.

RCC-UM
September 2020, Version 1.3-rc9

207 www.cobhamaes.com/gaisler

Bit(s) Description

RT_MERR_IRQ Message Error

RT_ILLCMD_IRQ Illegal Command

27.2.6.8. RT_SET_EVENTID

Sets the event id to an event id external to the driver. It is possible to stop the event signalling by setting the event
id to zero.

When the driver notifies the user (using the event id) the bit mask that caused the interrupt is sent along as an
argument. Note that it may be different from the status mask read with RT_GET_STATUS since previous error
interrupts may have changed the status mask. Thus there is no need to clear the status mask after an event notifi-
cation if only the notification argument is read.

See table Table 27.8 for the description of the notification argument.

27.2.7. Remote Terminal operation

The Remote Terminal (RT) driver maintains a receive event queue. All events such as receive commands, transmit
commands, broadcasts, and mode codes are put into the event queue. Each event is described using a struct
rt_msg as defined earlier in the data structure subsection.

The events are read of the queue using the read() call. The buffer should point to the beginning of one or several
struct rt_msg. The number of events that can be received is specified with the length argument. E.g:

struct rt_msg msg[2];
n = read(rt_fd, msg, 2);

The above call will return the number of events actually placed in msg. If in non-blocking mode -1 will be returned
if the receive queue is empty and errno set to EBUSY. Note that it is possible also in blocking mode that not all
events specified will be received by one call since the read call will cease to block as soon as there is one event
available.

What kind of event that was received can be determined by looking at the [desc] member of a rt_msg. It should
be interpreted according to table 8. How the rest of the fields should be interpreted depends on what kind of event
it was, e.g if the event was a reception to subaddress 1 to 30 the word count field in the message information word
gives the number of received words and the data array contains the received data words.

To place data in the transmit sub addresses the write() call is used. The buffer should point to the beginning
of one struct rt_msg. The number of messages is specified with the length argument, it must be specified
to one. E.g:

struct rt_msg msg;
msg.desc = 33; /* transmit for subaddress 1 */
msg.miw = (16 << 11); /* 16 words */
msg.data[0] = 0x1234;
...
msg.data[15] = 0xAABB;
n = write(rt_fd, msg, 1);

Regardless of the blocking mode the message will be copied directly into the RT DMA area and the write call
will return directly.

RCC-UM
September 2020, Version 1.3-rc9

208 www.cobhamaes.com/gaisler

Chapter 28. GRCAN CAN driver

28.1. Introduction

The RTEMS GRCAN driver is accessed with a function based interface defined by the header file grcan.h and
this document.

The GRCAN driver requires the RTEMS Driver Manager.

28.1.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver. The driver is
called from the driver manager to handle detected GRCAN hardware. In order for the driver manager to unite the
GRCAN driver with the GRCAN hardware one must register the driver to the driver manager. This process is
described in the driver manager chapter.

28.1.2. Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter. Below is a de-
scription of configurable driver parameters. The driver parameters are unique to a CAN device. Each parameters
is optional and overrides the default value.

Table 28.1. GRCAN driver parameter description

Name Type Parameter description

txBufSize INT Length of TX DMA area. Must be a multiple of 64 bytes, four messages.

rxBufSize INT Length of RX DMA area. Must be a multiple of 64 bytes, four messages.

txBufAdr INT Custom TX DMA area address. See note below.

rxBufAdr INT Custom RX DMA area address. See note below.

28.1.2.1. Custom DMA area parameters

The DMA area can be configured to be located at a custom address. The standard configuration is to leave it up
to the driver to do dynamic allocation of the areas. However in some cases it may be required to locate the DMA
area on a custom location, the driver will not allocate memory but will assume that enough memory is available
and that the alignment needs of the core on the address given is fulfilled.

For some systems it may be convenient to give the addresses as seen by the CAN core. This can be done by setting
the LSB bit in the address to one. For example a GR- RASTA-IO board with a CAN core doesn't read from the
same address as the CPU in order to access the same data. This is dependent on the PCI mappings. Translation
between CPU and CAN addresses must be done. The CAN driver automatically translates the required addresses.
This requires the bus driver, in this case the GR-RASTA-IO driver, to set up translation addresses correctly.

28.2. User Interface

This section covers how the driver can be interfaced to an application to control the GRCAN hardware.

Controlling the driver and device is done with functions provided by the driver prefixed with grcan_. All driver
functions take a device handle returned by grcan_open as the first parameter. All supported commands and
their data structures are defined in the CAN driver's header file grcan.h.

28.2.1. Opening and closing device

A GRCAN device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using grcan_dev_count. A particular device can be opened by
index using grcan_open, opened by name using grcan_open_by_name and closed using grcan_close.
The functions are described below.

RCC-UM
September 2020, Version 1.3-rc9

209 www.cobhamaes.com/gaisler

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. This procedure is thread-safe by protecting from other threads by using the GRCAN
driver's semaphore lock. The semaphore is used by all GRCAN devices on device opening and closing.

The example below prints the number of GRCAN devices to screen then opens and closes the first GRCAN device
present in the system.

int print_grcan_devices()
{
 void *device;
 int count, options, clkdiv;

 count = grcan_dev_count();
 printf("%d GRCAN device(s) present\n", count);

 device = grcan_open(0);
 if (!device)
 return -1; /* Failure */

 grcan_close(device);
 return 0; /* success */
}

Table 28.2. grcan_dev_count function declaration

Proto int grcan_dev_count(void)

About Retrieve number of GRCAN devices registered to the driver.

Return int. Number of GRCAN devices registered in system, zero if none.

Table 28.3. grcan_open function declaration

Proto void *grcan_open(int dev_no)

About Opens a GRCAN device. The GRCAN device is identified by index. The returned value is used as in-
put argument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by grcan_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

Notes May blocking until other GRCAN device operations complete.

Table 28.4. grcan_open_by_name function declaration

Proto void *grcan_open_by_name(char *name, int *dev_no)

About Opens a GRCAN device. The GRCAN device is identified by a string. This function finds the device
index and then calls grcan_open(index). The returned value is used as input argument to all
functions operating on the device.

name [IN] PointerParam

Device name to open. For example grcan0.

dev_no [OUT] PointerParam

Device number matching name. Will be set if device is found and dev_no != NULL.

Pointer. Status and driver's internal device identification.Return

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

RCC-UM
September 2020, Version 1.3-rc9

210 www.cobhamaes.com/gaisler

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

Notes May blocking until other GRCAN device operations complete.

Table 28.5. grcan_close function declaration

Proto int grcan_close(void *d)

About Closes a previously opened device.

d [IN] pointerParam

Device identifier. Returned from grcan_open.

Return int. This function always returns 0 (success)

28.2.2. Operation mode

The driver always operates in one of four modes: STATE_STARTED, STATE_STOPPED, STATE_BUSOFF or
STATE_AHBERR. In STATE_STOPPED mode, the DMA is disabled and the user is allowed to configure the
device and driver. In STATE_STARTED mode, the receive and transmit DMA can be active and only a limited
number of configuration operations are possible.

The driver enters STATE_BUSOFF mode if a bus-off condition is detected and STATE_AHBERR if an AHB error
is caused by the GRCAN DMA. When any of these two modes are entered, the user should call grcan_stop()
followd by grcan_start() to put the driver in STATE_STARTED again.

Transitions between started and stopped mode are normally caused by the users interaction with the driver API
functions. In some situations, such CAN bus-off or DMA AHB error condition, the driver itself makes the transition
from started to stopped.

28.2.2.1. Starting and stopping

The grcan_start() function places the CAN core in STATE_STARTED mode. Configuration set by previous
driver function calls are committed to hardware before started mode enters. It is necessary to enter started mode to
be able to receive and transmit messages on the CAN bus. The grcan_start() function call will fail if receive
or transmit buffers are not correctly allocated or if the CAN core is already is in started mode.

The function grcan_stop() makes the CAN core leave the previous mode and enter STATE_STOPPED mode.
After calling this function, further calls to grcan_read() or grcan_write() will fail. It is necessary to
enter stopped mode to change operating parameters of the CAN core such as the baud rate and for the driver
to safely change configuration such as FIFO buffer lengths. The function will fail if the CAN core already is in
stopped mode.

Function grcan_get_state() is used to determine the driver operation mode.

Table 28.6. grcan_get_state function declaration

Proto int grcan_get_state(void *d)

About Get current GRCAN software state

If STATE_BUSOFF or STATE_AHBERR is returned then the function grcan_stop() shall be
called before continue using the driver.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

int. Status

Value Description

STATE_STOPPED Stopped

Return

STATE_STARTED Started

RCC-UM
September 2020, Version 1.3-rc9

211 www.cobhamaes.com/gaisler

STATE_BUSOFF Bus-off has been detected

STATE_AHBERR AHB error has been detected

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

grcan_flush() blocks the calling thread until all messages in the driver's buffers has been processed by the
CAN hardware. This function may fail if the mode is changed, the driver is closed, or an error is detected by
hardware. Non-zero is returned in such case.

28.2.3. Configuration

The CAN core and driver are configured using function calls. Return values for most functions are 0 for success
and non-zero on failure.

The function grcan_set_silent() sets the SILENT bit in the configuration register of the CAN hardware
the next time the driver is started. If the SILENT bit is set the CAN core operates in listen only mode where
grcan_write() calls fail and grcan_read() calls proceed. This function fails and returns nonzero if called
in started mode.

grcan_set_abort() sets the ABORT bit in the configuration register of the CAN hardware. The ABORT bit is
used to cause the hardware to stop the receiver and transmitter when an AMBA AHB error is detected by hardware.
This function fails and returns nonzero if called in started mode.

28.2.3.1. Channel selection

grcan_set_selection() selects active channel used during communication. The function takes a second
argument, a pointer to a grcan_selection data structure described below. This function fails and returns nonzero
if called in started mode.

The grcan_selection data structure is used to select active channel. Each channel has one transceiver that can be
activated or deactivated using this data structure. The hardware can however be configured active low or active
high making it impossible for the driver to know how to set the configuration register in order to select a predefined
channel.

 struct grcan_selection {
 int selection;
 int enable0;
 int enable1;
};

Table 28.7. grcan_selection member description

Member Description

selection Select receiver input and transmitter output.

enable0 Set value of output 1 enable

enable1 Set value of output 1 enable

28.2.3.2. Timing parameters

grcan_set_btrs() sets the timing registers manually. See the CAN hardware documentation for a detailed
description of the timing parameters. The function takes a pointer to a grcan_timing data structure containing all
available timing parameters. The grcan_timing data structure is described below. This function fails and returns
nonzero if called in started mode.

The grcan_timing data structure is used when setting GRCAN timing configuration registers manually. The pa-
rameters are used when hardware generates the baud rate and sampling points.

struct grcan_timing {
 unsigned char scaler;
 unsigned char ps1;
 unsigned char ps2;
 unsigned int rsj;
 unsigned char bpr;
};

RCC-UM
September 2020, Version 1.3-rc9

212 www.cobhamaes.com/gaisler

Table 28.8. grcan_timing member description

Member Description

scaler Prescaler

ps1 Phase segment 1

ps2 Phase segment 2

rsj Resynchronization jumps, 1..4

bpr
Value Baud rate

0 system clock / (scaler+1) / 1

1 system clock / (scaler+1) / 2

2 system clock / (scaler+1) / 4

3 system clock / (scaler+1) / 8

28.2.3.3. Blocking mode

grcan_set_rxblock() changes the behaviour of grcan_read() calls to blocking or non-blocking mode.
When in blocking mode the calling thread will be blocked until there is data available to read. It may return
after any number of CAN messages have been read. Use grcan_set_rxcomplete() to control the driver's
blocking mode behaviour further. For non-blocking mode the calling thread will never be blocked returning a zero
length of data. grcan_set_rxcomplete() has no effect in non-blocking mode. This function can be called
in any mode and never fails.

grcan_set_txblock() changes the behaviour of grcan_write() calls to blocking or non-blocking mode.
When in blocking mode the calling thread will be blocked until at least one message can be written to the driver's
circular buffer. It may return after any number of messages has been written. Use grcan_set_txcomplete()
to control the driver's blocking mode behaviour further. For non-blocking mode the calling thread will never be
blocked which may result in grcan_write() returning a zero length when the driver's internal buffers are full.
grcan_set_txcomplete() has no effect in non-blocking mode. This function can be called in any mode
and never fails.

grcan_set_txcomplete() disables or enables grcan_write() to block until all messages specified by
the caller are copied to driver's internal buffers before returning. This option is only relevant in TX blocking mode.
This function can be called in any mode and never fails.

grcan_set_rxcomplete() disables or enables grcan_read() to block until all messages specified by
the caller are read into the user specified buffer. This option is only relevant in RX blocking mode. This function
can be called in any mode and never fails.

28.2.4. Receive filters

28.2.4.1. Data structures

The grcan_filter structure is used when changing acceptance filter of the CAN receiver and the SYNC Rx/Tx Filter
using the functions grcan_set_afilter and grcan_set_sfilter. This datastructure is used differently
for different driver functions.

 struct grcan_filter {
 unsigned long long mask;
 unsigned long long code;
};

Table 28.9. grcan_filter member description

Member Description

mask Selects what bits in code will be used or not. A set bit is interpreted as don't care.

code Specifies the pattern to match, only the unmasked bits are used in the filter.

RCC-UM
September 2020, Version 1.3-rc9

213 www.cobhamaes.com/gaisler

28.2.4.2. Acceptance filter

grcan_set_afilter() sets acceptance filter which is matched for each meassge received. Let the second
argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass the filter.
Messages matching the condition below are passed and possible to read from user space:

(id XOR code) AND mask = 0

grcan_set_afilter() can be called in any mode and never fails.

28.2.4.3. Sync filter

grcan_set_sfilter() sets Rx/Tx SYNC filter which is matched by receiver for each message received. Let
the second argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass
the filter. Messages matching the condition below are treated as SYNC messages:

(id XOR code) AND mask = 0

grcan_set_sfilter() can be called in any mode and never fails.

28.2.5. Driver statistics

grcan_get_stats() copies the driver's internal counters to a user provided data area. The format of the data
written is described below (grcan_stats). The function will fail if the user pointer is NULL.

grcan_clr_stats() clears the driver's collected statistics. This function never fails.

The grcan_stats data structure contains various statistics gathered by the CAN hardware.

struct grcan_stats {
unsigned int passive_cnt;
unsigned int overrun_cnt;
unsigned int rxsync_cnt;
unsigned int txsync_cnt;
unsigned int ints;
};

Table 28.10. grcan_stats member description

Member Description

passive_cnt Number of error passive mode detected.

overrun_cnt Number of reception over runs.

rxsync_cnt Number of received SYNC messages (matching SYNC filter)

txsync_cnt Number of transmitted SYNC messages (matching SYNC filter)

txloss_cnt Number of times transmission arbitration has been lost

ahberr_cnt Number of DMA AHB errors

ints Number of times the interrupt handler has been invoked.

busoff_cnt Number of bus-off conditions

28.2.6. Device status

grcan_get_status() stores the current status of the CAN core to the location pointed to by the second
argument. This function is typically used to determine the error state of the CAN core. The 32-bit status word can
be matched against the bit masks in the table below.

Table 28.11. Device status word bit masks

Mask Description

GRCAN_STAT_PASS Error-passive condition

GRCAN_STAT_OFF Bus-off condition

GRCAN_STAT_OR Overrun during reception

RCC-UM
September 2020, Version 1.3-rc9

214 www.cobhamaes.com/gaisler

Mask Description

GRCAN_STAT_AHBERR AMBA AHB error

GRCAN_STAT_ACTIVE Transmission ongoing

GRCAN_STAT_RXERRCNT Reception error counter, 8-bit

GRCAN_STAT_TXERRCNT Transmission error counter, 8-bit

grcan_get_status() fails if the user pointer is NULL.

28.2.7. CAN bus transfers

28.2.7.1. Data structures

The CANMsg type is used when transmitting and receiving CAN messages. The structure describes the drivers
view of a CAN message. See the transmission and reception section for more information.

typedef struct {
 char extended;
 char rtr;
 char unused;
 unsigned char len;
 unsigned char data[8];
 unsigned int id;
} CANMsg;

Table 28.12. CANMsg member description

Member Description

extended Indicates whether the CAN message has 29 or 11 bits ID tag. Extended or Stan-
dard frame.

rtr Remote Transmission Request bit.

len Length of data.

data CAN message data, data[0] is the most significant byte – the first byte.

id The ID field of the CAN message. An extended frame has 29 bits whereas a stan-
dard frame has only 11-bits. The most significant bits are not used.

28.2.7.2. Transmission

Messages are transmitted using the grcan_write() function. It is possible to transmit multiple CAN messages
in one call. An example transmission is shown below:

result = grcan_write(d, &tx_msgs[0], msgcnt));

On success the number of CAN messages transmitted is returned and on failure a GRCAN_RET_ value is returned.
The parameter tx_msgs points to the beginning of a CANMsg structure which includes data, length and trans-
mission parameters. The last function parameter specifies the total number of CAN messages to be transmitted.

The transmit operation can be configured to block when the driver software FIFO is full. In non-blocking mode,
grcan_write() will return immediately either with GRCAN_RET_TIMEOUT indicating that no messages were
scheduled or the number CAN messages scheduled.

Each message has an individual set of parameters controlled by the CANMsg type.

NOTE: The user is responsible for checking the number of messages actually sent when in non-blocking mode.
A 3 message transmission requests may end up in only 2 transmitted messages for example.

Table 28.13. grcan_write function declaration

Proto int grcan_write(void *d, CANMsg *msg, size_t count)

About Transmit CAN messages

RCC-UM
September 2020, Version 1.3-rc9

215 www.cobhamaes.com/gaisler

Multiple CAN messages can be transmitted in one call.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

msg [IN] PointerParam

First CAN messages to transmit

count [IN] IntegerParam

Total number of CAN messages to transmit.

int. Status

Value Description

>=0 Number of CAN messages transmitted. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter is less than one or the msg pa-
rameter is NULL.

GRCAN_RET_NOTSTARTED Driver is not in started mode or device is configured as silent. Noth-
ing done.

GRCAN_RET_TIMEOUT Timeout in non-blocking mode.

GRCAN_RET_BUSOFF A write was interrupted by a bus-off error. Device has left started
mode.

Return

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

28.2.7.3. Reception

CAN messages are received using the grcan_read() function. An example is shown below:

 enum { NUM_MSG = 5 };
 CANMsg rx_msgs[NUM_MSG];

 len = grcan_read(d, rx_msgs, NUM_MSG);

The requested number of CAN messages to be read is given in the third argument and messages are stored in
rx_msgs.

The actual number of CAN messages received is returned by the function on success. The function will fail and
return a GRCAN_RET_ value if a NULL buffer pointer is passed, buffer length is invalid or if the CAN core is
not started.

The blocking behaviour can be set using functions described in Section 28.2.3. In blocking mode the function will
block until at least one message has been received. In non-blocking mode, the function will return immediately
and if no message was available GRCAN_RET_TIMEOUT is returned.

Table 28.14. grcan_read function declaration

Proto int grcan_read(void *d, CANMsg *msg, size_t count)

About Receive CAN messages

Multiple CAN messages can be received in one call.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

msg [IN] PointerParam

Buffer for received messages

count [IN] IntegerParam

Number of CAN messages to receive.

Return int. Status

RCC-UM
September 2020, Version 1.3-rc9

216 www.cobhamaes.com/gaisler

Value Description

>=0 Number of CAN messages received. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter is less than one or the msg pa-
rameter is NULL.

GRCAN_RET_NOTSTARTED Driver is not in started mode. Nothing done.

GRCAN_RET_TIMEOUT Timeout in non-blocking mode (no space available in driver receive
FIFO).

GRCAN_RET_BUSOFF A read was interrupted by a bus-off error. Device has left started
mode.

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB Error.

28.2.7.4. Bus-off recovery

If either grcan_write() or grcan_read() returns GRCAN_RET_BUSOFF, then a bus-off condition was
detected and the driver has entered STATE_BUSOFF mode. To continue using the drirver, the user shall call
grcan_stop() followed by grcan_start() to enter started mode. It must be ensured that no other task is
calling the driver when recovering with grcan_start().

28.2.7.5. AHB error recovery

Similar to the bus-off condition, an AHB error condition can be caused by the GRCAN DMA. The driver will
enter STATE_AHBERR and the recovery procedure is the same as for bus-off.

28.2.8. Multitasking support

The functions grcan_write() and grcan_read() can be called on the same device handle concurrently
from different tasks, potentially executing on different processors in an SMP system.

RCC-UM
September 2020, Version 1.3-rc9

217 www.cobhamaes.com/gaisler

Chapter 29. CAN_OC GRLIB Opencores CAN driver

29.1. Introduction

This document is intended as an aid in getting started developing with GRLIB wrapper for Opencores CAN core
using the driver described in this document. It briefly takes the reader through some of the most important steps in
using the driver such as setting up a connection, configuring the driver, reading and writing CAN messages. The
reader is assumed to be well acquainted with CAN and RTEMS.

The OC_CAN driver require the RTEMS Driver Manager.

29.1.1. CAN Hardware

The OC_CAN core can operate in different modes providing the same register interfaces as other well known
CAN cores. The OC_CAN driver supports PeliCAN mode only.

29.1.2. Software Driver

The driver provides means for processes and threads to send and receive messages. Errors can be detected by
polling the status flags of the driver. Bus off errors cancels the ongoing transfers to let the caller handle the error.

The driver supports filtering received messages id fields by means of acceptance filters, runtime timing register
calculation given a baud rate. However not all baud rates may be available for a given system frequency. The
system frequency is hard coded and must be set in the driver.

29.1.3. Examples

There is a simple example available, it illustrates how to set up a connection, reading and writing messages using
the OC_CAN driver. It is made up of two tasks communicating with each other through two OC_CAN devices.
To be able to run the example one must have two OC_CAN devices externally connected together on the different
or the same board.

The example is part of the Gaisler RTEMS distribution, it can be found under /opt/rtems-5/src/exam-
ples/samples/rtems-occan.c, occan_lib.c and occan_lib.h .

The example can be built by running:

cd /opt/rtems-4.10/src/examples/samples
make clean rtems-occan rtems-occan_tx rtems-occan_rx

Where rtems-occan is intended for boards with two OC_CAN cores and rtems-occan_* is for set ups including
two boards with one OC_CAN core each.

29.2. User interface

The RTEMS OC_CAN driver supports the standard accesses to file descriptors such as read, write and ioctl. User
applications include the occan driver's header file which contains definitions of all necessary data structures and
bit masks used when accessing the driver. An example application using the driver is provided in the examples
directory.

29.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using standard
means, such as open. The RTEMS I/O driver registration is performed automatically by the driver when CAN
hardware is found for the first time. The driver is called from the driver manager to handle detected CAN hardware.
In order for the driver manager to unite the CAN driver with the CAN hardware one must register the driver to
the driver manager. This process is described in the driver manager chapter.

29.2.2. Driver resource configuration

This driver does not have any configurable resources. All configuration can be made though the ioctl interface.

RCC-UM
September 2020, Version 1.3-rc9

218 www.cobhamaes.com/gaisler

29.2.3. Opening the device

Opening the device enables the user to access the hardware of a certain OC_CAN device. The driver is used for
all OC_CAN devices available. The devices is separated by assigning each device a unique name and a number
called [minor]. The name is passed during the opening of the driver. The first 3 names are printed out:

Table 29.1. Device number to device name conversion.

Device number Filename name

0 /dev/occan0

1 /dev/occan1

2 /dev/occan2

An example of an RTEMS open call is shown below.

fd = open("/dev/occan0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as indicated in Table 29.1.

Table 29.2. Open ERRNO values.

ERRNO Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary mem-
ory.

29.2.4. Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the occan driver.

29.2.5. I/O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most operating systems
support at least two arguments to ioctl, the first being an integer which selects ioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the OC_CAN driver's header file occan.h. In
functions where only one argument is needed the pointer (void *arg) may be converted to an integer and interpreted
directly, thus simplifying the code.

29.2.5.1. Data structures

The occan_afilter struct is used when changing acceptance filter of the OC_CAN receiver.

struct occan_afilter {
 unsigned int code[4];
 unsigned int mask[4];
 int single_mode;
};

Table 29.3. occan_afilter member descriptions.

Member Description

code Specifies the pattern to match, only the unmasked bits are used in the filter.

mask Selects what bits in code will be used or not. A set bit is interpreted as don't care.

RCC-UM
September 2020, Version 1.3-rc9

219 www.cobhamaes.com/gaisler

Member Description

single_mode Set to none-zero for a single filter - single filter mode, zero selects dual filter mode.

The CANMsg struct is used when reading and writing messages. The structure describes the driver's view of a
CAN message. The structure is used for writing and reading. The sshot fields lacks meaning during reading and
should be ignored. See the transmission and reception section for more information.

 typedef struct {
 char extended;
 char rtr;
 char sshot;
 unsigned char len;
 unsigned char data[8];
 unsigned int id;
} CANMsg;

Table 29.4. CANMsg member descriptions.

Member Description

extended Indicates whether message has 29 or 11 bits ID tag. Extended or Standard frame.

rtr Remote Transmission Request bit.

sshot Single Shot. Setting this bit will make the hardware skip resending the message on trans-
mission error.

len Length of data.

data Message data, data[0] is the most significant byte – the first byte.

Id The ID field of the message. An extended frame has 29 bits whereas a standard frame has
only 11-bits. The most significant bits are not used.

The occan_stats struct contains various statistics gathered from the OC_CAN hardware.

typedef struct {
 /* tx/rx stats */
 unsigned int rx_msgs;
 unsigned int tx_msgs;

 /* Error Interrupt counters */
 unsigned int err_warn;
 unsigned int err_dovr;
 unsigned int err_errp;
 unsigned int err_arb;
 unsigned int err_bus;

 /* ALC 4-0 */
 unsigned int err_arb_bitnum[32];

 /* ECC 7-6 */
 unsigned int err_bus_bit; /* Bit error */
 unsigned int err_bus_form; /* Form Error */
 unsigned int err_bus_stuff; /* Stuff Error */
 unsigned int err_bus_other; /* Other Error */

 /* ECC 5 */
 unsigned int err_bus_rx;
 unsigned int err_bus_tx;

 /* ECC 4:0 */
 unsigned int err_bus_segs[32];

 /* total number of interrupts */
 unsigned int ints;

 /* software monitoring hw errors */
 unsigned int tx_buf_error;
} occan_stats;

Table 29.5. occan_stats member descriptions.

Member Description

rx_msgs Number of CAN messages received.

RCC-UM
September 2020, Version 1.3-rc9

220 www.cobhamaes.com/gaisler

Member Description

tx_msgs Number of CAN messages transmitted.

err_warn Number of error warning interrupts.

err_dovr Number of data overrun interrupts.

err_errp Number of error passive interrupts.

err_arb Number of times arbitration has been lost.

err_bus Number of bus errors interrupts.

err_arb_bitnum Array of counters, err_arb_bitnum[index] is incremented when arbitration is lost at bit in-
dex.

err_bus_bit Number of bus errors that was caused by a bit error.

err_bus_form Number of bus errors that was caused by a form error.

err_bus_stuff Number of bus errors that was caused by a stuff error.

err_bus_other Number of bus errors that was not caused by a bit, form or stuff error.

err_bus_tx Number of bus errors detected that was due to transmission.

err_bus_rx Number of bus errors detected that was due to reception.

err_bus_segs Array of 32 counters that can be used to see where the frame transmission often fails. See
hardware documentation and header file for details on how to interpret the counters.

ints Number of times the interrupt handler has been invoked.

29.2.5.2. Configuration

The OC_CAN core and driver are configured using ioctl calls. The Table 29.4 below lists all supported ioctl calls.
OCCAN_IOC_ should be concatenated with the call number from the table to get the actual constant used in the
code. Return values for all calls are 0 for success and -1 on failure. Errno is set after a failure as indicated in
Table 29.3.

An example is shown below where the receive and transmit buffers are set to 32 respective 8 by using an ioctl call:

result = ioctl(fd, OCCAN_IOC_SET_BUFLEN, (8<<16) | 32);

Table 29.6. ERRNO values for ioctlcalls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The CAN hardware is not in the correct state. Many ioctl calls need the CAN de-
vice to be in reset mode. One can switch state by calling START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands
to fail.

Table 29.7. ioctl calls supported by the OC_CAN driver.

Call Number Call Mode Description

START Reset Exit reset mode, brings up the link. Enables read and write.

STOP Running Exit operating mode, enter reset mode. Most of the settings
can only be set when in reset mode.

GET_STATS Don't care Get Stats.

GET_STATUS Don't care Get status of device. Bus off can be read out.

GET_SPEED Reset Set baud rate.

GET_BLK_MODE Don't Care Set blocking or non-blocking mode for read and write.

GET_BUFLEN Reset Set receive and transmit buffer length.

RCC-UM
September 2020, Version 1.3-rc9

221 www.cobhamaes.com/gaisler

Call Number Call Mode Description

GET_BTRS Reset Set timing registers manually.

29.2.5.2.1. START

This ioctl command places the CAN core in operating mode. Settings previously set by other ioctl commands are
written to hardware just before leaving reset mode. It is necessary to enter operating mode to be able to read or
write messages on the CAN bus.

The command will fail if receive or transmit buffers are not correctly allocated or if the CAN core already is in
operating mode.

29.2.5.2.2. STOP

This call makes the CAN core leave operating mode and enter reset mode. After calling STOP further calls to
read and write will result in errors.

It is necessary to enter reset mode to change operating parameters of the CAN core such as the baud rate and for
the driver to safely change configuration such as FIFO buffer lengths.

The command will fail if the CAN core already is in reset mode.

29.2.5.2.3. GET_STATS

This call copies the driver's internal counters to a user provided data area. The format of the data written is described
in the data structure subsection. See the occan_stats data structure.

The call will fail if the pointer to the data is invalid.

29.2.5.2.4. GET_STATUS

This call stores the current status of the CAN core to the address pointed to by the argument given to ioctl. This
call is typically used to determine the error state of the CAN core. The 4 byte status bit mask can be interpreted
as in Table 29.2 above.

Table 29.8. Status bit mask.

Mask Description

OCCAN_STATUS_RESET Core is in reset mode

OCCAN_STATUS_OVERRUN Data overrun

OCCAN_STATUS_WARN Has passed the error warning limit (96)

OCCAN_STATUS_ERR_PASSIVE Has passed the error Passive limit (127)

OCCAN_STATUS_ERR_BUSOFF Core is in reset mode due to a bus off (255)

This call never fail.

29.2.5.2.5. SET_SPEED

The SET_SPEED ioctl call is used to set the baud rate of the CAN bus. The timing register values are calculated
for the given baud rate. The baud rate is given in Hertz. For the baud rate calculations to function properly one
must define SYS_FREQ to the system frequency. It is located in the driver source occan.c.

If the timing register values could not be calculated -1 is returned and the errno value is set to EINVAL.

29.2.5.2.6. SET_BTRS

This call sets the timing registers manually. It is encouraged to use this function over the SET_SPEED.

This call fail if CAN core is in operating mode, in that case errno will be set to EBUSY.

RCC-UM
September 2020, Version 1.3-rc9

222 www.cobhamaes.com/gaisler

29.2.5.2.7. SET_BLK_MODE

This call sets blocking mode for receive and transmit operations, i.e. read and write. Input is a bit mask as described
in the table below.

Table 29.9. SET_BLK_MODE ioctl arguments

Bit number Description

OCCAN_BLK_MODE_RX Set this bit to make read block when no messages can be read.

OCCAN_BLK_MODE_TX Set this bit to make write block until all messages has been sent or put info
software fifo.

This call never fail.

29.2.5.2.8. SET_BUFLEN

This call sets the buffer length of the receive and transmit software FIFOs. To set the FIFO length the core needs
to be in reset mode. In the table below the input to the ioctl/ command is described.

Table 29.10. SET_BLK_MODE ioctl arguments

Mask Description

0x0000ffff Receive buffer length in number of CANMsg structures.

0xffff0000 Transmit buffer length in number of CANMsg structures.

Errno will be set to ENOMEM when the driver was not able to get the requested memory amount. EBUSY is set
when the core is in operating mode.

29.2.5.2.9. Transmission

Transmitting messages are done with the write call. It is possible to write multiple packets in one call. An example
of a write call is shown below:

result = write(fd, &tx_msgs[0], sizeof(CANMsg)*msgcnt))

On success the number of transmitted bytes is returned and -1 on failure. Errno is also set in the latter case.
Tx_msgs points to the beginning of the CANMsg structure which includes id, type of message, data and data
length. The last parameter sets the number of CAN messages that will be transmitted it must be a multiple of
CANMsg structure size.

The call will fail if the user tries to send more bytes than is allocated for a single packet (this can be changed with
the SET_PACKETSIZE ioctl call) or if a NULL pointer is passed.

The write call can be configured to block when the software fifo is full. In non-blocking mode write will immedi-
ately return either return -1 indicating that no messages was written or the total number of bytes written (always
a multiple of CANMsg structure size). Note that 3 message write request may end up in only 2 written, the caller
is responsible to check the number of messages actually written in non-blocking mode.

If no resources are available in non-blocking mode the call will return with an error. The errno variable is set
according to the table given below.

Table 29.11. ERRNO values for write

ERRNO Description

EINVAL An invalid argument was passed. The buffer length was less than a single CANMsg struc-
ture size.

EBUSY The link is not in operating mode, but in reset mode. Nothing done.

ETIMEDOUT In non-blocking mode.

RCC-UM
September 2020, Version 1.3-rc9

223 www.cobhamaes.com/gaisler

ERRNO Description

EIO Calling task was woken up from blocking mode by a bus off error. The CAN core has en-
tered reset mode. Further calls to read or write will fail until the ioctl command START
is issued again.

Each Message has an individual set of options controlled in the CANMsg structure. See the data structure subsec-
tion for structure member descriptions.

29.2.6. Reception

Reception is done using the read call. An example is shown below:

CANMsg rx_msgs[5];

len = read(fd, rx_msgs, sizeof(rx_msgs));

The requested number of bytes to be read is given in the third argument. The messages will be stored in rx_msgs.
The actual number of received bytes (a multiple of sizeof(CANMsg)) is returned by the function on success and
-1 on failure. In the latter case errno is also set.

The CANMsg data structure is described in the data structure subsection.

The call will fail if a null pointer is passed, invalid buffer length, the CAN core is in reset mode or due to a bus
off error in blocking mode.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until at least one packet
has been received. In non-blocking mode, the call will return immediately and if no packet was available -1 is
returned and errno set appropriately. The table below shows the different errno values is returned.

Table 29.12. ERRNO values for readcalls.

ERRNO Description

EINVAL AA NULL pointer was passed as the data pointer or the length was illegal.

EBUSY CAN core is in reset mode. Swtich to operating mode by issuing a START ioctl
command.

RCC-UM
September 2020, Version 1.3-rc9

224 www.cobhamaes.com/gaisler

Chapter 30. SatCAN driver (SatCAN)

30.1. Introduction

This document is intended as an aid in getting started developing with the GRLIB wrapper for the SatCAN core
using the driver described in this document. It briefly takes the reader through some of the most important steps in
using the driver such as setting up a connection, configuring the driver, reading and writing CAN messages. The
reader is assumed to be well acquainted with the operation of the SatCAN core and RTEMS.

30.1.1. SatCAN Hardware Wrapper

See the SatCAN wrapper manual.

30.1.2. Software Driver

The driver provides means for processes and threads to send and receive messages and provides callback functions
for SatCAN wrapper interrupts.

All core registers can be accessed via Input/Output-control (ioctl) calls.

30.1.3. Examples

There is a simple example available, it illustrates how to set up a connection, reading and writing messages using
the SATCAN driver. It is made up of two tasks communicating with each other where one task uses the OC_CAN
driver and the other the SatCAN driver. To be able to run the example one must have the cores connected together.
The current example is tailored for with a configuration matching GR712RC and also initializes the CAN_MUX
RTEMS driver which is described in a separate document.

The example can be found under the samples directory and consists of the files samples/rtems-occan.c,
occan_lib.c and occan_lib.h.

30.2. User interface

The RTEMS SATCAN driver supports the standard accesses to file descriptors such as read, write and ioctl.
User applications should include the SATCAN driver's header file, satcan.h, which contains definitions of all
necessary data structures and defines used when accessing the driver. An example application using the driver is
provided in the samples directory.

30.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using standard
means, such as open. The function satcan_register whose prototype is provided in satcan.h is used for
registering the driver. It returns 0 on success and 1 on failure. A typical register call from the LEON3 Init task:

if (satcan_register(&satcan_conf))
 printf(“SatCAN register Failed\n”);

The second argument to the function is the SatCAN configuration structure. The contents of this structure is
described below:

typedef struct {
 int nodeno;
 int dps;
 void (*ahb_irq_callback)(void);
 void (*pps_irq_callback)(void);
 void (*m5_irq_callback)(void);
 void (*m4_irq_callback)(void);
 void (*m3_irq_callback)(void);
 void (*m2_irq_callback)(void);
 void (*m1_irq_callback)(void);
 void (*sync_irq_callback)(void);
 void (*can_irq_callback)(unsigned int fifo);
} satcan_config;

RCC-UM
September 2020, Version 1.3-rc9

225 www.cobhamaes.com/gaisler

Table 30.1. Members in satcan_config structure

Member Description

nodeno Integer containing the writeable bits if the node number. The four least significant
bits of this member are written to the writeable part of the node number.

dps Set to 0 if core is DPS, set to 1 of core is non-DPS i.e. slave.

ahb_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the AHB bit set.

pps_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the PPS bit set.

m5_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the M5 bit set.

m4_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the M4 bit set.

m3_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the M3 bit set.

m2_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the M2 bit set.

m1_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the M1 bit set.

sync_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the sync bit set.

can_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the can bit set.

The last callback function, can_irq_callback, is called with an unsigned integer as argument. This integer
contains the value of the SatCAN FIFO register read in the interrupt handler.

Each callback function is called whenever the corresponding status bit in the wrapper interrupt pending register
is set, regardless of whether or not the interrupt is masked in the wrapper interrupt mask register. If the the user
does not want to use a callback function the corresponding member in the satcan_config structure must be
set to NULL. After the call to satcan_register(..) has returned the structure can be deallocated.

When the driver is registered the driver allocates its internal configuration structures and registers the name /
dev/satcan with RTEMS. The SatCAN wrapper is initialized with the node number and DPS setting specified
in the configuration structure and the core is reset. After the core has come out of reset the registers containing the
memory address of the newly allocated 2K DMA memory area are initialized.

30.2.2. Opening the device

Opening the device enables the user to access the hardware of the SatCAN device. An example of an RTEMS
open call is shown below.

fd = open("/dev/satcan", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as indicated in Table 30.1.

Table 30.2. Open ERRNO values.

ERRNO Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary memory.

When the device is opened the driver enables the AHB and CAN interrupts in the SatCAN wrapper logic. Interrupts
EOD1, EOD2 and CAN Critical are enabled in the SatCAN FPGA core. The SatCAN FPGA core is also configured

RCC-UM
September 2020, Version 1.3-rc9

226 www.cobhamaes.com/gaisler

to use “CAN” interrupt for interrupt #0 (CAN_TODn_Int_sel is set to '1') and RX together with the RX DMA
channel is enabled.

30.2.3. Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

When the device is closed the SatCAN wrapper and SatCAN FPGA interrupt mask registers are cleared. CAN
RX and all DMA channels are disabled. The driver's internal state is initialized to default values. Close always
returns 0 (success) for the SATCAN driver.

30.2.4. Reading from the device

After the device has been successfully opened it can be accessed via calls to read(...). Read expects a pointer
to a satcan_msg structure, or list of structures, and only accepts a multiple of the size of satcan_msg as the
number of bytes to read. The satcan_msg structure, defined in satcan.h, and a description of its members
is given below:

 typedef struct {
 unsigned char header[SATCAN_HEADER_SIZE];
 unsigned char payload[SATCAN_PAYLOAD_SIZE];
} satcan_msg;

Table 30.3. Members in satcan_msg structure

Member Description

header Header of SatCAN message as described in SatCAN FPGA documentation. The default
value of the define SATCAN_HEADER_SIZE is 4.

payload Payload of SatCAN message as described in SatCAN FPGA documentation. The default
value of the define SATCAN_HEADER_SIZE is 8.

The driver does not buffer received SatCAN messages but provides direct access to the SatCAN FPGA DMA
area. Therefore the caller must specify which CAN ID the message should be read from. An example call reading
a message received with ID 0x0040 looks like:

int i, size;
satcan_msg msg;

msg.header[0] = 0x40;
msg.header[1] = 0;
if ((size = read(fd, &msg, sizeof(satcan_msg))) !=
 sizeof(satcan_msg))
 printf("ERROR! read() returned %d\n", size);

The driver uses the value of msg.header[1:0] together with the current DMA setting (2K or 8K messages)
determine where in the DMA area the message should be fetched. All elements in the satcan_msg structure are
overwritten with data fetched from the DMA area. This includes the initialized members msg.header[1:0] which
should keep their original value when the read(..) call returns. The read function returns sizeof(satcan_msg)
on success and -1 on failure. In the latter case errno is also set.

Table 30.4. ERRNO values for read calls.

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer or the length was illegal.

30.2.5. Writing to the device

Transmission of messages are performed with the write call. It is possible to write one or several messages in each
call. The driver copies the messages to be sent from the specified satcan_msg structures to the DMA area.

A call to write(..) has different behavior depending on the DMA mode of the driver. The DMA mode is set using
an Input/Output Control call described later in this document.

When the driver is in SATCAN_DMA_MODE_SYSTEM a call to write(..) will block until the core signals
that it has completed DMA. When the driver is in SATCAN_DMA_MODE_USER a call to write(..) will return

RCC-UM
September 2020, Version 1.3-rc9

227 www.cobhamaes.com/gaisler

immediately after the data has been placed in the DMA area. The driver will not activate any of the DMA TX
channels and start of DMA transfers are left to the user using Input/Output Control calls.

On success the write(..) call returns number of transmitted bytes and -1 on failure. Errno is also set in the latter case.

An example call sending a Enable Override message is shown below:

int i, ret;
satcan_msg msg;

msg.header[0] = 0xE0;
msg.header[1] = 0;
msg.header[2] = 0x81;
msg.header[3] = 0xFF;
msg.payload[0] = 15;
for (i = 1; i < SATCAN_PAYLOAD_SIZE; i++)
 msg.payload[i] = 0;
ret = write(fd, &msg, sizeof(satcan_msg));
if (ret != sizeof(satcan_msg))
 printf("Write of override msg failed\n");

Table 30.5. ERRNO values for write

ERRNO Description

EINVAL An invalid argument was passed. The buffer length was not equal to the satcan_msg
structure size or no DMA channel is enabled.

EIO Transmit DMA is activated. The driver requires that the write(..) call exclusively controls
the DMA TX channels.

30.2.6. I/O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most operating systems
support at least two arguments to ioctl, the first being an integer which selects ioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly. All supported
commands and their data structures are defined in the SatCAN driver's header file satcan.h.

30.2.6.1. Data structures

The satcan_regmod structure shown below is used to read and modify core registers.

typedef struct {
 unsigned int reg;
 unsigned int val;
} satcan_regmod;

Table 30.6. Member in satcan_regmod structure

Member Description

reg Register to be read or modify. The allowed values for this member are listed further down
in this document.

val When reading a register this member is utilized to return the register value. When modify-
ing a register this member should be initialized with the new register value or mask.

30.2.6.2. Configuration

The SatCAN core and driver are configured using ioctl calls. The table Table 30.3 below lists all supported ioctl
calls. SATCAN_IOC_ should be concatenated with the call number from the table to get the actual constant used
in the code. Return values for all calls are 0 for success and -1 on failure. Errno is set after a failure as indicated
in Table 30.2.

Table 30.7. ioctl calls supported by the SatCAN FPGA driver.

Call Number Description

DMA_2K Instructs driver and core to use 2K DMA mode. Default setting.

RCC-UM
September 2020, Version 1.3-rc9

228 www.cobhamaes.com/gaisler

Call Number Description

DMA_8K Instructs driver and core to use 8K DMA mode.

GET_REG Provides direct read access to all core registers.

OR_REG Writes register with current register value logical or specified value.

AND_REG Writes register with current register value masked with a specified value.

EN_TX1_DIS_TX2 Changes internal driver state to enable DMA TX channel 1, Disable DMA TX
channel 2.

EN_TX1_DIS_TX1 Changes internal driver state to enable DMA TX channel 1, Disable DMA TX
channel 2.

GET_DMA_MODE Returns the current DMA transmit mode.

SET_DMA_MODE Sets the DMA transmit mode.

ACTIVATE_DMA Activates a specified DMA channel.

DEACTIVATE_DMA Deactivates a specified DMA channel.

GET_DOFFSET Gets the data offset used for writing TX DMA messages.

SET_DOFFSET Sets the data offset used for writing TX DMA messages.

GET_TIMEOUT Get time out value used when waiting for DMA TX completion.

SET_TIMEOUT Set time out value used when waiting for DMA TX completion.

30.2.6.2.1. DMA_2K

This ioctl command instructs the SatCAN core and driver to use a DMA area with room for 2048 messages. The
driver is initialized in this state by default. This call disables the RX DMA channel and allocates a new memory
area. After the new memory area has been successfully allocated the RX DMA channel is re-enabled.

30.2.6.2.2. DMA_8K

This ioctl command instructs the SatCAN core and driver to use a DMA area with room for 8192 messages.
This call disables the RX DMA channel and allocates a new memory area. After the new memory area has been
successfully allocated the RX DMA channel is re-enabled. The drivers default setting is to use a DMA area with
room for 2K messages. The example below shows how to instruct the driver to use an 8K DMA area:

 if (ioctl(fd, SATCAN_IOC_DMA_8K)) {
 printf("ERROR: Failed to enable 8K DMA area\n");
}

30.2.6.2.3. GET_REG

This call provides read access to all the core's registers. Note that reading a register may affect the hardware state
and may impact the correct function of the driver. The GET_REG call takes an register and an return pointer as
additional arguments. Valid register values are listed in table 1.9. Note that some of the registers listed in the table
a write only and a SATCAN_IOC_GET_REG call will return the read register that occupies the corresponding
address. An example of reading the SatCAN CmdReg1:

satcan_regmod regmod;

regmod.reg = SATCAN_CMD1;
if (ioctl(fd, SATCAN_IOC_GET_REG, ®mod))
 printf("Failed to read CMD1 register\n");
printf("CMD1 register value: 0x%08x\n", regmod.val);

The contents of the satcan_regmod structure has been previously described. The reg member is initialized
with a value from table 1.9. The contents of the specified register is returned in the structure's val member.

Table 30.8. Values used together with GET_REG and SET_REG

Register constant Register name

SATCAN_SWRES Software reset

RCC-UM
September 2020, Version 1.3-rc9

229 www.cobhamaes.com/gaisler

Register constant Register name

SATCAN_INT_EN Interrupt enable

SATCAN_FIFO FIFO read

SATCAN_FIFO_RES FIFO reset

SATCAN_TSTAMP Current time stamp

SATCAN_CMDO Command register 0

SATCAN_CMD1 Command register 1

SATCAN_START_CTC Start cycle time counter

SATCAN_RAM_BASE RAM offset address

SATCAN_STOP_CTC Stop cycle time counter

SATCAN_DPS_ACT DPS active status

SATCAN_PLL_RST DPLL reset

SATCAN_PLL_CMD DPLL command

SATCAN_PLL_STAT DPLL status

SATCAN_PLL_OFF DPLL offset

SATCAN_DMA DMA channel enable

SATCAN_DMA_TX_1_CUR DMA channel 1 TX current address

SATCAN_DMA_TX_1_END DMA channel 1 TX end address

SATCAN_DMA_TX_2_CUR DMA channel 2 TX current address

SATCAN_DMA_TX_2_END DMA channel 2 TX end address

SATCAN_RX CAN RX enable

SATCAN_FILTER_START Filter start ID

SATCAN_FILTER_SETUP Filter setup

SATCAN_FILTER_STOP Filter stop ID

SATCAN_WCTRL Wrapper status/control register

SATCAN_WIPEND Wrapper interrupt pending register

SATCAN_WIMASK Wrapper interrupt mask register

SATCAN_WAHADDR Wrapper AHB address register

30.2.6.2.4. SET_REG

This call writes a given value to a specified register. Note that assigning a register may interfere with the correct
operation of the driver software. An example of writing a register is given below:

printf("Reset PLL\n");
regmod.reg = SATCAN_PLL_RST;
regmod.val = 1;
if (ioctl(fd, SATCAN_IOC_SET_REG, ®mod))
 printf("Reset PLL failed\n"):

30.2.6.2.5. SET_REG

This call modifies a specified register by performing a bitwise logical or operation with the specified value and the
current register value. Note that assigning a register may interfere with the correct operation of the driver software.
An example of masking in a value to a register is given below:

printf("Enable sync pulse and sync message\n");
regmod.reg = SATCAN_CMD1;
regmod.val = 0x30;
if (ioctl(fd, SATCAN_IOC_OR_REG, ®mod))
 printf("Failed to enable sync pulse sync msg\n");

RCC-UM
September 2020, Version 1.3-rc9

230 www.cobhamaes.com/gaisler

30.2.6.2.6. AND_REG

This call modifies a specified register by performing a bitwise logical and operation with the specified value and
the current register value. Note that assigning a register may interfere with the correct operation of the driver
software. The use of this call follows the same syntax as the OR_REG call, described above.

30.2.6.2.7. AND_REG

This call enables transmit DMA channel 1 and disabled transmit DMA channel 2. It does not immediately modify
the hardware registers. The DMA channels are only enabled during a call to write. This ioctl call only modifies
the internal state of the driver. The example below shows how to enable DMA TX channel 1:

if (ioctl(fd, SATCAN_IOC_EN_TX1_DIS_TX2)) {
 printf("Failed to enable DMA TX channel 1\n");
}

30.2.6.2.8. EN_TX2_DIS_TX1

This call enables transmit DMA channel 2 and disables transmit DMA channel 1. It does not immediately modify
the hardware registers. The DMA channels are only enabled during a call to write. This ioctl call only modifies
the internal state of the driver.

30.2.6.2.9. GET_DMA_MODE

This call returns the current DMA mode of the driver. The driver has two modes for DMA operation. User mode
(SATCAN_DMA_MODE_USER) and system mode (SATCAN_DMA_MODE_SYSTEM). In user mode calls
to write(..) will place the messages in the DMA area bit will not activate any of the DMA TX channels
and return immediately. In system mode the driver will activate the selected DMA TX channel and the call to
write(..) will block until the core signals that it has completed the DMA operation.

30.2.6.2.10. SET_DMA_MODE

This call sets the driver DMA mode. Available values are [SATCAN_DMA_MODE_USER] and
[SATCAN_DMA_MODE_SYSTEM]. See the previous description of GET_DMA_MODE and the description
of the write(..) call for more information about the modes. An example call using [SET_DMA_MODE] is
shown below:

int val;
val = SATCAN_DMA_MODE_USER;
if (ioctl(fd, SATCAN_IOC_SET_DMA_MODE, &val))
 printf("Failed to set DMA mode\n");

30.2.6.2.11. ACTIVATE_DMA

This call activates one of the DMA TX channels when the driver is set to user DMA mode. The user can not
activate a DMA channel using this call if the driver is in system DMA mode. An example call activating DMA
TX channel 2 is shown below:

int val;
val = SATCAN_DMA_ENABLE_TX2;
if (ioctl(fd, SATCAN_IOC_ACTIVATE_DMA, &val))
 printf("Task1:Could not enable DMA TX channel 2\n");

30.2.6.2.12. DEACTIVATE_DMA

This call deactivates one of the DMA TX channels when the driver is set to user DMA mode. The user can not
deactivate a DMA channel using this call if the driver is in system DMA mode. An example call deactivating
DMA TX channel 2 is shown below:

int val;
val = SATCAN_DMA_ENABLE_TX2;
if (ioctl(fd, SATCAN_IOC_DEACTIVATE_DMA, &val))
 printf("Could not disable DMA TX channel 2\n");

30.2.6.2.13. GET_DOFFSET

This call sets the offset used when writing TX messages via calls to write(..). TX DMA messages are written
at start of DMA buffer + data offset. The argument to this call is a pointer to the integer containing the offset.

RCC-UM
September 2020, Version 1.3-rc9

231 www.cobhamaes.com/gaisler

30.2.6.2.14. SET_DOFFSET

This call returns the offset used when writing TX messages via calls to write(..). TX DMA messages are
written at start of DMA buffer + data offset. The argument to this call is a pointer to an integer. The integer is
assigned the current offset.

30.2.6.2.15. GET_TIMEOUT

This call returns the time out value that the write(..) call uses when waiting for TX DMA completion. The
argument is a pointer to an [rtems_interval] type.

30.2.6.2.16. SET_TIMEOUT

This call sets the time out value that the write(..) call uses when waiting for TX DMA completion. The
argument is a pointer to an [rtems_interval] type.

RCC-UM
September 2020, Version 1.3-rc9

232 www.cobhamaes.com/gaisler

Chapter 31. CAN_MUX driver (CAN_MUX)

31.1. Introduction

This document is intended as an aid in getting started developing with GRLIB CAN_MUX core using the driver
described in this document. It briefly takes the reader through some of the most important steps in using the driver
such as configuring the driver and using Input/Output-control calls to modify the hardware state. The reader is
assumed to be well acquainted with the operation of the CAN_MUX core and RTEMS.

31.1.1. CAN_MUX Hardware

See the GR712RC or CAN_MUX core documentation.

31.1.2. Software Driver

The driver provides means for setting the CAN_MUX MUX control register.

31.1.3. Examples

The rtems-satcan example uses the CAN_MUX driver.

31.2. User interface

The RTEMS CAN_MUX driver supports the standard accesses to file descriptors such as read, write and ioctl.
The implementation of read and write calls are dummy functions. The driver is controlled exclusively via ioctl.
User applications should include the CAN_MUX driver's header file, canmux.h, which contains definitions of
all necessary values and functions used when accessing the driver.

31.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using standard
means, such as open. The function canmux_register whose prototype is provided in canmux.h is used for
registering the driver. The function returns 0 on success. A typical register call from the LEON3 Init task:

if (canmux_register(&amba_conf))
 printf(“CAN_MUX register failed\n”);

31.2.2. Opening the device

Opening the device enables the user to access the hardware of the CAN_MUX core. An example of an RTEMS
open call is shown below.

fd = open("/dev/canmux", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as indicated in Table 31.1.

Table 31.1. Open errno values.

ERRNO Description

ENODEV Illegal device name or not available

EBUSY Device already opened

31.2.3. Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the CAN_MUX driver.

31.2.4. I/O Control interface

The driver and hardware is controlled via the standard system call ioctl. Most operating systems support at least
two arguments to ioctl, the first being an integer which selects ioctl function and secondly a pointer to data that
may be interpreted uniquely for each function. A typical ioctl call definition:

RCC-UM
September 2020, Version 1.3-rc9

233 www.cobhamaes.com/gaisler

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly. The CAN_MUX
driver does not use any additonal data except for the integer that selects the ioctl function. All supported commands
are defined in the CAN_MUX driver's header file canmux.h and are described further down in this document.

31.2.4.1. Configuration

The CAN_MUX core and driver is controlled using ioctl calls. The Table 31.3 below lists all supported ioctl calls.
OCCAN_IOC_ should be concatenated with the call name from the table to get the actual constant used in the code.
Return values for all calls are 0 for success and -1 on failure. Errno is set after a failure as indicated in Table 31.2.

Table 31.2. ERRNO values for ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

Table 31.3. ioctl calls supported by the CAN_MUX driver.

Call Number Description

BUSA_SATCAN Routes bus A to SatCAN core

BUSA_OCCAN1 Routes bus A to OC-CAN 1 core

BUSB_SATCAN Routes bus B to SatCAN core

BUSB_OCCAN2 Routes bus B to OC-CAN 2 core

RCC-UM
September 2020, Version 1.3-rc9

234 www.cobhamaes.com/gaisler

Chapter 32. GRASCS driver

32.1. Introduction

This document is intended as an introduction to the RTEMS driver for the Gaisler ASCS core. It is recommended
that the reader also has access to the GRASCS IP core documentation when reading this document.

32.1.1. Software driver

The driver allows the developer of application software to communicate with the GRASCS core. It supplies the
functions to initialize the core, send and receive data, start and stop synchronization etc. The complete user inter-
face is described in more detail in Section 32.2 below. The driver is thread safe with the following two exceptions:
ASCS_etr_select, ASCS_TC_sync_start, and ASCS_TC_sync_stop can not be called from different threads, and
ASCS_start and ASCS_stop can not be called from different threads. The driver supports all the different config-
urations of the GRASCS core that is mentioned in the GRASCS IP core documentation.

32.1.2. Examples

A demonstration software which shows how to use the driver interface is distributed together with the driver. The
software initialize the core, start the serial and synchronization interfaces, perform data writes and data reads and
then stops the interfaces again. The software has been developed for pure demonstration purposes and the effects
of the transactions performed on a real ASCS slave are unknown.

32.2. User interface

In Table 32.1 all the functions of the GRASCS driver interface are listed. To gain access to the functions a user
application should include the GRASCS driver's header file.

Table 32.1. GRASCS driver interface

Function name Described in Short description

ASCS_init Section 32.2.1 Initializes driver and GRASCS core

ASCS_input_select Section 32.2.2 Selects slave

ASCS_etr_select Section 32.2.3 Select source for synchronization pulse

ASCS_start Section 32.2.4 Starts serial interface

ASCS_stop Section 32.2.5 Stops serial interface

ASCS_iface_status Section 32.2.6 Report status of serial and synchronization interfaces

ASCS_TC_send Section 32.2.7 Performs a data write (TC)

ASCS_TC_send_block Section 32.2.8 Performs a number of TCs

ASCS_TC_sync_start Section 32.2.9 Starts synchronization interface

ASCS_TC_sync_stop Section 32.2.10 Stops synchronization interface

ASCS_TM_recv Section 32.2.11 Performs a data read (TM)

ASCS_TM_recv_block Section 32.2.12 Performs a number of TMs

32.2.1. ASCS_init

Prototype int ASCS_init()

Argument This function does not take any arguments

Return value: 0 on success, -1 on failure

Description: This function must be called before any other functions in the ASCS driver are called.
ASCS_init initializes the driver and resets the core. When the function returns all of the
cores registers will have their default values, which means that both the serial interface
and synchronization interface are stopped.

RCC-UM
September 2020, Version 1.3-rc9

235 www.cobhamaes.com/gaisler

32.2.2. ASCS_input_select

Prototype int ASCS_input_select(int slave)

Argument slave

Description The number of the slave the core should listen to during a TM

Return value: 0 on success, -GRASCS_ERROR_CAPFAULT if slave value is invalid, -
GRASCS_ERROR_TRANSACTIVE if a TM is in progress

Description: This function sets the bits in the core's command register that control which slave data in-
put is valid during a TM. Valid range of the input 0 – (nslaves-1), where nslaves is the
number of slaves the core has been configured to communicate with (nslaves generic).

32.2.3. ASCS_etr_select

Prototype int ASCS_etr_select(int etr, int freq)

Argument

etr

freq

Description

The source for the etr signal, valid range 0 - 6

The ETR frequency in Hz

Return value: 0 on success, -GRASCS_ERROR_CAPFAULT if arguments have invalid values, -
GRASCS_ERROR_STARTSTOP if synchronization interface is running

Description: This function need to be called if the source of the ETR synchronization pulse should
be changed. The etr input specifies which source to use, where 0 means internal counter
and 1 – 6 means external time marker 1 - 6. The freq input specifies the frequency of
the etr signal. If etr is not 0 then the freq argument need to be the same as the frequen-
cy of the external time marker that is used. The core can not generate an ETR pulse of
one frequency from an external time marker of a different frequency. This function,
ASCS_TC_sync_start and ASCS_TC_sync_stop can not be called from different threads.

32.2.4. ASCS_start

Prototype int ASCS_start()

Argument This function does not take any arguments

Return value: None

Description: A call to this function starts the core's serial interface and the core is then ready to per-
form transactions. This function and ASCS_stop can not be called from different threads.

32.2.5. ASCS_stop

Prototype int ASCS_stop()

Argument This function does not take any arguments

Return value: None

Description: A call to this function stops the core's serial interface. This function will block un-
til any possible call to ASCS_TC_send, ASCS_TC_send_block, ASCS_TM_recv or
ASCS_TM_recv_block has returned. This function and ASCS_start can not be called
from different threads.

32.2.6. ASCS_iface_status

Prototype int ASCS_iface_status()

Argument This function does not take any arguments

Return value: 0 if both serial interface and synchronization interface are stopped, 1 if serial interface is
running and synchronization interface is stopped, 2 if serial interface is stopped and syn-
chronization interface is running, 3 if both interfaces are running.

RCC-UM
September 2020, Version 1.3-rc9

236 www.cobhamaes.com/gaisler

Description: Uses the internal driver status and the value of the core's status register to report if serial
and synchronization interfaces are running or stopped.

32.2.7. ASCS_TC_send

Prototype int ASCS_TC_send(int *word)

Argument

word

ntrans

Description

Pointer to data that should be sent as a telecommands. The argument is handled as a
point erto a short int if the core is configured to send 16-bit words, or a char pointer for
8-bit words.

The number of telecommands that should be sent

Return value: 0 on success, -GRASCS_ERROR_TRANSACTIVE if TC could not be started because
some other transaction is in progress, - GRASCS_ERROR_STARTSTOP if TC could not
be started because serial interface is stopped.

Description: Sends a telecommand with the data pointed to by the word argument. If the TC is started
the function blocks until the transaction is complete. If the TC can not be started the func-
tion returns with an error code. This function is thread safe.

32.2.8. ASCS_TC_send_block

Prototype int ASCS_TC_send_block(int *block,int ntrans)

Argument

blcok

ntrans

Description

Pointer to the start a block of data that should be sent as a number of telecommands. The
block argument is handled as a point erto a block of short int if the core is configured to
send 16-bit words, or a char pointer for 8-bit words.

The number of telecommands that should be sent

Return value: 0 on success, -GRASCS_ERROR_TRANSACTIVE if TC could not be started because
some other transaction is in progress, - GRASCS_ERROR_STARTSTOP if TC could not
be started because serial interface is stopped.

Description: Sends a number of telecommands with the data pointed to be the block argument. If the
first TC is started the function blocks until all the transaction are complete. If the first TC
can not be started the function returns with an error code. This function is thread safe.

32.2.9. ASCS_TC_sync_start

Prototype int ASCS_TC_sync_start(void)

Argument This function does not take any arguments

Return value: None

Description: Starts the synchronization interface. There might be a delay between the time this func-
tion is called and the time the interface is actually started, depending on whether a TM is
active or not. Software can poll ASCS_iface_status to find out when interface is running.
The first pulse on the synchronization interface might be delay with up to one period de-
pending on the source used for the ETR signal. This function, ASCS_TC_sync_stop and
ASCS_etr_select can not be called from different threads.

32.2.10. ASCS_TC_sync_stop

Prototype int ASCS_TC_sync_stop(void)

Argument this function does not take any arguments

Return value: None

RCC-UM
September 2020, Version 1.3-rc9

237 www.cobhamaes.com/gaisler

Description: Stops the synchronization interface. In order not to prematurely abort a ETR pulse there
might be a delay between the time this function is called and the time the interface is ac-
tually stopped. Software can poll ASCS_iface_status to find out when the interface is
stopped. This function, ASCS_TC_sync_start and ASCS_etr_select can not be called
from different threads.

32.2.11. ASCS_TM_recv

Prototype int ASCS_TM_recv(int *word)

Argument

word

Description

Pointer to where data received in a TM should be stored. The argument is handled as a
short int pointer if the core is configured to send 16-bit words, or a char pointer for 8-bit
words.

Return value: 0 on success, -GRASCS_ERROR_TRANSACTIVE if TM could not be started because
some other transaction is in progress, -GRASCS_ERROR_STARTSTOP if TM could not
be started because serial interface is stopped.

Description: Starts a TM and stores the incoming data at the address word points to. If the TM can not
be started the function returns with an error code otherwise it blocks until the transaction
is complete. This function is thread safe.

32.2.12. ASCS_TM_recv_block

Prototype int ASCS_TM_recv_block(int *block, int ntrans)

Argument

block

ntrans

Description

Pointer to the start of a block where data received in a number of TMs should be stored.
The block argument is handled as a point erto a block of short int if the core is config-
ured to send 16- bit words, or a char pointer for 8-bit words.

The number of TMs that should be sent

Return value: 0 on success, -GRASCS_ERROR_TRANSACTIVE if TM could not be started because
some other transaction is in progress, -GRASCS_ERROR_STARTSTOP if TM could not
be started because serial interface is stopped.

Description: Starts a number of TMs and stores the incoming data with the beginning of the address
that block points to. If the first TM can not be started the function returns with an error
code otherwise it blocks until all the transactions are complete. This function is thread
safe.

32.3. Examples code

To use the GRASCS driver its header file should be included:

#include <grascs.h>

The driver must first be initialized, and the return value must be checked to see that the initialization went well:

status = ASCS_init();

 if(status < 0) {

 printf("ERROR: Failed to initialize ASCS driver\n");

 exit(0);

}

printf("Successfully intialized ASCS driver\n");

When the ASCS_init function has been called the application can start calling the other functions as well. Below
is an example of how to call ASCS_TC_send_block and send ten TCs.

RCC-UM
September 2020, Version 1.3-rc9

238 www.cobhamaes.com/gaisler

retval = ASCS_TC_send_block((int*)block,10);

if(retval < 0) {

 if(retval == -GRASCS_ERROR_STARTSTOP)

 printf("ERROR: Failed to start TC because serial interface never
started\n");

 else if(retval == -GRASCS_ERROR_TRANSACTIVE)

 printf("ERROR: Failed to start TC because a transaction is in
progress\n");

 }

RCC-UM
September 2020, Version 1.3-rc9

239 www.cobhamaes.com/gaisler

Chapter 33. APBUART console driver

33.1. Introduction

The RTEMS Driver Manager APBUART console driver is implemented using the RTEMS POSIX Termios sup-
port. POSIX Termios is defined by IEEE Std 1003.1-2008 (POSIX.1-2008) which provides an oper-
ating system independent interface to terminal devices. The RTEMS kernel provides the Termios specific parts of
the interface, while the APBUART console driver implements the low-level hardware access.

Even though the APBUART driver is referred to as a console driver, and the Termios interface is a general terminal
interface, the driver can also be used as a general purpose UART driver.

33.1.1. Functioning mode

A device attached to the APBUART console driver can operate in one of three different functioning modes.

• Polled Mode (default)
• Interrupt Driven Mode
• Task Driven Mode

Polled mode is used by default and will leave calling tasks in a poll loop to wait for the requested operation to
complete. Interrupt driven mode uses the APBUART interrupt and FIFO functionality to prevent blocking the
task using the driver. In task driven mode, the RTEMS Termios layer creates daemon tasks which are activated
on APBUART interrupt and carries out the processing in task context.

The functioning mode is set at compile time using driver manager resources and can not be changed afterwards.
For more information on the operating modes, see the document RTEMS BSP and Device Driver Development
Guide. Note that Task Driven Mode is not supported in SMP environments.

33.1.2. Hardware support

APBUART devices are available in different hardware configurations with different capabilities. This driver uses
the following capababilities, if their presence is detected by the driver.

• RX/TX interrupt (depending on functioning mode as described below)
• RX/TX FIFO
• Delayed RX interrupt

33.2. User interface

The driver supports the standard accesses to file descriptors such as read(), write() and to Termios con-
trol functions such as tcgetattr(), tcsetattr() and cfsetispeed(). User applications include the
Termios header file <termios.h> which provides prototypes and definitions of all necessary data structures
and bit masks used when accessing a Termios file.

User operations specific to the APBUART driver are documented here, while common Termios operations are
documented in IEEE Std 1003.1-2008 (POSIX.1-2008).

The APBUART console driver require the RTEMS Driver Manager.

33.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using standard
means, such as open. The RTEMS I/O driver registration is performed automatically by the driver when UART
hardware is found for the first time. The driver is called from the driver manager to handle detected UART hard-
ware. In order for the driver manager to unite the UART driver with the UART hardware one must register the
driver to the driver manager. This process is described in the driver manager chapter.

33.2.2. Driver resource configuration

The driver can be configured at compile tile using driver resources as described in the driver manager chapter.
Below is a description of configurable driver parameters. The driver parameters are unique per APBUART device.
The parameters are all optional, the parameters only overrides the default values.

RCC-UM
September 2020, Version 1.3-rc9

240 www.cobhamaes.com/gaisler

Table 33.1. APBUART console driver resources

Name Type Parameter description

syscon INT Suggest system console

System console is by default assigned to the first APBUART in the system. The user
can override this default behaviour by setting the syscon parameter to 0 on the first
APBUART to force it to not be the system console and 1 on another to suggest it as
system console.

mode INT Functioning mode

• 0: Polled Mode (default)
• 1: Interrupt Driven Mode
• 2: Task Driven Mode

NOTE: Task Driven Mode is not supported in SMP environments.

33.2.3. Opening the device

Opening the device enables the user to access the hardware of a APBUART device. Devices are identified by a file
name which is constructed based on device bus location and order of discovery. The file name is used for opening
a device. Some example file names are given in the following table.

Table 33.2. Example APBUART file names

Device number Filesystem name Location

0 /dev/console On-Chip Bus

1 /dev/console_b On-Chip Bus

2 /dev/console_c On-Chip Bus

Depends on system configuration /dev/rastaio0/apbuart0 GR-RASTA-IO

Depends on system configuration /dev/rastaio0/apbuart1 GR-RASTA-IO

An example of an RTEMS open() call is shown below.

 fd = open("/dev/console_b", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is also set as defined by open().

33.2.4. Closing the device

The device is closed using the close() function. An example is shown below.

 res = close(fd)

33.2.5. Control interface

Changing the behaviour of the driver for a device is done via the Termios terminal parameter access functions
defined by <termios.h>, such as tcsetattr().

Table 33.3 describes the struct termios field c_cflag for hardware control supported by the APBUART
console driver.

Table 33.3. Supported control modes

Mask name Description

CLOCAL Enable/disable flow control

CSIZE Only 8 bit data per character is supported (CS8)

PARENB Parity enabled if set, else disabled.

RCC-UM
September 2020, Version 1.3-rc9

241 www.cobhamaes.com/gaisler

Mask name Description

PARODD Odd parity if set, else even. The parameter is qualified by PARENB

The device always sends one stop bit after the optional parity bit.

APBUART BAUD can be set to all values defined by <termios.h>, ranging from B50 to B460800. The
driver calculates a suitable APBUART scaler register value using the APBUART core frequency and the requested
BAUD. Note that the target BAUD and its precision may be limited by the APBUART scaler in combination with
the bus frequency. See documentation of the APBUART SCALER register in the GRLIB IP Core User's Manual.

The following example sets the APBUART BAUD to 9600, 8 bits per character and disables parity:

 struct termios options;

 tcgetattr(fd, &options);
 cfsetispeed(&options, B9600);
 cfsetospeed(&options, B9600);
 options.c_cflag &= ~CSIZE;
 options.c_cflag |= CS8;
 options.c_cflag &= ~PARENB;
 tcsetattr(fd, TCSANOW, &options);

33.2.6. Startup-parameter inheritance

When the APBUART device configured with the syscon parameter set to 1 is opened by the user, its present
hardware attributes are preserved. The preserved attributes are the ones listed in Table 33.3. This allows for the user
to configure the console settings in a boot loader without the need to synchronize the settings in the application.
For APBUART devices other than the system console, the user should configure the device with the Termios
interface after open.

The file /dev/console is opened automatically as part of the RTEMS initialization and is associated with the
streams stdin, stdout and stderr.

33.2.7. Transmission

Transmitting characters to the UART serial line can be done with the write() function. It is possible to write
multiple bytes in one call. An example of a write() is shown below:

 result = write(fd, &buffer[0], sizeof(buffer));

On success the number of transmitted bytes is returned and -1 on failure. errno is also set in the latter case.
buffer points to the beginning of the character byte array. The last parameter sets the number of bytes taken
from buffer that will be transmitted.

33.2.8. Reception

Reception of characters from the UART serial line can be done using the read() function. An example is shown
below:

 char buffer[16];

 len = read(fd, buffer, 16);

The requested number of bytes to be read is given in the third argument. The received bytes will be stored in
buffer. The actual number of received bytes is returned by the function on success and -1 on failure. In the
latter case errno is also set.

RCC-UM
September 2020, Version 1.3-rc9

242 www.cobhamaes.com/gaisler

Chapter 34. SPICTRL GRLIB SPI master driver

34.1. Introduction

This section describes the SPICTRL Master driver available for RTEMS. The SPICTRL driver provides the nec-
essary functions needed by the RTEMS I2C Library. The RTEMS I2C Library is used for both I2C and SPI. The
RTEMS I2C Library is not documented here.

The SPICTRL driver require the RTEMS Driver Manager.

34.1.1. SPI Hardware

The SPICTRL core is documented in the GR-IP core's manual. The driver supports multiple SPI cores.

34.1.2. Examples

There are two examples available, one that read and write data to a standard SPI FLASH and one that access a
SD Card FAT file system. The SPI driver initialize the I2C Library when a SPI core is found and the application
initialize the higher level drivers.

The examples are part of the Gaisler RTEMS distribution, it can be found under /opt/rtems-5/src/sam-
ples/rtems-spi.c and rtems-spi-sdcard.c.

34.2. User interface

The RTEMS SPICTRL SPI driver supports the RTEMS I2C Library operations and the simultaneous read/write
operation available using the ioctl interface. The driver is united with SPICTRL cores by the driver manager
as SPICTRL cores are found. During driver initialization the SPI driver initializes the RTEMS I2C Library and
registers the driver. The driver is registered with the name /dev/spi1, /dev/spi2 and so on.

An example application using the driver is provided in the samples directory distributed with the toolchain.

34.2.1. Driver registration

The registration of the driver is needed in order for the RTEMS I2C Library to know about the SPI hardware
driver. The RTEMS I2C driver registration is performed automatically by the driver when SPICTRL hardware
is found for the first time. The driver is called from the driver manager to handle detected SPICTRL hardware.
In order for the driver manager to unite the SPICTRL driver with the SPICTRL hardware one must register the
driver to the driver manager. This process is described in the driver manager chapter.

34.2.2. Accessing the SPI bus

The SPI bus can be accessed direct in RAW mode or by using a so called high level driver. The high level drivers
must be connected with the SPICTRL driver by using the rtems_libi2c_register_drv function. The SD Card
higher level driver does this automatically where as the memory driver needs the user to do this before initializing
the memory driver. The location of the higher level drivers and the RTEMS I2C Library is indicated in Table 34.1.
All paths are given relative the RTEMS kernel source root.

Table 34.1. SPI source location

Source description Location

I2C Library cpukit/libi2c

High level drivers c/src/libchip/i2c

SPICTRL driver c/src/lib/libbsp/sparc/shared/spi

When accessing the driver in RAW mode a device node must be created manually in the file system by calling
rtems_filesystem_make_dev_t and mknod with the correct major and minor number identifying the
SPICTRL driver. The major number must be the same as the RTEMS I2C Library I/O driver major number,

RCC-UM
September 2020, Version 1.3-rc9

243 www.cobhamaes.com/gaisler

the minor number identify the SPICTRL driver. The macro RTEMS_LIBI2C_MAKE_MINOR can be used to
generate a valid minor number.

After a device node is created either manually for the RAW mode or by I2C Library for the higher level driver the
device node can be accessed using standard means such as open, close, read, write and ioctl.

34.2.3. Extensions to the standard RTEMS interface

The SPICTRL core supports automated periodic transfers if enabled in the hardware design. The driver provides
means for accessing the extra features that the SPICTRL core implements through the ioctl interface. The addi-
tional features are optional, when ignored the driver operates as a standard RTEMS SPI driver.

The extra ioctl commands supported are listed in the table below. In periodic mode the SPI core is setup to execute
one SPI request multiple times, each transfer is started on a constant interval or when an external trigger pulse is
detected. In normal operation read and writes are done simultaneously, however in the automated (AM) periodic
transfer mode multiple transfers are executed. Once the core has been set up to operate in periodic mode (via CON-
FIG), libi2c_write() and ibi2c_read() are replaced with calls to PERIOD_READ/PERIOD_WRITE
ioctl(). In periodic mode the TX/RX FIFO can not be read, instead receive and transmit registers let us peek
into the FIFO. Up to four mask registers controls which TX/RX registers are part of the transfers. Please see the
SPICTRL hardware document for an overview of the AM periodic mode.

Table 34.2. Additional ioctl commands

Command Description

PERIOD_START Start periodic transfers

PERIOD_STOP Stop periodic transfers

PERIOD_READ Read receive registers and mask registers, in periodic mode only

PERIOD_WRITE Write receive registers and mask registers, in periodic mode only

CONFIG Configure periodic and non periodic transfers

STATUS Return the current status, the event register of the core

Below is an example of the steps that can be used when accessing the driver in periodic mode.

1. libi2c_send_start()
2. libi2c_ioctl(SET_TRFMODE)
3. lib2ic_send_address()
4. libi2c_ioctl(CONFIG, &config) Enable periodic mode, configure SPICTRL periodic transfer options
5. libi2c_ioctl(PERIOD_WRITE, &period_io) Fills TX Registers and set MASK registers, note that this has

some constraints. The content written here will be transmitted over and over again, according to the MASK
register.

6. lib2ic_ioctl(PERIOD_START) Starts the periodic transmission of the content in the TX Registers selected
by the MASK register

7. lib2ic_ioctl(PERIOD_READ, &period_io) Read one response of the transmitted data. It will hang until data
is available. If hanging is not an option use lib2ic_ioctl(STATUS) to determine on beforehand if it will hang.

8. OPTIONAL: libi2c_ioctl(PERIOD_WRITE, &period_io) The transmitted data on the SPI wires can be
changed by calling the PERIOD_WRITE, note that this method requires that TX registers beeing used are
not overwritten.

9. Go back to 7. to read the content of one more transfer, stop by stepping to 10.
10. libi2c_ioctl(STOP) Stop to set up a new periodic or normal transfer.
11. libi2c_stop()

34.2.3.1. PERIOD_START

Start previously configured automatic periodic transfers. Starting periodic transfers can only be done after CON-
FIG has been called enabling automated periodic transfers, and after PERIOD_WRITE has been called to set up
the MASK and TX registers. Once the transfers has been started STATUS can be called to indicate the current
transfer status and PERIOD_READ can be called to read the current content of the receive registers.

RCC-UM
September 2020, Version 1.3-rc9

244 www.cobhamaes.com/gaisler

34.2.3.2. PERIOD_STOP

Stops any ongoing period transfer by writing zero to the AM configuration register.

34.2.3.3. CONFIG

Configures the SPICTRL core in normal operation or in periodic operation. If periodic mode is enabled driver
configure the periodic mode options by looking at the user provided argument, the argument is assumed to be a
pointer to spictrl_ioctl_config data structure with the layout and properties indicated below.

/* SPICTRL_IOCTL_CONFIG argument */
struct spictrl_ioctl_config {
 int clock_gap;
 unsigned int flags;
 int periodic_mode;
 unsigned int period;
 unsigned int period_flags;
 unsigned int period_slvsel;
};

Table 34.3. spictrl_ioctl_config field description

Field Description

clock_gap Clock GAP on SPI bus between words, the FIFO word size is dependent on the
software configuration

flags Hardware options, such as enable Clock GAP and TAC mode

periodic_mode non-zero enables automated periodic transfers

period The period that might be used in periodic transfers

period_flags AM Configuration register content. ACT bit has no effect. This controls the be-
haviour of libi2c_read().

period_slvsel Slave chip select when no transfer is active.

34.2.3.4. STATUS

Copies the Event register of the SPICTRL core to a user provided buffer.

34.2.3.5. STATUS

Configures the SPICTRL TX and MASK registers. The registers are only used in periodic mode. The command
may be called before or during periodic transfers are ongoing. The MASK register selects which registers will be
used in the transfer process. Please see the SPI core hardware documentation how periodic mode is used.

Note that changing TX registers used in current transfers may create invalid SPI commands. One can make sure this
does not happen by only changing content of unused TX registers, or by stopping the ongoing periodic transfers
with PERIOD_STOP.

The command takes one argument, the argument is assumed to be a pointer to a spictrl_period_io data
structure with the layout and properties indicated below.

The transmit register [N*32+M] corresponds to bit: masks[N] & (1<<M) .

/* SPICTRL_IOCTL_PERIOD_READ and SPICTRL_IOCTL_PERIOD_WRITE argument*/
struct spictrl_period_io {
 int options;
 unsigned int masks[4];
 void *data;
};

Table 34.4. spictrl_period_io field description

Field Description

Selects operation performed by commandoptions

READ BIT0 1=Read Mask registers into masks[].

RCC-UM
September 2020, Version 1.3-rc9

245 www.cobhamaes.com/gaisler

Field Description

BIT1 1=Read receive registers and store into data array. Only the registers speci-
fied by masks[] will be read. Note that the received registers are read after the
masks[] registers has been updated, which if BIT0 will result in the active regis-
ters will be read into data.

BIT0 1=Write Mask registers with content of masks[]. Note that the MASK registers
will be updated after the Transmit registers has been written.

WRITE

BIT1 1=Write transmit registers with values taken from data array. Only the registers
specified by masks[] will be written/updated.

masks An array of 4 32-bit words. Each bit corresponds to a Transmit or a Receive register. The masks
array can be read from MASK registers or stored to MASK registers (if BIT0 is set), or only used
to indicate which Transmit/Receive registers that should be Written/Read (if BIT0 is zero).

data Pointer to data array read (PERIOD_WRITE) or written (PERIOD_READ). The element size of
the array depends on the configured word size (see CONFIG). The element size is either 8, 16 or
32-bits, the smallest possible that still fits the data words.

The data pointer points to data in the format of an array with the same element size as the transfer bit-length
configured. For example a 8-bit config will result in data being interpreted as an array of bytes, a 12-bit config in
an array of 16-bit words etc. The order of the elements will be determined by: the lowest bit set in the mask will
be the first, the second lowest the second in the array etc.

34.2.3.6. PERIOD_READ

This command Read the MASK registers and/or reads the Receive registers. The behaviour is controlled
with ioctl() the argument provided by the user. The argument is a pointer to a data structure of the format
spictrl_period_io described in Table 34.2.

By setting options to 0x3 will make the command read the receive registers activated only. The receive register
[N*32+M] corresponds to bit: masks[N] & (1<<M).

RCC-UM
September 2020, Version 1.3-rc9

246 www.cobhamaes.com/gaisler

Chapter 35. I2CMST GRLIB I2C Master driver

35.1. Introduction

This section describes the I2C Master driver available for RTEMS. The I2CMST driver provides the necessary
functions needed by the RTEMS I2C Library. The RTEMS I2C Library is not documented here.

The I2CMST driver require the RTEMS Driver Manager.

35.1.1. I2C Hardware

The I2CMST core is documented in the GR-IP core's manual. The driver supports multiple I2C cores.

35.1.2. Examples

There is an example available, it illustrates how to set up the I2C driver, initialize the I2C Library and access an
I2C EEPROM. The EEPROM can be accessed with on of two different methods, either RAW mode or by using
the high level driver.

The example is part of the Gaisler RTEMS distribution, it can be found under /opt/rtems-5/src/sam-
ples/rtems-i2cmst.c.

35.2. User interface

The RTEMS I2CMST I2C driver supports the RTEMS I2C Library operations. The driver must be registered
before it can be used. During driver registration the I2C driver initializes the RTEMS I2C Library and registers
the driver. The driver is registered with the name /dev/i2c1, /dev/i2c2 and so on.

An example application using the driver is provided in the samples directory distributed with the toolchain.

35.2.1. Driver registration

The registration of the driver is needed in order for the RTEMS I2C Library to know about the I2CMST hardware
driver. The RTEMS I2C driver registration is performed automatically by the driver when I2CMST hardware is
found for the first time. The driver is called from the driver manager to handle detected I2CMST hardware. In
order for the driver manager to unite the I2CMST driver with the I2CMST hardware one must register the driver
to the driver manager. This process is described in the driver manager chapter.

35.2.2. Accessing the I2C bus

The I2C bus can be accessed direct in RAW mode or by using a so called high level driver. The high level drivers
must be connected with the I2CMST driver by using the rtems_libi2c_register_drv function. The lo-
cation of the higher level drivers and the RTEMS I2C Library is indicated in table 132. All paths are given relative
the RTEMS kernel source root.

Table 35.1. I2C source location

Source description Location

I2C Library cpukit/libi2c

High level drivers c/src/libchip/i2c

I2CMST driver c/src/lib/libbsp/sparc/shared/i2c

When accessing the driver in RAW mode a device node must be created manually in the file system by calling
rtems_filesystem_make_dev_t and mknod with the correct major and minor number identifying the
I2CMST driver. The major number must be the same as the RTEMS I2C Library I/O driver major number, the
minor number identify the I2CMST driver. The macro RTEMS_LIBI2C_MAKE_MINOR can be used to generate
a valid minor number.

After a device node is created either manually for the RAW mode or by I2C Library for the higher level driver the
device node can be accessed using standard means such as open, close, read, write and ioctl.

RCC-UM
September 2020, Version 1.3-rc9

247 www.cobhamaes.com/gaisler

Chapter 36. GPIO Library

36.1. Introduction

This section describes the GPIO Library available for RTEMS. The GPIO Library implements a simple function
interface that can be used to access individual GPIO ports. The GPIO Library provides means to control and
connect an interrupt handler for a particular GPIO port. The library itself does not access the hardware directly but
through a GPIO driver, for example the GRGPIO driver. A driver must implement a couple of function operations
to satisfy the GPIO Library. The drivers can register GPIO ports during runtime.

The two interfaces the GPIO Library implements can be found in the gpiolib header file (gpiolib.h), it contains
definitions of all necessary data structures, bit masks, procedures and functions used when accessing the hardware
and for the drivers implement GPIO ports.

This document describes the user interface rather than the driver interface.

36.1.1. Examples

There is an example available in the Gaisler RTEMS distribution, it can be found under /opt/rtems-5/src/
samples/rasta-adcdac/gpio-demo.c.

36.2. Driver interface

The driver interface is not described in this document.

36.3. User interface

The GPIO Library provides the user with a function interface per GPIO port. The interface is declared in
gpiolib.h. GPIO ports are registered by GPIO drivers during runtime, depending on the registration order the
GPIO port are assigned a port number. The port number can be used to identify a GPIO port. A GPIO port can
also be referenced by a name, the name is assigned by the GPIO driver and is therefore driver dependent and not
documented here.

GPIO ports which does not support a particular feature, for example interrupt generation, return error codes when
tried to be accessed.

The location of the GPIO Library is indicated in Table 36.1. All paths are given relative the RTEMS kernel source
root.

Table 36.1. GPIOLIB source location

Source description Location

Interface implementation c/src/lib/libbsp/sparc/shared/gpio/gpiolib.c

Interface declaration c/src/lib/libbsp/sparc/shared/include/gpiolib.h

36.3.1. Accessing a GPIO port

The interface for one particular GPIO port is initialized by calling gpiolib_open with a port number or
gpiolib_open_by_name with the device name identifying one port. The functions returns a pointer used
when calling other functions identifying the opened GPIO port. If the device name can not be resolved to a GPIO
port the open function return NULL. The prototypes of the initialization routines are shown below:

void *gpiolib_open(int port)

void *gpiolib_open_by_name(char *devName)

Note that this function must be called first before accessing other functions in the interface.

Note that the port naming is dependent of the GPIO driver used to access the underlying hardware.

RCC-UM
September 2020, Version 1.3-rc9

248 www.cobhamaes.com/gaisler

36.3.2. Interrupt handler registration

Interrupt handlers can be installed to handle events as a result to GPIO pin states or state changes. Depending
on the functions supported by the GPIO driver four interrupt modes are available, edge triggered on falling or
rising edge and level triggered on low or high level. It is possible to register a handler per GPIO port by calling
gpiolib_irq_register setting the arguments correctly as described in Table 36.2. Below is the prototype
for the IRQ handler (ISR) install function.

int gpiolib_irq_register(
 void *handle,
 void *func,
 void *arg
)

The function takes three arguments described in the table below.

Table 36.2. gpiolib_irq_register argument description

Name Description

handle Handle used internally by the function interface, it is
returned by the open function.

func Pointer to interrupt service routine which will be called
every time an interrupt is generated by the GPIO hard-
ware.

arg Argument passed to the func ISR function when
called as the second argument.

To enable interrupt, the hardware needs to be initialized correctly, see functions described in the function prototype
section. Also the interrupts needs to be unmasked.

36.3.3. Data structures

The data structure used to access the hardware directly is described below. The data structure gpiolib_config
is defined in gpiolib.h.

 struct gpiolib_config {
 char mask;
 char irq_level;
 char irq_polarity;
}

Table 36.3. gpiolib_config members

Member Description

mask Mask controlling GPIO port interrupt generation

0 Mask interrupt

1 Unmask interrupt

irq_level Level or Edge triggered interrupt

0 Edge triggered interrupt

1 Level triggered interrupt

irq_polarity Polarity of edge or level

0 Low level or Falling edge

1 High level or Rising edge

36.3.4. Function prototype description

36.3.4.1. GPIO Library functions

A short summary to the functions are presented in the prototype lists below.

RCC-UM
September 2020, Version 1.3-rc9

249 www.cobhamaes.com/gaisler

Table 36.4. GPIO per port functions

Prototype Name

void gpiolib_close(void *cookie)

int grpiolib_set_config (void *cookie, struct gpiolib_config *cfg)

int gpiolib_set (void *handle, int dir, int val)

int gpiolib_get(void *handle, int *inval)

int gpiolib_irq_clear(void *handle)

int gpiolib_irq_enable(void *handle)

gpiolib_irq_disable(void *handle)

int gpiolib_irq_force(void *handle)

int gpiolib_irq_register (void *handle, void *func, void *arg)

void gpiolib_show(int port, void *handle)

All functions takes a handle to a opened GPIO port by the argument handle. The handle is returned by the
gpiolib_open or gpiolib_open_by_name function.

If a GPIO port does not support a particular operation, a negative value is returned. On success a zero is returned.

36.3.4.1.1. grpiolib_set_config

Configures one GPIO port according to the the gpiolib_config data structure.

The gpiolib_config structure is described in Table 36.3.

36.3.4.1.2. grpiolib_set

Set one GPIO port in output or input mode and set the GPIO Pin value. The third argument may not be used when
[dir] indicated input. The direction of the GPIO port is controlled by the [dir] argument, 1 indicates output and 0
indicates input. The value driven by the GPIO port may be low by setting [val] to 0 or high by setting [val] to 1.

36.3.4.1.3. grpiolib_get

Get the input value of a GPIO port. The value is stored into the address indicated by the argument [inval].

36.3.4.1.4. grpiolib_irq_clear

Acknowledge any interrupt at the interrupt controller that the GPIO port is attached to. This may be needed in
level sensitive interrupt mode.

36.3.4.1.5. grpiolib_irq_force

Force an interrupt by writing to the interrupt controller that the GPIO port is attached to.

36.3.4.1.6. grpiolib_irq_enable

Unmask GPIO port interrupt on the interrupt controller the GPIO port is attached to. This enables GPIO interrupts
to pass though to the interrupt controller.

36.3.4.1.7. grpiolib_irq_disable

Mask GPIO port interrupt on the interrupt controller the GPIO port is attached to. This disable interrupt generation
at the interrupt controller.

36.3.4.1.8. grpiolib_irq_register

Attaches a interrupt service routine to a GPIO port. Described separately above.

RCC-UM
September 2020, Version 1.3-rc9

250 www.cobhamaes.com/gaisler

Chapter 37. GRGPIO GRLIB GPIO driver

37.1. Introduction

This section describes the GRGPIO driver available for RTEMS. The GRGPIO driver provides the necessary
functions needed by the GPIO Library. The GPIO Library is documented in Chapter 36.

The GRGPIO driver require the RTEMS Driver Manager.

37.1.1. GPIO Hardware

The GRGPIO core is documented in the GR-IP Core User's manual. The driver supports multiple GPIO cores.

The hardware may be configured to support interrupt generation on any combination of GPIO ports. The driver
will fail with a return code when an interrupt is unmasked but the GPIO port does not support interrupt generation.

37.1.2. Examples

There is an example available in the Gaisler RTEMS distribution, it can be found under /opt/rtems-5/src/
samples/rtems-gpio.c.

37.2. User interface

The RTEMS GRGPIO GPIO driver supports the GPIO Library operations. The driver is united with GRGPIO
cores by the driver manager as GRGPIO cores are found. During driver initialization the GPIO driver initializes
the GPIO Library and registers the driver. Each GPIO port is handled separately using the GPIO Library.

An example application using the driver is provided in the samples directory distributed with the toolchain.

37.2.1. Driver registration

The registration of the driver is needed in order for the GPIO Library to know about the GPIO hardware driver.
The GPIO driver registration is performed automatically by the driver when GRGPIO hardware is found for the
first time. The driver is called from the driver manager to handle detected GRGPIO hardware. In order for the
driver manager to unite the GRGPIO driver with the GRGPIO hardware one must register the driver to the driver
manager. This process is described in the driver manager chapter.

37.2.2. Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter. Below is a de-
scription of configurable driver parameters. The driver parameters is unique per GRPWM device. The parameters
are all optional, the parameters only overrides the default values or behaviour.

Table 37.1. GRGPIO driver parameter description

Name Type Parameter description

nBits INT Tells the driver how many GPIO ports are available on this device, normal-
ly the driver auto detect the number of GPIO ports. The OUTPUT register
of the GRGPIO core must be written in order to auto detect the number of
GPIO ports, this can be a problem in some cases when the GPIO ports has
already been initialized by the boot loader.

bypass INT This parameter specifies the BYPASS register content. If not available zero
is written into the BYPASS register during driver initialization.

37.2.3. Accessing GPIO ports

The GPIO ports are accessed using the GPIO Library. Each GPIO port has a unique number which is assigned
in the order the GPIO ports are registered. The GRGPIO GPIO ports are registered core wise, the first core in
AMBA Plug & Play is registered first starting with PIO[0] to PIO[N], then all GPIO ports of the next GRGPIO
core. See table below for an example.

RCC-UM
September 2020, Version 1.3-rc9

251 www.cobhamaes.com/gaisler

Table 37.2. GRGPIO registration order

GRGPIO Core GRGPIO I/O port Registration order

0 PIO[0] 0

0 PIO[1] 1

0 PIO[2] 2

0 PIO[3] 3

0 PIO[4] 4

0 PIO[5] 5

0 PIO[6] 6

0 PIO[7] 7

1 PIO[0] 8

1 PIO[1] 9

1 PIO[2] 10

1 PIO[3] 11

1 PIO[4] 12

1 PIO[5] 13

1 PIO[6] 14

1 PIO[7] 15

2 PIO[0] 16

2 PIO[1] 17

2 PIO[2] 18

2 PIO[3] 19

2 PIO[4] 20

2 PIO[5] 21

2 PIO[6] 22

2 PIO[7] 23

The ports can also be referenced by using their names. The GRGPIO driver name the GPIO ports according to
the following string,

"/dev/[SYSTEM_PREFIX]grgpio[SYSTEM_CORE_NR]/[PORT_NR]"

Table 37.3. GRGPIO registration order

MACRO Description

SYSTEM_PREFIX In systems where multiple AMBA buses exists it is convenient to reference a partic-
ular AMBA bus by a name. SYSTEM_PREFIX is substituted with the AMBA bus
name that the GPIO core is attached to, for example on a GR-RASTA-IO PCI Target
the AMBA bus is called rastaioN.

SYSTEM_CORE_NR The core number on a particular AMBA system

PORT_NR The port number on a particular GPIO core

The location of the GRGPIO drivers and the GPIO Library is indicated in table 137. All paths are given relative
the RTEMS kernel source root.

Table 37.4. GRGPIO registration order

Source description Location

GPIO Library c/src/lib/libbsp/sparc/shared/gpio/gpiolib.c

RCC-UM
September 2020, Version 1.3-rc9

252 www.cobhamaes.com/gaisler

Source description Location

GRGPIO driver c/src/lib/libbsp/sparc/shared/gpio/grgpio.c

RCC-UM
September 2020, Version 1.3-rc9

253 www.cobhamaes.com/gaisler

Chapter 38. GRADCDAC GRLIB ADC/DAC driver

38.1. Introduction

This section describes the GRADCDAC driver available for RTEMS. The GRADCDAC driver provides a function
interface to the user with the ability to access the hardware directly. User applications include the gradcdac
header file (gradcdac.h) which contains definitions of all necessary data structures, bit masks, procedures and
functions used when accessing the hardware.

The GRADCDAC driver require the RTEMS Driver Manager.

38.1.1. ADC/DAC Hardware

The GRADCDAC core is documented in the GR-IP Core User's manual. The driver supports multiple GRADC-
DAC cores.

The GRADCADC core has two different IRQs, one ADC interrupt and one DAC interrupt.

38.1.2. Examples

There is an example available in the Gaisler RTEMS distribution, it can be found under /opt/rtems-5/src/
samples/rasta-adcdac/gradcdac-demo.c.

38.2. User interface

The RTEMS GRADCDAC ADC/DAC driver provides the user with a function interface. The interface is declared
in gradcdac.h. The driver is united with GRADCDAC cores by the driver manager as GRADCDAC cores are
found. During driver initialization the ADCDAC driver initializes the ADC/DAC hardware to an initial state, for
that point and onwards the function interface can be used to access the ADC/DAC hardware registers.

An example application using the driver is provided in the samples/rasta-adcdac directory distributed
with the toolchain.

The location of the GRADCDAC driver is indicated in Table 38.1. All paths are given relative the RTEMS kernel
source root.

Table 38.1. GRGPIO registration order

Source description Location

GREDCDAC driver c/src/lib/libbsp/sparc/shared/analog/gradcdac.c

Driver Interface c/src/lib/libbsp/sparc/shared/include/gradcdac.h

38.2.1. Driver registration

The GRADCDAC is registered to the Driver Manager layer by setting the correct define in the project set up, see
Driver Manager section.

The driver does not implement a I/O driver interface so the GRADCDAC does not register itself as a I/O driver,
it implements a custom function interface that is available to the user.

38.2.2. Driver resource configuration

The driver does not support configurable resource parameters.

38.2.3. Accessing ADC/DAC

The Interface for one particular ADC/DAC core is initialized by calling gradcdac_open with the device name
identifying one core. The function returns a pointer used when calling other functions identifying the opened ADC/

RCC-UM
September 2020, Version 1.3-rc9

254 www.cobhamaes.com/gaisler

DAC core. If the device name can not be resolved to a ADC/DAC core the open function return NULL. The
prototype of the initialization routine is shown below:

void *gradcdac_open(char *devname)

Note that this function must be called first before accessing other functions in the interface.

The GRADCDAC cores are be referenced by using their names, the names are generated according to the following
string,

"/dev/[SYSTEM_PREFIX]gradcdac[SYSTEM_CORE_NR]"

Table 38.2. GRADCDAC core naming

MACRO Description

SYSTEM_PREFIX In systems where multiple AMBA buses exists it is convenient to reference a
particular AMBA bus by a name. SYSTEM_PREFIX is substituted with the
AMBA bus name that the ADC/DAC core is attached to, for example on a GR-
RASTA-ADCDAC PCI Target the AMBA bus is called rastaadcdacN. This
string is empty when the GRADCDAC is on the system AMBA bus.

SYSTEM_CORE_NR The core number on a particular AMBA system.

38.2.4. Interrupt handler registration

Interrupt handlers can be installed to handle events as a result to AD/DA conversions. It is possible to register
a handler for AD and or DA conversions by setting the adc argument appropriately as described in Table 38.3.
Below is the prototype for the IRQ handler (ISR) install function.

int gradcdac_install_irq_handler(
 void *cookie,
 int adc,
 void (*isr)(int irq, void *arg),
 void *arg
)

The function takes three arguments described in the table below.

Table 38.3. gradcdac_install_irq_handler argument description

Name Description

cookie Handle used internally by the function interface, it is returned by the open function.

adc
Value Function

1 Register handler to ADC interrupt

2 Register handler to DAC interrupt

3 Register to both ADC and DAC interrupts

isr Pointer to interrupt service routine which will be called every time an interrupt is generated
by the ADC/DAC hardware.

arg Argument passed to the isr function when called as the second argument.

To enable interrupt the hardware needs to be initialized correctly see functions described in the function prototype
section. Also the AD and or DA interrupts needs to be unmasked.

38.2.5. Data structures

The data structure used to access the hardware directly is described below. The data structure gradcdac_regs
is defined in gradcdac.h.

struct gradcdac_regs {
 volatile unsigned int config;
 volatile unsigned int status;
 int unused0[2];

RCC-UM
September 2020, Version 1.3-rc9

255 www.cobhamaes.com/gaisler

 volatile unsigned int adc_din;
 volatile unsigned int dac_dout;
 int unused1[2];
 volatile unsigned int adrin;
 volatile unsigned int adrout;
 volatile unsigned int adrdir;
 int unused2[1];
 volatile unsigned int data_in;
 volatile unsigned int data_out;
 volatile unsigned int data_dir;
}

The gradcdac_config data structure is used to read and write the ADC/DAC controllers configuration reg-
ister.

struct gradcdac_config {
 unsigned char dac_ws;
 char wr_pol;
 unsigned char dac_dw;
 unsigned char adc_ws;
 char rc_pol;
 unsigned char cs_mode;
 char cs_pol;
 char ready_mode;
 char ready_pol;
 char trigg_pol;
 unsigned char trigg_mode;
 unsigned char adc_dw;
};

Table 38.4. gradcdac_config member and ADCONF reg definition

Member Member type ADCONF Bit start Description

dac_ws 5-bit int 19 Number of DAC wait
states.

wr_pol Boolean 18 Polarity of DAC write
strobe

0 Active low

1 Active High

dac_dw 2-bit selection 16 DAC data width

0 none

1 8-bit ADDATA
[0:7]

2 16-bit ADDATA
[0:15]

3 none/spare

adc_ws 5-bit int 11 Number of DAC wait
states.

rc_pol Boolean 10 Polarity of ADC read con-
vert

0 Active low read

1 Active high read

cs_mode 2-bit selection 8 Mode of ADC chip select
asserted ...

0 during conversion
and read phases

1 during conversion
phase

RCC-UM
September 2020, Version 1.3-rc9

256 www.cobhamaes.com/gaisler

Member Member type ADCONF Bit start Description

2 during read phase

3 continuously dur-
ing both phases

cs_pol Boolean 7 Polarity of ADC chip se-
lect

0 Active low

1 Active high

ready_mode Boolean 6 Mode of ADC ready

0 Falling edge

1 Rising edge

ready_pol Boolean 5 Polarity of ADC ready

0 unused, open-
loop

1 used, with time-
out

trigg_pol Boolean 4 Polarity of ADC triggers

0 falling edge

1 rising edge

trigg_mode 2-bit selection 2 ADC trigger source

0 none

1 ADTrig

2 32-bit Timer 1

3 32-bit Timer 2

adc_dw 2-bit selection 0 ADC data width

0 none

1 8-bit ADDA-
TA[7:0]

2 16-bit ADDA-
TA[15:0]

3 none/spare

38.2.6. Function prototype description

38.2.6.1. General ADC/DAC functions

A short summary to the functions are presented in the prototype lists below.

Table 38.5. General ADC/DAC functions

Prototype Name

void gradcdac_set_config (void *cookie, struct gradcdac_config *cfg)

void gradcdac_get_config (void *cookie, struct gradcdac_config *cfg)

RCC-UM
September 2020, Version 1.3-rc9

257 www.cobhamaes.com/gaisler

Prototype Name

void gradcdac_set_cfg (void *cookie, unsigned int config)

unsigned int gradcdac_get_cfg(void *cookie)

unsigned int gradcdac_get_status(void *cookie)

void gradcdac_adc_convert_start(void *cookie)

unsigned int gradcdac_get_adrinput (void *cookie)

unsigned int gradcdac_get_adroutput (void *cookie)

void gradcdac_set_adroutput (void *cookie, unsigned int output)

unsigned int gradcdac_get_adrdir(void *cookie)

void gradcdac_set_adrdir (void *cookie, unsigned int dir)

unsigned int gradcdac_get_datainput (void *cookie, void)

unsigned int gradcdac_get_dataoutput (void *cookie, void)

void gradcdac_set_dataoutput (void *cookie, unsigned int output)

unsigned int gradcdac_get_datadir (void *cookie, void)

void gradcdac_set_datadir (void *cookie, unsigned int dir)

All functions takes a handle to the ADC/DAC core by the argument cookie. The handle is returned by the
gradcdac_open function.

38.2.6.1.1. gradcdac_set_config

Writes the configuration register of the ADC / DAC controller from the gradcdac_config data structure.

The gradcdac_config structure is described in Table 38.4.

38.2.6.1.2. gradcdac_get_config

Reads the configuration from the controller's configuration register and converts into the data structure
gradcdac_config pointed to by the user provided [cfg] argument.

The gradcdac_config structure is described in Table 38.4.

38.2.6.1.3. gradcdac_set_cfg

Sets the configuration register directly.

The bits of the ADCONF configuration register are described in Table 38.4.

38.2.6.1.4. gradcdac_get_cfg

Returns the current configuration register value as it is.

The bits of the ADCONF configuration register are described in Table 38.4.

38.2.6.1.5. gradcdac_get_status

Returns the current ADC / DAC controller's status register value.

38.2.6.1.6. gradcdac_get_adrinput

Returns the current address input register value.

38.2.6.1.7. gradcdac_get_adroutput

Returns the current address output register value.

RCC-UM
September 2020, Version 1.3-rc9

258 www.cobhamaes.com/gaisler

38.2.6.1.8. gradcdac_set_adroutput

Sets the controller's address output register to the argument [output].

38.2.6.1.9. gradcdac_get_adrdir

Returns the current address direction register value.

38.2.6.1.10. gradcdac_set_adrdir

Sets the controller's address direction register to the argument [dir].

38.2.6.1.11. gradcdac_get_datainput

Returns the current data input register value.

38.2.6.1.12. gradcdac_get_dataioutput

Returns the current data output register value.

38.2.6.1.13. gradcdac_set_dataioutput

Sets the controller's data output register to the argument [output].

38.2.6.1.14. gradcdac_get_datadir

Returns the current data direction register value.

38.2.6.1.15. gradcdac_set_datadir

Sets the controller's data direction register to the argument [dir].

38.2.6.2. Status interpretation help function

A short summary to the functions are presented in the prototype lists below. Functions to help the interpretation
of the status read with gradcdac_get_status are described in Table 38.5. The functions does not actually
read or write any ADC/DAC register therefore the handle (cookie) is omitted.

Table 38.6. Status interpretation help functions

Prototypes Non-zero return meaning

int gradcdac_DAC_ReqRej(unsigned int status) DAC conversion request rejected

int gradcdac_DAC_isCompleted (unsigned int status) DAC conversion complete

int gradcdac_DAC_isOngoing (unsigned int status) DAC conversion is ongoing

int gradcdac_ADC_isTimeouted (unsigned int status) ADC sample timed out

int gradcdac_ADC_ReqRej(unsigned int status) ADC sample request rejected

int gradcdac_ADC_isCompleted (unsigned int status) ADC conversion is completed

int gradcdac_ADC_isOngoing (unsigned int status) ADC conversion is ongoing

38.2.6.3. ADC functions

A short summary to the functions are presented in the prototype lists below.

Table 38.7. ADC functions

Operating on all ports

void gradcdac_adc_convert_start(void)

int gradcdac_adc_convert_try (unsigned short *digital_value)

RCC-UM
September 2020, Version 1.3-rc9

259 www.cobhamaes.com/gaisler

Operating on all ports

int gradcdac_adc_convert (unsigned short *digital_value)

38.2.6.3.1. gradcdac_adc_convert_start

Make the ADC circuitry initialize an analogue to digital conversion. The result can be read out by
gradcdac_adc_convert_try or gradcdac_adc_convert.

38.2.6.3.2. gradcdac_adc_convert_try

Tries to read the conversion result previously started with gradcdac_adc_convert_start. If the circuitry is
busy converting the function returns a non-zero value, if the conversion has successfully finished zero is returned.

Table 38.8. gradcdac_adc_convert_try return code

Return Code Description

zero ADC conversion complete, digital_value contain current conversion result.

Positive ADC busy, digital value contain previous conversion result.

Negative ADC conversion request failed.

38.2.6.3.3. gradcdac_adc_convert

Waits until the ADC circuity has finished a digital to analogue conversion. The waiting is implemented as a busy
loop utilizing 100% CPU load. This function returns zero on success and a negative value on failure, a positive
result is never returned. See Table 38.2 for a description of the return values.

38.2.6.4. DAC functions

A short summary to the functions are presented in the prototype lists below.

Table 38.9. DAC functions

Operates on a single port

int gradcdac_dac_convert_try (unsigned short digital_value)

void gradcdac_dac_convert (unsigned short digital_value)

For a more detailed description see each function's respective sub section.

38.2.6.4.1. grandcdac_dac_convert_try

Try to make the DAC circuitry initialize a digital to analogue conversion. The digital value to be converted is
taken as the argument digital_value. If the circuitry is busy by a previous conversion the function returns a non-
zero value, if the conversion is successfully initialized the function returns zero.

38.2.6.4.2. grandcdac_dac_convert

Initializes a digital to analogue conversion by waiting until any previous conversion is finished before proceeding
with the conversion. The digital value to be converted is taken as the argument [digital_value]. The waiting is
implemented as a busy loop utilizing 100% CPU load.

RCC-UM
September 2020, Version 1.3-rc9

260 www.cobhamaes.com/gaisler

Chapter 39. GRTC GRLIB CCSDS Telecommand driver

39.1. INTRODUCTION

This document is intended as an aid in getting started developing with Aeroflex Gaisler GRLIB GRTC Telecom-
mand (TC) core using the driver described in this document. It describes accessing GRTC in a on-chip system and
over PCI and SpaceWire. It briefly takes the reader through some of the most important steps in using the driver
such as starting TC communication, configuring the driver and receiving TC frames. The reader is assumed to be
well acquainted with TC and RTEMS.

39.1.1. TC Hardware

See the GRTC core manual. When the GRTC core is accessed over SpaceWire RMAP is used.

39.1.2. Software Driver

The driver provides means for threads to receive TC frames using standard I/O operations. There are two drivers,
one that supports GRTC on an on-chip AMBA bus and an AMBA bus accessed over PCI (on a GR-RASTA-TMTC
board for example) and one driver that supports accessing the GRTC over SpaceWire.

39.1.2.1. GRTC over SpaceWire

The SpaceWire capable GRTC driver introduces some limitations listed below:

1. RAW mode is not supported (the read call)
2. The GRTC DMA area accessed over SpaceWire is cached in RAM close to the CPU. The cached DMA

area is equal in length to the GRTC DMA area. The cache is synchronized every time the user enters the
receive function.

3. A field named dma_partition has been added to the grtc_ioc_buf_params structure identifying
the partition used when allocating the DMA memory on the SpaceWire node. The custom_buffer option
is still available, it determines where the cached area is located.

39.2. User interface

The RTEMS GRTC driver supports the standard accesses to file descriptors such as open, read and ioctl. User
applications include the grtc driver's header file which contains definitions of all necessary data structures and
bit masks used when accessing the driver.

The driver enables the user to configure the hardware and to receive TC frames. The driver can be operated in two
different modes either in RAW mode giving the user the possibility to read the DMA area it self using the read
call or in FRAME mode where the driver handles basic frame parsing by looking at the header length field and the
control bytes from the TC core. In the FRAME mode the allocation of TC frames is handled by the user, empty
frames are given to the driver that puts data and header of received TC frames into the user allocated frames in
a two step process. In the first step the user provides the driver with unused frames queued in an driver internal
queue, the second step is when the user retrieve the frames containing a complete received frame, filler is not
copied in FRAME mode.

Note that RAW mode is not supported when operating the GRTC over SpaceWire.

39.2.1. Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard means, such as
open. The function grtc_register whose prototype is provided in grtc.h is used for registering the driver. It
returns 0 on success and 1 on failure. A typical register call from the LEON3 Init task:

if (grtc_register(&amba_conf))
 printf(“GRTC register Failed\n”);

39.2.2. Opening the device

Opening the device enables the user to access the hardware of a certain GRTC device. The driver is used for all
GRTC cores available. The cores are separated by assigning each core a unique name and a number called [minor].
The name is given during the opening of the driver. The first three names are printed out:

RCC-UM
September 2020, Version 1.3-rc9

261 www.cobhamaes.com/gaisler

Table 39.1. Core number to device name conversion.

Core number Filesystem name

0 /dev/grtc0

1 /dev/grtc1

2 /dev/grtc2

0 /dev/rastatmtc0/grtc0

0 /dev/rmap_fe/grtc0

An example of an RTEMS [open] call is shown below.

fd = open("/dev/grtc0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as indicated in Table 39.1.

Table 39.2. Open errno values.

ERRNO Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary memory.

39.2.3. Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the grtc driver.

39.2.4. I/O Control interface

The behaviour of the driver and hardware can be changed via the standard system call ioctl. Most operating systems
support at least two arguments to ioctl, the first being an integer which selects ioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the GRTC driver's header file grtc.h. In func-
tions where only one argument is needed the pointer (void *arg) may be converted to an integer and interpreted
directly, thus simplifying the code.

39.2.4.1. Data structures

The grtc_ioc_buf_params struct is used for configuring the DMA area of the TC core and driver.

struct grtc_ioc_buf_params {
 unsigned int length;
 void *custom_buffer;
 int dma_partition;
};

Table 39.3. grtc_ioc_buf_params member descriptions.

Member Description

length Length of custom buffer or length of DMA buffer requested to be allocated by
driver.

custom_buffer When custom_buffer is zero, a DMA buffer will be allocate using malloc() by
the driver. Set this option to a non-zero buffer pointer to indicate that the buffer
is allocated by the user (user custom buffer). custom_buffer is interpreted as
the new DMA buffer address that the driver must use. Note that there are align-

RCC-UM
September 2020, Version 1.3-rc9

262 www.cobhamaes.com/gaisler

Member Description

ment requirements that need to be met, see the hardware documentation. When
the least significant bit is set to one the custom address is interpreted as an ad-
dress local to the GRTC core. The GRTC driver will translate this address to an
address that the CPU can read. This is useful when the GRTC core is not on the
same bus as the CPU and translation is needed.

dma_partition SpaceWire driver version only. This option select which partition the DMA
area on the SpaceWire node is allocated from. The AMBA RMAP bus driv-
er provides custom functions for allocating memory on the remote target, the
memory is split into multiple partitions. Note that memory allocated cannot be
returned/freed, this means that a memory leak may be created when configur-
ing the memory more than once.

The grtc_ioc_config struct is used for configuring the driver and the TC core.

struct grtc_ioc_config {
 int psr_enable;
 int nrzm_enable;
 int pss_enable;
 int crc_calc;
};

Table 39.4. grtc_ioc_config member descriptions.

Member Description

psr_enable Enable Pseudo-De-Randomizer in the TC core. See hardware manual for more
information.

nrzm_enable Enable Non-Return-to-Zero Mark Decoder. See hardware manual for more in-
formation.

pss_enable Enable ESA/PSS. See hardware manual for more information.

crc_calc Reserved, set this to zero

The grtc_ioc_hw_status data structure is used to store the register values of some of the GRTC core's registers.
See hardware manual for more information.

struct grtc_ioc_hw_status {
 unsigned int sir;
 unsigned int far;
 unsigned int clcw1;
 unsigned int clcw2;
 unsigned int phir;
 unsigned int str;
};

Table 39.5. grtc_ioc_hw_status member descriptions.

Member Description

sir Spacecraft Identifier register

far Frame Acceptance Report Register

clcw1 CLCW Register 1

clcw2 CLCW Register 2

phir Physical Interface Register

str Status Register

The grtc_frame structure is used for adding unused frames as buffers to the TC driver and retrieving received
frames, it is the driver's representation of a TC frame. A TC frame structure can be chained together using the
next field in grtc_frame. The data field is only 3 bytes in the structure but when used the data field goes past
the grtc_frame boundary making different sized frames possible. The frame structure may be allocated with
the size [sizeof(struct grtc_frame) +DATA_LEN-3].

RCC-UM
September 2020, Version 1.3-rc9

263 www.cobhamaes.com/gaisler

struct grtc_frame {
 struct grtc_frame *next;
 unsigned short len;
 unsigned short reserved;
 struct grtc_frame_pool *pool;

 /* The Frame content */
 struct grtc_hdr hdr;
 unsigned char data[3];
};

Table 39.6. grtc_frame member descriptions.

Member Description

next Points to next TC frame in TC frame chain, NULL if last frame in chain. This
field is used to make driver process multiple TC Frames at the same time,
avoiding multiple ioctl calls.

len Length of received TC Frame.

reserved Reserved by the driver.

pool Field internally used by driver, must not be changed by user.

hdr Header of a TC Frame.

data Start of TC Frame payload.

The grtc_list structure represents a linked list, a chain, of TC frames. The data structure holds the first frame and
last frame in chain.

struct grtc_list {
 struct grtc_frame *head;
 struct grtc_frame *tail;
 int cnt;
};

Table 39.7. grtc_list member descriptions.

Member Description

head First TC frame in chain

tail Last TC frame in chain, last frame in list must have it's next field set to NULL

cnt Number of frames in list

The grtc_ioc_pools_setup structure represents the set up of all frame pools used by the driver to select the shortest
frame to put incoming TC frames into. The size of the data structure depends on the pool_cnt field, the size can
be calculated as [sizeof(struct grtc_ioc_pools_setup) - 4 + 4*pool_cnt].

struct grtc_ioc_pools_setup {
 unsigned int pool_cnt;
 unsigned int pool_frame_len[1];
};

Table 39.8. grtc_ioc_pools_setup member descriptions.

Member Description

pool_cnt Number of frame pools in this setup

pool_frame_len Array of frame lengths, one length per pool. Pool one has frame length
pool_frame_len[0], Pool 2 pool_frame_len[1] and so on.

The grtc_ioc_assign_frm_pool structure hold a chain of frames all with the same minimum length, the length is
specified by the frame_len field and the frame chain is pointed to by the field frames. This data structure is
used by the driver to assign a common pool for all frames in the chain. This is to make the frame to pool insertion
faster for unused frames.

struct grtc_ioc_assign_frm_pool {
 unsigned int frame_len;
 struct grtc_frame *frames;
};

RCC-UM
September 2020, Version 1.3-rc9

264 www.cobhamaes.com/gaisler

Table 39.9. grtc_ioc_assign_frm_pool member descriptions.

Member Description

frame_len Minimum length of all TC frames in the frames field

frames Linked list of frames that will be assigned a pool by the driver

The grtc_ioc_stats structure contain statistics collected by the driver in FRAME mode.

struct grtc_ioc_stats {
 unsigned long long frames_recv;

 /* Errors related to incoming data */
 unsigned int err;
 unsigned int err_hdr;
 unsigned int err_payload;
 unsigned int err_ending;
 unsigned int err_abandoned;

 /* Errors related to the handling of incoming frames */
 unsigned int dropped;
 unsigned int dropped_no_buf;
 unsigned int dropped_too_long;
};

Table 39.10. grtc_ioc_stats member descriptions.

Member Description

frames_recv Number of frames successfully received by the TC core.

err Total number of errors related to incoming data, due to too early frame end-
ing or abandoned frame.

err_hdr Number of errors encountered during frame header processing.

err_payload Number of errors encountered during frame payload processing.

err_ending Number of errors encountered during filler and end of frame processing.

err_abandoned reserved for future use, NOT IMPLEMENTED.

dropped Number of dropped frames due to not the correct buffers were available
when processing the frame.

dropped_no_buf Number of frames dropped because no empty frames of this frame length
were available upon reception.

dropped_too_long Number of frames dropped because frame length too long to match any of
the configured frame pools.

39.2.4.2. Configuration

The TC core and driver are configured using ioctl calls. The Table 39.4 below lists all supported ioctl calls.
GRTC_IOC_ must be concatenated with the call number from the table to get the actual constant used in the code.
Return values for all calls are 0 for success and -1 on failure. Errno is set after a failure as indicated in Table 39.3.

An example is shown below where the statistics of the driver is copied to the user buffer stats by using an ioctl call:

struct grtc_ioc_stats stats;

result = ioctl(fd, GRTC_IOC_GET_STATS, &stats);

Table 39.11. ERRNO values of ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The TC hardware is not in the correct state. Many ioctl calls need the TC
core to be in stopped or started mode. One can switch state by calling
START or STOP.

RCC-UM
September 2020, Version 1.3-rc9

265 www.cobhamaes.com/gaisler

ERRNO Description

ENOMEM Not enough memory to complete operation. This may cause other ioctl
commands to fail.

EIO Writing to hardware failed. Feature not available in hardware.

Table 39.12. ioctl calls supported by the GRTC driver.

Call Number Status Mode Description

START Stopped Both Exit stopped mode, start the receiver.

STOP Started Both Exit started mode, enter stopped mode.
This stops the receiver. Most of the set-
tings can only be set when in stopped
mode.

ISSTARTED Both Both Indicates operating status, started or
stopped.

SET_BLOCKING_MODE Both RAW Set blocking or non-blocking mode for
read calls.

SET_TIMEOUT Both RAW Set time out value used in blocking
mode to wake up blocked task if read
request takes too long time to complete.

SET_MODE Stopped Both Select operating mode, RAW or
FRAME mode. RAW is default.

SET_BUF_PARAM Stopped Both Set DMA buffer parameters.

SET_CONFIG Stopped Both Configure hardware and driver.

GET_CONFIG Both Both Get current configuration previously set
with SET_CONFIG or the driver de-
faults.

GET_BUF_PARAM Both Both Get current DMA buffer parameters.

GET_BUF_STATUS Both Both Get current GRTC hardware status.

GET_CLCW_ADR Both Both Returns the address of the CLCWRx1
register, it can be used to get the current
CLCW fields from hardware. For exam-
ple can the no-RF and the No-Bit-Lock
bit be read from this address. See hard-
ware manual.

GET_STATS Both FRAME Get statistics collected by driver.

CLR_STATS Both FRAME Reset driver statistics.

POOLS_SETUP Stopped FRAME Set up frame pool configuration.

ASSIGN_FRM_POOL Both FRAME Assigns a chain of TC frame structures
to a frame pool internal used by driver.

ADD_BUFF Started FRAME Add a chain of free TC frames to the
frame pools internal to the GRTC driv-
er.

RECV Both FRAME Get all complete processed TC frames
from the ready queue internal to the
GRTC driver.

39.2.4.2.1. START

This ioctl command enables the TC receiver and changes the driver's operating status to started. Settings previously
set by other ioctl commands are written to hardware just before starting reception. It is necessary to enter started

RCC-UM
September 2020, Version 1.3-rc9

266 www.cobhamaes.com/gaisler

mode to be able to receive TC frames using the ioctl command GRTC_IOC_RECV or to read the DMA data area
by calling read().

The command will fail if the receiver is unable to be brought up, the driver or hardware configuration is invalid
or if the TC core already is started. In case of failure the return code is negative and errno will be set to EIO or
EINVAL, see Table 39.3.

39.2.4.2.2. STOP

This call makes the TC core leave started mode and enter stopped mode. The receiver is stopped and no frames will
be received. After calling STOP further calls to read and to ioctl using command such as ADD_BUFF, RECV,
ISSTARTED, STOP will behave differently or result in error.

It is necessary to enter stopped mode to change major operating parameters of the TC core and driver. See
SET_CONFIG for more details.

The command will fail if the TC driver already is in stopped mode.

39.2.4.2.3. ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped mode and return
successfully in started mode.

39.2.4.2.4. SET_BLOCKING_MODE

Changes the driver's read behaviour in RAW mode. This call has no effect for FRAME mode, FRAME mode is
always non-blocking. Two modes are available blocking mode and polling mode, in polling mode the read()
call always returns directly even when no DMA data is available. In blocking mode the task calling read() is
blocked until at least one byte is available, it is also possible to make the blocked task time out after some time
setting the timeout value using the SET_TIMEOUT ioctl command.

Input is set as as described in the table below.

Table 39.13. SET_BLOCKING_MODE ioctl arguments

Bit number Description

GRTC_BLKMODE_POLL Enables polling mode

GRTC_BLKMODE_BLK Enables blocking mode

The driver's default is polling mode.

Note that the blocking mode is implemented using the CLTU stored interrupt.

This command never fail.

39.2.4.2.5. SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up af-
ter this time out expires. The time out value specifies the input to the RTEMS take semaphore operation
rtems_semaphore_obtain(). See the RTEMS documentation for more information how to set the time
out value.

Note that this option has no effect in polling mode.

This command never fail.

39.2.4.2.6. SET_MODE

Select RAW of FRAME mode. Argument must be either GRTC_MODE_RAW for RAW mode or
GRTC_MODE_FRAME for FRAME mode. See the section Operating mode for more information about the
modes.

RCC-UM
September 2020, Version 1.3-rc9

267 www.cobhamaes.com/gaisler

The driver defaults to RAW mode.

This calls fails if driver is in started mode or due to an illegal input argument.

39.2.4.2.7. SET_BUF_PARAM

This command is used to configure the DMA buffer area of the TC core. The argument is a pointer to an initialized
grtc_ioc_buf_params data structure described in the data structures section. The DMA buffer may be set to a
custom location and length, or the driver may be requested to allocate a DMA buffer with the specified size. If
the custom location lsb is set to one the address is interpreted as a remote address as viewed from the GRTC core,
not the CPU. This can be useful for GRTC cores found on another bus than the CPU, for example for a GRTX
core on a GR-RASTA-TMTC PCI board.

When GRTC is operated over SpaceWire an additional option is available, the dma_partition field, selecting
from which memory partition the DMA area is allocated from. See AMBA Plug&Play SpaceWire bus driver for
an description of memory allocation. The custom option described above is still available, however it identifies
the cached memory area rather than the GRTC DMA area.

Trying to configure the DMA buffer area in started mode result in failure, and errno set to EBUSY. An invalid
argument result in failure and errno set to EINVAL. The command will fail and errno set to ENOMEM when
the driver is requested to allocate a buffer too large to be allocated by malloc().

39.2.4.2.8. SET_CONFIG

Configures the driver and core. This call updates the configuration that will be used by the driver during the
START command and during operation. Enabling features not implemented by the TC core will result in EIO
error when starting the TC driver.

The input is a pointer to an initialized grtc_ioc_config structure described in Section 39.2.2.

This call fail if the TC core is in started mode, in that case errno will be set to EBUSY, or if a NULL pointer is
given as argument, in that case errno will be set to EINVAL.

39.2.4.2.9. GET_CONFIG

Return the current configuration of the driver and hardware. The current configuration is either the driver and
hardware defaults or the configuration previously set by the SET_CONFIG command.

The input to this ioctl command is a pointer to a data area of at least the size of a grtc_ioc_config structure.
The data area will be stored according to the grtc_ioc_config data structure described in Section 39.2.2.

This command only fail if the pointer argument is invalid.

39.2.4.2.10. GET_BUF_PARAM

Get the current DMA buffer configuration. The argument is a pointer to an uninitialized grtc_ioc_buf_params data
structure described in the data structures section.

This command will fail if the input argument is invalid, errno will be set to EINVAL in such cases.

39.2.4.2.11. GET_HW_STATUS

Read current TC hardware state, the argument is a pointer to a data area where the hardware status will be stored.
The status is stored using the layout of the grtc_ioc_hw_status described in the data structures section.

This command only fail if the pointer argument is invalid.

39.2.4.2.12. GET_CLCW_ADR

The address of the GRTC register "GRTC CLCW Register 1" is stored into a user provided location. The register
address may be used to access the current CLCW fields from the GRTC hardware. For example can the no-RF
and the No-Bit-Lock bit be read from this address. See the hardware manual.

RCC-UM
September 2020, Version 1.3-rc9

268 www.cobhamaes.com/gaisler

This command only fail if the pointer argument is invalid.

39.2.4.2.13. GET_STATS

This command copies the driver's internal statistics counters to a user provided data area. The format of the data
written is described in the data structure subsection. See the grtc_ioc_stats data structure.

Note that the statistics only is available for the FRAME mode since it is only the FRAME mode that generate
statistics such as number of frames received and errors in header, in RAW mode the data is never processed just
copied to a user provided buffer.

The call will fail if the pointer to the data is invalid.

39.2.4.2.14. CLR_STATS

This command reset the driver's internal statistics counters.

This command never fail.

39.2.4.2.15. POOLS_SETUP

This command set up the frame pools internal to the driver. The frame pools must be configured before starting
the receiver in FRAME mode. For more information about frame pools see section Operating mode. The pools are
configured by the input argument pointing to an initialized grtc_ioc_pools_setup data structure described
in the data structure subsection.

Note that the frame length must be sorted with the first frame pool having the shortest frame length.

The call will fail if the pointer to the data is invalid or if in RAW mode.

39.2.4.2.16. ASSIGN_FRM_POOL

Assigns a linked list of frames to a frame pool. The input argument is a pointer to a
grtc_ioc_assign_frm_pool data structure containing the frame length identifying a pool and a linked
list of frames that will be assign to the matching pool. All frames must be assigned to a frame pool before
added to the driver's frame pools using the command ADD_BUF. For more information about frame pools and
assigning a frame to a frame pool see section Operating mode. See section data structures for a description of
grtc_ioc_assign_frm_pool.

The frame pools, using POOLS_SETUP, must be set up before assigning frames to a frame pool.

This command fail and errno set to EINVAL is the input argument is invalid, the driver is in RAW mode or no
matching frame pool was found.

39.2.4.2.17. ADD_BUF

Adds a chain of frames to their respective frame pool for later use by the driver. The driver will use the added
frames when frames are received. The input argument is a pointer to a grtc_frame data structure, the first frame
in the chain, see the data section for a description of the grtc_frame structure.

Note, that the frame structure and any data pointed to by the frame added to the driver must not be accessed until
the frame has been received using the ioctl command RECV.

The call will fail if the pointer to the data is invalid or if in RAW mode.

39.2.4.2.18. RECV

This command is used to process the DMA area and retrieve a linked list of successfully processed received frames.
The input argument to RECV is a pointer to a grtc_list data structure, described in the data structure section.
All currently processed frames will be put into data structure, head will point to the first and tail to the last frame
in the chain, cnt will hold the number of frames in the list.

RCC-UM
September 2020, Version 1.3-rc9

269 www.cobhamaes.com/gaisler

39.2.5. Operating mode

In RAW mode the user can read out the raw data from the TC DMA buffer set up by the driver using the standard
read() call. This enables the user to do custom processing of incoming frames. All TC DMA data is read one
control data byte for each frame data byte, for more information how to handle the data see the GRTC hardware
manual. If the DMA buffer isn't read in time overflow may occur and data will be lost forcing the driver to stop
the receiver.

When the driver is operated in FRAME mode the driver is responsible to determine the start and end of each frame.
It does so by looking at the TC frame length field and the GRTC control bytes provided for each frame data byte.
The header and data is copied into a free frame taken from a frame pool internal to the driver, see next section for
information about frame pools, an put at the end of a linked list with received frames that can be read by the user
using the ioctl command GRTC_IOC_RECV. After the user has processed the frame the frame is added again
to the driver's frame pools using the ioctl command GRTC_IOC_ADD_BUFF. It is the users responsibility to
make sure that there always is frames available for the TC driver to copy frames into, otherwise the TC driver
will drop frames.

39.2.5.1. Driver frame pools

In FRAME mode a frame pool concept is used to group frames of equal frame length. Using multiple pools make
it possible for the driver to select a frame with a frame length as short as possible that still fit the incoming frame
data and header. The driver is configured with multiple pools with different frame lengths, the more frame pools
the smaller is the difference of the incoming frame length to the taken buffer the driver selects. The pools are set
up using the ioctl command GRTC_IOC_POOLS_SETUP.

Every time a frame is added to one of the driver's pool, using the GRTC_IOC_ADD_BUFF command, the correct
frame pool must be found to put it in. To simplify and make the frame pool detection faster each frame must be
assigned to a frame pool once before use, assigning a frame with a pool must done by using the ioctl command
GRTC_IOC_ASSIGN_FRM_POOL.

39.2.6. Reception in FRAME mode

Receiving frames are done with the ioctl call using the command ADD_BUF and RECV. It is possible to receive
multiple frames in one call, the frames are provided to the driver using a linked list of frames. See the ioctl
command RECV and ADD_BUF for more information.

39.2.7. Reception using RAW mode

Reception is done using the read call. An example is shown below:

unsigned char tc_rx_buf[512];

len = read(fd, tc_rx_buf, sizeof(tc_rx_buf));

The requested number of bytes to be read is given in the third argument. The messages will be stored in tc_rx_buf.
The actual number of received bytes is returned by the function on success and -1 on failure. In the latter case
errno is also set.

The data formatting is described in the hardware manual.

The call will fail if a null pointer is given, invalid buffer length, the TC core is in stopped mode, no data available
in non-blocking mode or due to a time out in blocking mode.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until at least one byte has
been received, unless a time out has been given and that time has expired causes the driver to return ETIMEDOUT.
In non-blocking mode, the call will return immediately and if no data was available -1 is returned and errno set
appropriately. The table below shows the different errno values is returned.

Table 39.14. ERRNO values for read calls.

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer or the length was illegal.

RCC-UM
September 2020, Version 1.3-rc9

270 www.cobhamaes.com/gaisler

ERRNO Description

EBUSY TC core is in stopped mode. Switch to started mode by issuing a START ioctl
command.

ETIMEDOUT In non-blocking mode no data were available in the DMA area, or in blocking
mode and the time out has expired and still no data in DMA area.

ENODEV A blocking read was interrupted by the TC receiver has been stopped. Further calls
to read will fail until the ioctl command START is issued again.

RCC-UM
September 2020, Version 1.3-rc9

271 www.cobhamaes.com/gaisler

Chapter 40. GRTM GRLIB CCSDS Telemetry Driver

40.1. Introduction

This document is intended as an aid in getting started developing with Aeroflex Gaisler GRLIB GRTM Telemetry
(TM) core using the driver described in this document. It describes accessing GRTM in a on- chip system and
over PCI and SpaceWire. It briefly takes the reader through some of the most important steps in using the driver
such as starting TM communication, configuring the driver and sending TM frames. The reader is assumed to be
well acquainted with TM and RTEMS.

40.1.1. TM Hardware

See the GRTM core manual. When the GRTM core is accessed over SpaceWire RMAP is used.

40.1.2. Software Driver

The driver provides means for threads to send TM frames using standard I/O operations.

There are two drivers, one that supports GRTM on an on-chip AMBA bus and an AMBA bus accessed over PCI
(on a GR-RASTA-TMTC board for example) and one driver that supports accessing the GRTM over SpaceWire.

40.1.2.1. GRTM over SpaceWire

There are some differences when the GRTM core is operated over SpaceWire, see below list for a summary.

• The GRTM driver manages one buffer per descriptor used to copy frame payload into. The payload is copied
over SpaceWire by the GRTM driver. The maximal frame length must be given in order for the driver to
know how much buffer space to allocate. It is controlled through the maxFrameLength driver resource.

• The driver has three new driver resources: maxFrameLength (maximal length of frames, used when al-
locating buffer space), bdAllocPartition (partition used when allocating descriptor table, see AMBA
RMAP bus driver documentation) and frameAllocPartition (partition used when allocating buffer
space, see AMBA RMAP bus driver documentation).

• TM frames has an additional option COPY_DATA, it determines if the payload is to be copied to the
descriptor's buffer or if the address of the payload is an address that the GRTM core can read directly, for
example the payload may already reside on the SpaceWire node's memory ready to be transmitted. In the
latter case only the descriptor address pointer is written.

• The Frame options TRANSLATE and TRANSLATE_AND_REMEMBER has no effect.

40.2. User interface

The RTEMS GRTM driver supports the standard accesses to file descriptors such as open, close and ioctl. User
applications include the grtm driver's header file which contains definitions of all necessary data structures and
bit masks used when accessing the driver.

The driver enables the user to configure the hardware and to transmit TM frames. The allocation of TM frames
is handled by the user and free frames are given to the driver that processes the frames for transmission in a two
step process. In the first step the driver schedules frames for transmission using the DMA descriptors or they
are put into an internal queue when all descriptors are in use, in the second step all sent frames are put into a
second queue that is emptied when the user reclaims the sent frames. The reclaimed frames can be reused in new
transmissions later on.

40.2.1. Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard means, such as
open. The function grtm_register whose prototype is provided in grtm.h is used for registering the driver. It
returns 0 on success and 1 on failure. A typical register call from the LEON3 Init task:

if (grtm_register(&amba_conf))
 printf(“GRTM register Failed\n”);

RCC-UM
September 2020, Version 1.3-rc9

272 www.cobhamaes.com/gaisler

40.2.2. Opening the device

Opening the device enables the user to access the hardware of a certain GRTM device. The driver is used for
all GRTM cores available. The cores are separated by assigning each core a unique name and a number called
[minor]. The name is given during the opening of the driver. The first three names are printed out:

Table 40.1. Core number to device name conversion.

Core number Filesystem name Location

0 /dev/grtm0 On Chip AMBA bus

1 /dev/grtm1 On Chip AMBA bus

2 /dev/grtm2 On Chip AMBA bus

0 /dev/rastatmtc0/grtm0 GR-RASTA-TMTC PCI Target

0 /dev/rmap_fe/grtm0 SpaceWire node with destination address 0xfe.

2 /dev/rmap_1a/grtm2 SpaceWire node with destination address 0x1a.

An example of an RTEMS open call is shown below.

fd = open("/dev/grtm0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as indicated in Table 40.1.

Table 40.2. Open errno values.

ERRNO Description

ENODEV Illegal device name or not available.

EBUSY Device already opened.

ENOMEM Driver failed to allocate necessary memory.

40.2.3. Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the [grtm] driver.

40.2.4. I/O Control interface

The behaviour of the driver and hardware can be changed via the standard system call ioctl. Most operating systems
support at least two arguments to ioctl, the first being an integer which selects ioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the GRTM driver's header file grtm.h. In
functions where only one argument is needed the pointer (void *arg) may be converted to an integer and interpreted
directly, thus simplifying the code.

40.2.4.1. Data structures

The grtm_ioc_hw data structure indicates what features the TM hardware supports and how it has been con-
figured.

struct grtm_ioc_hw {
 char cs;
 char sp;
 char ce;
 char nrz;
 char psr;

RCC-UM
September 2020, Version 1.3-rc9

273 www.cobhamaes.com/gaisler

 char te;
 unsigned char rsdep;
 unsigned char rs;
 char aasm;
 char fecf;
 char ocf;
 char evc;
 char idle;
 char fsh;
 char mcg;
 char iz;
 char fhec;
 char aos;
 unsigned short blk_size;
 unsigned short fifo_size;
};

Table 40.3. grtm_ioc_hw member descriptions.

Member Description

cs Indicates if Sub Carrier (SC) modulation is implemented

sp Indicates if Split-Phase Level (SP) modulation is implemented

ce Indicates if Convolutional Encoding (CE) is implemented

nrz Indicates if Non-Return-to-Zero (NRZ) mark encoding is implemented

psr Indicates if Pseudo-Randomizer (PSR) is implemented

te Indicates if Turbo Encoder (TE) is implemented

rsdep Reed-Solomon interleave Depth (RSDEPTH) implemented (3-bit)

rs Indicates what Reed-Solomon encoders are implemented (0=None, 1=E16, 2=E8,
3=Both)

aasm Indicates if Alternative ASM (AASM) implemented

fecf Indicates if Transfer frame control field CRC is implemented

ocf Indicates if Operational Control Field (OCF) is implemented

evc Indicates if Extended Virtual Channel Counter is implemented

idle Indicates if Idle Frame generation is implemented

fsh Indicates if Frame secondary header is implemented

mcg Indicates if Master Channel counter generation is implemented

iz Indicates if Insert Zone (IZ) is implemented

fhec Indicates if Frame Header Error Control (FHEC) is implemented

aos Indicates if AOS transfer frame generation is implemented

blk_size TM core DMA Block size in number of bytes

fifo_size TM core FIFO size in number of bytes

The grtm_ioc_config struct is used for configuring the driver and the TM core.

struct grtm_ioc_config {
 unsigned char mode;

 unsigned short frame_length;
 unsigned short limit;
 unsigned int as_marker;

 /* Physical layer options */
 unsigned short phy_subrate;
 unsigned short phy_symbolrate;
 unsigned char phy_opts;

 /* Coding sub-layer Options */
 unsigned char code_rsdep;
 unsigned char code_ce_rate;
 unsigned char code_csel;
 unsigned int code_opts;

RCC-UM
September 2020, Version 1.3-rc9

274 www.cobhamaes.com/gaisler

 /* All Frames Generation */
 unsigned char all_izlen;
 unsigned char all_opts;

 /* Master Frame Generation */
 unsigned char mf_opts;

 /* Idle frame Generation */
 unsigned short idle_scid;
 unsigned char idle_vcid;
 unsigned char idle_opts;

 /* Interrupt options */
 unsigned int enable_cnt;
 int isr_desc_proc;
 int blocking;
 rtems_interval timeout;
};

Table 40.4. grtm_ioc_config member descriptions.

Member Description

mode Select mode hardware will operate in, TM=0, AOS=1

frame_length Frame Length in bytes

limit Number of data bytes fetched by TM DMA engine before transmission starts. Set-
ting limit to zero will make GRTM driver to calculate the limit value from frame
length and the block size of the hardware.

as_marker Set custom Attached Synchronization Marker (ASM)

phy_subrate Sub Carrier rate division factor - 1

phy_symbolrate Symbol Rate division factor - 1

phy_opts Physical layer options, mask of GRTM_IOC_PHY_XXXX

code_rsdep Coding sub-layer Reed-Solomon interleave depth (3-bit)

code_ce_rate Convolutional encoding rate, select one of GRTM_CERATE_00 ...
GRTM_CERATE_07

code_csel External TM clock source selection, 2-bit (application specific)

code_opts Coding sub-layer options, mask of GRTM_IOC_CODE_XXXX

all_izlen All frame generation FSH (TM) or Insert Zone (AOS) length in bytes

all_opts All frame generation options, mask of GRTM_IOC_ALL_XXXX

mf_opts Master channel frame generation, mask of GRTM_IOC_MF_XXXX

idle_scid Idle frame spacecraft ID, 10-bit

idle_vcid Idle frame virtual channel ID, 6-bit

idle_opts Idle frame generation options, mask of GRTM_IOC_IDLE_XXXX

enable_cnt Number of frames between interrupts are generated, zero disables interrupt. Al-
lows user to fine grain interrupt generation

isr_dec_proc Allow TM interrupt service routine (ISR) to process descriptors

blocking Blocking mode select, GRTM_BLKMODE_POLL for polling mode or
GRTM_BLMODE_BLK for blocking mode

timeout Blocking mode time out

The grtm_frame structure is used in for transmitting TM frames and retrieving sent frames, it is the driver's rep-
resentation of a TM frame. A TM frame structure can be chained together using the [next] field in grtm_frame.

struct grtm_frame {
 unsigned int flags;
 struct grtm_frame *next;
 unsigned int *payload;
};

RCC-UM
September 2020, Version 1.3-rc9

275 www.cobhamaes.com/gaisler

Table 40.5. grtm_frame member descriptions.

Member Description

flags Mask indicating options, transmission state and errors for the frame.
GRTM_FLAGS_XXX. See Table 40.5

next Points to next TM frame. This field is used to make driver process multiple TM
Frames at the same time, avoiding multiple ioctl calls.

payload Points to a data area holding the complete TM frame. The area include fields such
as header, payload, OCF, CRC.

Table 40.6. Frame flags descriptions.

Flag Description

GRTM_FLAGS_SENT Indicates whether the frame has been transmitted or not

GRTM_FLAGS_ERR Indicates if errors has been experienced during transmission of the
frame

GRTM_FLAGS_TS Generate Time Strobe (TS) for the frame

GRTM_FLAGS_MCB Bypass the TM core's Master Channel Counter generation

GRTM_FLAGS_FSHB Bypass the TM core's Frame Secondary Header (FSH) generation

GRTM_FLAGS_OCFB Bypass the TM core's Operational Control Field (OCF) generation

GRTM_FLAGS_FHECB Bypass the TM core's Frame Header Error Control (FHEC) generation

GRTM_FLAGS_IZB Bypass the TM core's Insert Zone (IZ) generation

GRTM_FLAGS_FECFB Bypass the TM core's Frame Error Control Field (FECF) generation

COPY_DATA This option has effect only on the SpaceWire version of the driver. In-
dicates if the TM frame payload should be copied into the assigned
descriptor's buffer or not. If this option is not set then the payload ad-
dress is assumed to be readable by the GRTM core and the descriptor
address pointer is written with the address of the payload directly.

TRANSLATE Translate frame payload address from CPU address to remote bus (the
bus GRTM is resident on). This is useful when dealing with buffers on
remote buses, for example when GRTM is on a AMBA bus accessed
over PCI. This is the case for GR-RASTA-TMTC.

TRANSLATE_AND_REMEMBER As TRANSLATE, however if the translated payload address equals the
payload address the TRANSLATE_AND_REMEMBER bit is cleared
and the TRANSLATE bit is set. Not used in SpaceWire version of driv-
er.

The grtm_list structure represents a linked list, a chain of TM frames. The data structure holds the first frame and
last frame in chain.

struct grtm_list {
 struct grtm_frame *head;
 struct grtm_frame *tail;
};

Table 40.7. grtm_list member descriptions.

Member Description

head First TM frame in chain

tail Last TM frame in chain, last frame in list must have it's next field set to
NULL

The grtm_ioc_stats structure contain statistics collected by the driver.

struct grtm_ioc_stats {

RCC-UM
September 2020, Version 1.3-rc9

276 www.cobhamaes.com/gaisler

 unsigned long long frames_sent;
 unsigned int err_underrun;
};

Table 40.8. grtm_ioc_stats member descriptions.

Member Description

frames_sent Number of frames successfully sent by the TM core

err_underrun Number of AMBA underrun errors

40.2.4.2. Configuration

The GRTM core and driver are configured using ioctl calls. Table 40.7 lists all supported ioctl calls. GRTM_IOC_
must be concatenated with the call number from the table to get the actual constant used in the code. Return values
for all calls are 0 for success and -1 on failure. Errno is set after a failure as indicated in Table 40.6.

An example is shown below where the statistics of the driver is copied to the user buffer stats by using an ioctl call:

struct grtm_ioc_stats stats;

result = ioctl(fd, GRTM_IOC_GET_STATS, &stats);

Table 40.9. ERRNO values for ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The TM hardware is not in the correct state. Many ioctl calls need the
TM core to be in stopped or started mode. One can switch state by calling
START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl
commands to fail.

EIO Writing to hardware failed. Feature not available in hardware.

ENODEV Operation aborted due to transmitter being stopped.

Table 40.10. ioctl calls supported by the GRTM driver.

Call Number Call Description

START Stopped Exit stopped mode, start the receiver.

STOP Started Exit started mode, enter stopped mode. Most of the settings
can only be set when in stopped mode.

ISSTARTED Both Indicates operating status, started or stopped.

SET_BLOCKING_MODE Both Set blocking or non-blocking mode for RECLAIM.

SET_TIMEOUT Both Set time out value used in blocking mode to wake up blocked
task if request takes too long time to complete.

SET_CONFIG Stopped Configure hardware and software driver.

GET_CONFIG Both Get current configuration previously set with SET_CONFIG
or the driver defaults.

GET_STATS Both Get statistics collected by driver.

CLR_STATS Both Reset driver statistics.

GET_HW_IMPL Both Returns the features and implemented by the TM core.

GET_OCFREG Both Returns the address of the OCF/CLCW register, it can be
used to update the transmitted OCF/CLCW.

RECLAIM Both Returns all TM frames sent since last call to RECLAIM, the
frames are linked in a chain.

RCC-UM
September 2020, Version 1.3-rc9

277 www.cobhamaes.com/gaisler

Call Number Call Description

SEND Started Add a chain of TM frames to the transmission queue of the
GRTM driver.

40.2.4.2.1. START

This ioctl command enables the TM transmitter and changes the driver's operating status to started. Settings pre-
viously set by other ioctl commands are written to hardware just before starting transmission. It is necessary to
enter started mode to be able to send TM frames using the ioctl command GRTM_IOC_SEND.

The command will fail if the transmitter is unable to be brought up, the driver or hardware configuration is invalid
or if the TM core already is started. In case of failure the return code is negative and errno will be set to EIO or
EINVAL, see Table 40.6.

40.2.4.2.2. STOP

This call makes the TM core leave started mode and enter stopped mode. The transmitter is stopped and no frames
will be sent. After calling STOP further ioctl commands such as SEND, RECLAIM, ISSTARTED, STOP will
behave differently or result in error.

It is necessary to enter stopped mode to change major operating parameters of the TM core and driver. See
SET_CONFIG for more details.

The command will fail if the TM driver already is in stopped mode.

40.2.4.2.3. ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped mode and return
successfully in started mode.

40.2.4.2.4. SET_BLOCKING_MODE

Changes the driver's GRTM_IOC_RECLAIM command behaviour. Two modes are available blocking mode and
polling mode, in polling mode the ioctl command RECLAIM always return directly even when no frames are
available. In blocking mode the task calling RECLAIM is blocked until at least one frame can be reclaimed, it is
also possible to make the blocked task time out after some time setting the timeout value using the SET_CONFIG
or SET_TIMEOUT ioctl commands.

The argument is set as as described in the table below.

Table 40.11. SET_BLOCKING_MODE ioctl arguments

Bit Number Description

GRTM_BLKMODE_POLL Enables polling mode

GRTM_BLKMODE_BLK Enables blocking mode

The driver's default is polling mode.

Note that the blocking mode is implemented using the DMA transmit frame interrupt, changing the
isr_desc_proc parameter of the SET_CONFIG command effects the blocking mode characteristics. For ex-
ample, enabling interrupt generation every tenth TM frame will cause the blocked task to be woken up after max-
imum ten frames when going into blocked mode.

This command never fail.

40.2.4.2.5. SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up af-
ter this time out expires. The time out value specifies the input to the RTEMS take semaphore operation

RCC-UM
September 2020, Version 1.3-rc9

278 www.cobhamaes.com/gaisler

rtems_semaphore_obtain(). See the RTEMS documentation for more information how to set the time
out value.

Note that this option has no effect in polling mode.

Note that this option is also set by SET_CONFIG.

40.2.4.2.6. SET_CONFIG

Configures the driver and core. This call updates the configuration that will be used by the driver during the START
command and during operation. Enabling features not implemented by the TM core will result in EIO error when
starting the TM driver. The hardware features available can be obtained by the GET_HW_IMPL command.

The input is a pointer to an initialized grtm_ioc_config structure described in section Section 40.2.4.1.

Note that the time out value and blocking mode can also be set with SET_TIMEOUT and
SET_BLOCKING_MODE.

This call fail if the TM core is in started mode, in that case errno will be set to EBUSY, or if a NULL pointer is
given as argument, in that case errno will be set to EINVAL.

40.2.4.2.7. GET_CONFIG

Returns the current configuration of the driver and hardware. The current configuration is either the driver and
hardware defaults or the configuration previously set by the SET_CONFIG command.

The input to this ioctl command is a pointer to a data area of at least the size of a grtm_ioc_config structure.
The data area will be updated according to the grtm_ioc_config data structure described in Section 40.2.4.1.

This command only fail if the pointer argument is invalid.

40.2.4.2.8. GET_STATS

This command copies the driver's internal statistics counters to a user provided data area. The format of the data
written is described in the data structure subsection. See the grtm_ioc_stats data structure.

The call will fail if the pointer to the data is invalid.

40.2.4.2.9. CLR_STATS

This command reset the driver's internal statistics counters.

This command never fail.

40.2.4.2.10. GET_HW_IMPL

This command copies the TM core's features implemented to a user provided data area. The format of the data
written is described in the data structure subsection. See the grtm_ioc_hw data structure.

Knowing the features supported by hardware can be used to make software run on multiple implementations of
the TM core.

40.2.4.2.11. GET_OCFREG

The address of the GRTM register "GRTM Operational Control Field Register" is stored into a user provided
location. The register address may be used to updated the CLCW or OCF value transmitted in TM frames to
ground without using an ioctl command to perform the request. This address is typically used by Telecommand
(TC) software to tell ground of the current FARM/COP state.

Note that OCF/ CLCW is transmitted only in started mode.

This command never fail.

RCC-UM
September 2020, Version 1.3-rc9

279 www.cobhamaes.com/gaisler

40.2.4.2.12. RECLAIM

Returns processed TM frames to user. All frames returned has been provided by the user in previous calls to SEND,
and need not all to have been successfully sent. RECLAIM can be configured to operate in polling mode, blocking
mode and blocking mode with a time out. In polling mode the task always returns with or without processed
frames, in blocking mode the task is blocked until at least one frame has been processed. See the ioctl command
SET_CONFIG and SET_BLOCKING_MODE to change mode of the RECLAIM command.

RECLAIM stores a linked list of processed TM frames into the data area pointed to by the user argument. The
format for the stored data follows the layout of the grtm_list structure described in Section 40.2.2. The
grtm_list structure holds the first and last TM frame processed by the driver. The flags field indicates if the
frame was sent or if errors were experienced during transmission of this frame. See Table 40.6 for flags details.

In started mode, this command enables scheduled TM frames for transmission as descriptors become free during
the processing of received TM frames.

The call will fail if the pointer to the data area is invalid (EINVAL), the RECLAIM call operates in blocking
mode and the time out expires (ETIMEDOUT) or the driver was stopped during the calling task was blocked
(ENODEV). See table below.

Table 40.12. ERRNO values for RECLAIM

ERRNO Description

EINVAL An invalid argument.

ETIMEDOUT The blocked task was timed out and still no frames was transmitted.

ENODEV The calling task was woken up from blocking mode by the transmitter being stopped. The
TM driver has has entered stopped mode. Further calls to RECLAIM will retrieve sent and
unsent frames.

40.2.4.2.13. SEND

Scheduling ready TM frames for transmission is done with the ioctl command SEND. The input is a linked list of
TM frames to be scheduled. When all TM DMA descriptors are active, enabled and linked to a frame to transmit,
the remaining frames are queued internally by the driver. The TM core is capable of generating parts of the header,
the CRC and OCF/CLCW depending on the implementation and configuration of the TM core. The implemented
features are selected by setting generics in the VHDL model, the implemented features can be read using the
GET_HW_IMPL command. The features enabled is controlled by the SET_CONFIG command. For features
available see the hardware manual for the TM core. The hardware generated parts may be overridden by setting
the flags of the input TM frame structure accordingly.

Every call to SEND will trigger scheduled TM frames for transmission, calling SEND with the argument set to
NULL will thus trigger previously scheduled TM frames for transmission. This might be necessary when interrupts
are not used to process descriptors or when interrupt generation for TM frames are disabled, see Section 40.2.4.2.7.

The input to SEND is a pointer to a grtm_list data structure described in Section 40.2.4.1. The head and tail
fields of the data structure points to the first and the last TM frame to be scheduled for transmission. The TM frame
structure, grtm_frame, used is described in Section 40.2.2. The data area length pointed to by the payload field
is assumed to be at least frame length long. The frame length is set by the SET_CONFIG command. The hardware
generated parts may be overridden by setting the flags field of the TM frame structure accordingly.

Note, that the frame structure and any data pointed to by the frame scheduled for transmission must not be accessed
until the frame has been reclaimed using the ioctl command RECLAIM.

SEND will fail if the input frame list is incorrectly set up, errno will be set to EINVAL in such cases.

40.2.5. Transmission

Transmitting frames are done with the ioctl call using the command SEND and RECLAIM. It is possible to send
multiple frames in one call, the frames are provided to the driver using a linked list of frames. See the ioctl
commands SEND and RECLAIM for more information.

RCC-UM
September 2020, Version 1.3-rc9

280 www.cobhamaes.com/gaisler

Chapter 41. GRCTM driver

41.1. Introduction

This section describes the GRLIB GRCTM (CCSDS Time Manager) device driver interface. The driver imple-
ments a simple interface to read and write registers of the core and interrupt handling. The driver supports the
on-chip AMBA and the AMBA-over-PCI bus. It relies on the driver manager for device discovery and interrupt
handling.

The GRCTM driver require the Driver Manager.

In order to use the driver interface the user must be well acquainted with GRCTM hardware, see hardware manual.

41.1.1. Examples

There is an example available that illustrates how the GRCTM driver interface can be used to configure the
GRCTM core. The example application can be configured as a Time-Master or Time- Slave demonstrating both
sending and receiving time over TimeWire and how it can be connected to the SPWCUC for time-codes and send-
ing time-packets according to CCSDS Unsegmented Code Transfer Protocol using the RTEMS GRSPW driver.

Note that the example may need to be configured, see the TIME_SYNC_* options.

The example can be built by running:

$ cd /opt/rtems-4.10/src/samples/1553
$ make rtems-gr1553bcbm

41.1.2. User interface

41.1.2.1. Overview

The GRCTM software driver provides access to the GRCTM core's registers and helps with device detection,
driver loading and interrupt handling.

The driver sources and interface definitions are listed in the table below, the path is given relative to the SPARC
BSP sources c/src/lib/libbsp/sparc.

Table 41.1. GRCTM driver Source location

Filename Description

shared/time/grctm.c GRCTM Driver source

shared/include/grctm.h GRCTM Driver interface declaration

41.1.2.1.1. Accessing the GRCTM core

A GRCTM core is accessed by first opening a specific GRCTM device by calling
grctm_open(INSTANCE_NUMBER), after successfully opening a device the returned value of grctm_open
can be used as input other functions in the GRCTM driver interface. Registers can be accessed and interrupts
enabled.

41.1.2.1.2. Interrupt service

The GRCTM core can be programmed to interrupt the CPU on certain events, see hardware manual. All interrupts
causes the driver's interrupt service routine (ISR) to be called, it gathers statistics and call the optional user assigned
callback. The callback is registered using the function grctm_int_register().

41.1.2.2. Application Programming Interface

The GRCTM driver API consists of the functions in the table below.

RCC-UM
September 2020, Version 1.3-rc9

281 www.cobhamaes.com/gaisler

Table 41.2. function prototypes

Prototype Description
void *grctm_open(int minor) Open a GRCTM device by instance number, the num-

ber is determined by the order in which the core is found
(Plug&Play order). The function returns a handle to GRCTM
driver used internally, it must be given to all functions in the
API.

void grctm_close(void *grctm) Close a previously opened GRCTM driver.

int spwcuc_reset(void *grctm) Reset the GRCTM core by writing to the GRR (Global Reset
Register) register of the core.

void grctm_int_register(
 void *grctm,
 grctm_isr_t func,
 void *data)

Register (optional) interrupt callback routine with custom ar-
gument. Called from the driver's ISR.

void grctm_int_enable(void *grctm) Enable/unmask GRCTM interrupt on global interrupt con-
troller.

void grctm_int_disable(void
*grctm)

Disable/unmask GRCTM interrupt on global interrupt con-
troller.

void grctm_clear_irqs(
 void *grctm,
 int irqs)

Clear pending interrupts by writing to the PICR register. The
input is a bit-mask of which interrupt flags to clear.

void grctm_enable_irqs(
 void *grctm,
 int irqs)

Enable/unmask and/or disable/mask interrupt sources from
the GRCTM core by writing the IMR register. The [irqs] ar-
gument is a bit-mask written unmodified to the register.

void grctm_clr_stats
(void *grctm)

Clear statistics gathered by driver.

void grctm_get_stats(
 void *grctm,
 struct grctm_stats *stats)

Copy driver's current statistics counters to a custom location
given by stats.

void grctm_enable_ext_sync
(void *grctm)

Enable external synchronisation (from SPWCUC)

void grctm_disable_ext_sync
(void *grctm)

Disable external synchronisation (from SPWCUC)

void grctm_enable_tw_sync
(void *grctm)

Enable TimeWire synchronisation

void grctm_disable_tw_sync
(void *grctm)

Disable TimeWire synchronisation

void grctm_disable_fs
(void *grctm)

Disable frequency synthesizer from driving ET

void grctm_enable_fs
(void *grctm)

Enable frequency synthesizer to driving ET

unsigned int grctm_get_et_coarse
(void *grctm)

Return elapsed coarse time

unsigned int grctm_get_et_fine
(void *grctm)

Return elapsed fine time

unsigned long long grctm_get_et
(void *grctm)

Return elapsed time (coarse and fine)

int grctm_is_dat_latched
(void *grctm, int dat)

Return 1 if specified datation has been latched

void grctm_set_dat_edge(void *grctm,
int dat, int edge)

Set triggering edge of datation input

unsigned int grctm_get_dat_coarse
(void *grctm, int dat)

Return latched datation coarse time

unsigned int grctm_get_dat_fine
(void *grctm, int dat)

Return latched datation fine time

unsigned long long
grctm_get_dat_et(void *grctm, int dat)

Return latched datation ET

unsigned int grctm_get_pulse_reg
(void *grctm, int pulse)

Return current pulse configuration

void grctm_set_pulse_reg
(void *grctm, int pulse,

Set pulse register

RCC-UM
September 2020, Version 1.3-rc9

282 www.cobhamaes.com/gaisler

Prototype Description
unsigned int val)

void grctm_cfg_pulse(void *grctm,
int pulse, int pp,
int pw, int pl, int en)

Configure pulse: pp = period, pw = width, pl = level, en = en-
able

void grctm_enable_pulse
(void *grctm, int pulse)

Enable pulse output

void grctm_disable_pulse
(void *grctm, int pulse)

Disable pulse output

void grctm_register(void) Register the GRCTM driver to Driver Manager

41.1.2.2.1. Data structures

The grctm_stats data structure holds statistics gathered by the driver. It can be read by the
grctm_get_stats() function.

struct grctm_stats {
 unsigned int nirqs;
 unsigned int pulse[8];
};

Table 41.3. grctm_status member descriptions.

Member Description

nirqs Total number of interrupts handled by driver

pulse Number of interrupts generated by each pulse channel (maximum 8 channels). pulse[N] repre-
sents pulse channel N.

RCC-UM
September 2020, Version 1.3-rc9

283 www.cobhamaes.com/gaisler

Chapter 42. SPWCUC driver

42.1. Introduction

This section describes the GRLIB SPWCUC (SpaceWire – CCSDS Unsegmented Code Transfer Protocol) device
driver interface. The driver implements a simple interface to read and write registers of the core, interrupt handling.
The driver supports the on-chip AMBA and the AMBA-over-PCI bus. It relies on the driver manager for device
discovery and interrupt handling.

The SPWCUC driver require the Driver Manager.

In order to use the driver interface the user must be well acquainted with SPWCUC hardware, see hardware manual.

42.1.1. Examples

There is an example available that illustrates how the SPWCUC driver interface can be used to configure the
SPWCUC core and manage interrupts. The example application can be configured as a Time-Master or Time-
Slave demonstrating both sending and receiving SpaceWire time-codes and sending time-packets according to
CCSDS Unsegmented Code Transfer Protocol using the RTEMS GRSPW driver.

Note that the example may need to be configured, see the TIME_SYNC_* options.

The example can be built by running:

$ cd /opt/rtems-4.10/src/samples/1553
$ make rtems-gr1553bcbm

42.2. User interface

42.2.1. Overview

The SPWCUC software driver provides access to the SPWCUC core's registers and helps with device detection,
driver loading and interrupt handling.

The driver sources and interface definitions are listed in the table below, the path is given relative to the SPARC
BSP sources c/src/lib/libbsp/sparc.

Table 42.1. SPWCUC driver Source location

Filename Description

shared/time/spwcuc.c SPWCUC Driver source

shared/include/spwcuc.h SPWCUC Driver interface declaration

42.2.1.1. Accessing the SPWCUC core

A SPWCUC core is accessed by first opening a specific SPWCUC device by calling
spwcuc_open(INSTANCE_NUMBER), after successfully opening a device the returned value of
spwcuc_open can be used as input other functions in the SPWCUC driver interface. Registers can be accessed
and interrupts can be enabled.

42.2.1.2. Interrupt service

The SPWCUC core can be programmed to interrupt the CPU on certain events, see hardware manual. All interrupts
causes the driver's interrupt service routine (ISR) to be called, it gathers statistics and call the optional user assigned
callback. The callback is registered using the function spwcuc_int_register().

42.2.2. Application Programming Interface

The SPWCUC driver API consists of the functions in the table below.

RCC-UM
September 2020, Version 1.3-rc9

284 www.cobhamaes.com/gaisler

Table 42.2. function prototypes

Prototype Description
void *spwcuc_open(int minor) Open a SPWCUC device by instance number, the

number is determined by the order in which the core is
found (Plug&Play order). The function returns a han-
dle to SPWCUC driver used internally, it must be giv-
en to all functions in the API.

void spwcuc_close(void *spwcuc) Close a previously opened SPWCUC driver.

int spwcuc_reset(void *spwcuc) Reset the SPWCUC core by writing to the CONTROL
register of the core. This function also clears pending
interrupts by writing PICR.

void spwcuc_config(
 void *spwcuc,
 struct spwcuc_cfg *cfg)

Configure SPWCUC registers according to [cfg] argu-
ment. See the data structure description of.

void spwcuc_int_register(
 void *spwcuc,
 spwcuc_isr_t func,
 void *data)

Register (optional) interrupt callback routine with cus-
tom argument. Called from the driver's ISR.

void spwcuc_int_enable(void *spwcuc) Enable/unmask SPWCUC interrupt on global interrupt
controller

void spwcuc_int_disable(void *spwcuc) Disable/mask SPWCUC interrupt on global interrupt
controller

void spwcuc_clear_irqs(
 void *spwcuc,
 int irqs)

Clear pending interrupts by writing to the PICR regis-
ter. The input is a bit-mask of which interrupt flags to
clear.

void spwcuc_enable_irqs(
 void *spwcuc,
 int irqs)

Enable/unmask and/or disable/mask interrupt sources
from the SPWCUC core by writing the IMR register.
The [irqs] argument is a bit-mask written unmodified
to the register.

void spwcuc_clr_stats(void *spwcuc) Clear statistics gathered by driver.

void spwcuc_get_stats(
 void *spwcuc,
 struct spwcuc_stats *stats)

Copy driver's current statistics counters to a custom lo-
cation given by [stats].

unsigned int spwcuc_get_et_coarse(
 void *spwcuc)

Returns 32-bit received elapsed coarse time, the value
is taken from the 'T-Field Coarse Time Packet Regis-
ter'.

unsigned int spwcuc_get_et_fine(
 void *spwcuc)

Returns 24-bit received elapsed fine time, the value is
taken from the 'T-Field Fine Time Packet Register' and
shifted down 8 times.

unsigned long long spwcuc_get_et(void
*spwcuc)

Return 56-bit received elapsed time (ET), a combina-
tion of Coarse and Fine time.

unsigned int
spwcuc_get_next_et_coarse(void
*spwcuc)

Return next 32-bit Elapsed Coarse Time.

unsigned int
spwcuc_get_next_et_fine(void *spwcuc)

Return next 24-bit Elapsed Fine Time.

unsigned long long
spwcuc_get_next_et(void *spwcuc)

Return next 56-bit elapsed time (combination of next
Coarse and Fine Time), this time can be used when
generating SpaceWire Time-Packets.

void spwcuc_force_et(void *spwcuc,
unsigned long long time)

Force/Set the elapsed time (coarse 32-bit and fine 24-
bit) by writing the T-Field Time Packet Registers and
set the FORCE bit.

unsigned int spwcuc_get_tp_et_coarse(
 void *spwcuc)

Return received 32-bit Elapsed Coarse Time.

unsigned int spwcuc_get_tp_et_fine(Return received 24-bit Elapsed Fine Time.

RCC-UM
September 2020, Version 1.3-rc9

285 www.cobhamaes.com/gaisler

Prototype Description
 void *spwcuc)

unsigned long long spwcuc_get_tp_et(
 void *spwcuc)

Return received 56-bit Elapsed Time (a combination
of coarse and fine).

42.2.2.1. Data structures

The spwcuc_cfg data structure is used to configure a SPWCUC device and driver. The configuration parameters
are described in the table below.

struct spwcuc_cfg {
 unsigned char sel_out;
 unsigned char sel_in;
 unsigned char mapping;
 unsigned char tolerance;
 unsigned char tid;
 unsigned char ctf;
 unsigned char cp;
 unsigned char txen;
 unsigned char rxen;
 unsigned char pktsyncen;
 unsigned char pktiniten;
 unsigned char pktrxen;
 unsigned char dla;
 unsigned char dla_mask;
 unsigned char pid;
 unsigned int offset;
};

Table 42.3. spwcuc_cfg member descriptions.

Member Description

sel_out Bits 3-0 enable time code transmission on respective output

sel_in Select SpW to receive time codes on, 0-3

mapping Define mapping of time code time info into T-field, 0-31

tolerance Define SpaceWire time code reception tolerance, 0-31

tid Define CUC P-Field time code identification, 1 = Level 1, 2 = Level 2

ctf If 1 check time code flags to be all zero

cp If 1 check P-Field time code id against tid

txen Enable SpaceWire time code transmission

pktsyncen Enable SpaceWire time CUC packet sync

pktiniten Enable SpaceWire time CUC packet init

pktrxen Enable SpaceWire time CUC packet

dla SpaceWire destination logical address

dla_mask SpaceWire destination logical address

pid SpaceWire protocol ID

offset Packet reception offset

The spwcuc_stats data structure holds statistics gathered by the driver. It can be read by the
spwcuc_get_stats() function.

struct spwcuc_stats {
 unsigned int nirqs;
 unsigned int tick_tx;
 unsigned int tick_tx_wrap;
 unsigned int tick_rx;
 unsigned int tick_rx_wrap;
 unsigned int tick_rx_error;
 unsigned int tolerr;
 unsigned int sync;
 unsigned int syncerr;
 unsigned int wrap;

RCC-UM
September 2020, Version 1.3-rc9

286 www.cobhamaes.com/gaisler

 unsigned int wraperr;
 unsigned int pkt_rx;
 unsigned int pkt_err;
 unsigned int pkt_init;
};

Table 42.4. spwcuc_cfg member descriptions.

Member Description

nirqs Total number of interrupts handled by driver

tick_tx Number of TickTx interrupts

tick_tx_wrap Number of TickTxWrap interrupts

tick_rx Number of TickRx interrupts

tick_rx_wrap Number of TickRxWrap interrupts

tick_rx_error Number of TickRxWrap interrupts

tolerr Number of Tolerance Error interrupts

sync Number of Sync interrupts

syncerr Number of Sync Error interrupts

wrap Number of Wrap interrupts

wraperr Number of Wrap Error interrupts

pkt_rx Number of Packet Rx interrupts

pkt_err Number of Packet Error interrupts

pkt_init Number of Packet init interrupts

RCC-UM
September 2020, Version 1.3-rc9

287 www.cobhamaes.com/gaisler

Chapter 43. GRPWRX GRLIB PacketWire Receiver driver

43.1. Introduction

This document is intended as an aid in getting started developing with Aeroflex Gaisler GRLIB PACKETWIRE
RX (GRPWRX) core using the driver described in this document. It describes accessing GRPWRX in a on-chip
system and over PCI. It briefly takes the reader through some of the most important steps in using the driver
such as starting GRPWRX communication, configuring the driver and receiving GRPWRX packets. The reader
is assumed to be well acquainted with GRPWRX and RTEMS.

43.1.1. Software Driver

The driver provides means for threads to receive GRPWRX packets using standard I/O operations.

43.2. User interface

The RTEMS grpwrx driver supports the standard accesses to file descriptors such as open, close and ioctl. User
applications include the grpwrx driver's header file which contains definitions of all necessary data structures and
bit masks used when accessing the driver.

The driver enables the user to configure the hardware and to receive GRPWRX packets. The allocation of GRP-
WRX packets is handled by the user and free packets are given to the driver that processes the packets for reception
in a two step process. In the first step the driver schedules packets for reception using the DMA descriptors or
they are put into an internal queue when all descriptors are in use, in the second step all received packets are put
into a second queue that is emptied when the user reclaims the received packets. The reclaimed packets can then
be reused in new reception later on.

43.2.1. Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard means, such as
open. The function grpwrx_register_drv whose prototype is provided in grpwrx.h is used for registering
the driver:

grpwrx_register_drv();

43.2.2. Opening the device

Opening the device enables the user to access the hardware of a certain grpwrx device. The driver is used for
all grpwrx cores available. The cores are separated by assigning each core a unique name and a number called
[minor]. The name is given during the opening of the driver. The first three names are printed out:

Table 43.1. Core number to device name conversion.

Core number Filesystem Location

0 /dev/grpwrx0 On Chip AMBA bus

1 /dev/grpwrx1 On Chip AMBA bus

2 /dev/grpwrx2 On Chip AMBA bus

0 /dev/rastatmtc0/grpwrx0 GR-RASTA-TMTC PCI Target

An example of an RTEMS open call is shown below.

fd = open("/dev/grpwrx0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as indicated in Table 43.1.

Table 43.2. Open errno values.

ERRNO Description

ENODEV Illegal device name or not
available.

RCC-UM
September 2020, Version 1.3-rc9

288 www.cobhamaes.com/gaisler

ERRNO Description

EBUSY Device already opened.

ENOMEM Driver failed to allocate
necessary memory.

43.2.3. Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the grpwrx driver.

43.2.4. I/O Control interface

The behaviour of the driver and hardware can be changed via the standard system call ioctl. Most operating systems
support at least two arguments to ioctl, the first being an integer which selects ioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

he return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the grpwrx driver's header file grpwrx.h. In
functions where only one argument is needed the pointer (void *arg) may be converted to an integer and interpreted
directly, thus simplifying the code.

43.2.4.1. Data structures

The grpwrx_ioc_hw data structure indicates what features the GRPWRX hardware supports and how it has
been configured.

 struct grpwrx_ioc_hw {
 unsigned short fifo_size;
 unsigned short mode;
 unsigned short clkdivide;
};

Table 43.3. grpwrx_ioc_hw member descriptions.

Member Description

fifo_size GRPWRX core FIFO size in number of bytes

mode GRPWRX core mode, 1=framing mode, 0 = packet mode

clkdivide GRPWRX physical layer clock divider used

The grpwrx_ioc_config struct is used for configuring the driver and the GRPWRX core.

 struct grpwrx_ioc_config {

 int framing;
 /* Physical layer options */
 unsigned short phy_clkrise;
 unsigned short phy_validpos;
 unsigned short phy_readypos;
 unsigned short phy_busypos;

 /* Interrupt options */
 unsigned int enable_cnt;
 int isr_desc_proc;
 int blocking;
 rtems_interval timeout;
};

Table 43.4. grpwrx_ioc_config member descriptions.

Member Description

framing Enable framing mode (1)

RCC-UM
September 2020, Version 1.3-rc9

289 www.cobhamaes.com/gaisler

Member Description

phy_clkrise Rising clock edge coinciding with serial bit change

phy_validpos Positive polarity of valid output signal

phy_readypos Positive polarity of ready input signal

phy_busypos Positive polarity of busy input signal

enable_cnt Number of packets between interrupts are generated, zero disables interrupt. Al-
lows user to fine grain interrupt generation

isr_desc_proc Allow interrupt service routine (ISR) to process descriptors

blocking Blocking mode select, grpwrx_BLKMODE_POLL for polling mode or
grpwrx_BLMODE_BLK for blocking mode

timeout Blocking mode time out

The grpwrx_packet structure is used in for receiving GRPWRX packets and retrieving received packets, it is the
driver's representation of a GRPWRX packet. A GRPWRX packet structure can be chained together using the
[next] field in grpwrx_packet.

 struct grpwrx_packet {
 unsigned int flags;
 struct grpwrx_packet *next;
 int length;
 unsigned int *payload;
};

Table 43.5. grpwrx_ioc_packet member descriptions.

Member Description

flags Mask indicating options, transmission state and errors for the packet.
GRPWRX_FLAGS_XXX. See Table Table 43.5

next Points to next GRPWRX packet. This field is used to make driver process multiple
GRPWRX packets at the same time, avoiding multiple ioctl calls.

Length The length of the receive packet in framing mode.

payload Points to a data area holding the complete GRPWRX packet. The area include
fields such as header, payload, OCF, CRC.

Table 43.6. grpwrx_packet flags descriptions.

Flags Description

GRPWRX_FLAGS_RECEIVED Indicates whether the packet has been transmitted or not

GRPWRX_FLAGS_ERR Indicates if errors has been experienced during transmission of the packet

GRPWRX_FLAGS_FHP Indicates weather to set the First Header Pointer (FPH) flag of the GRP-
WRX buffer descriptor's word 0. The length of the packet should be 2 and
the payload field should point to the location of the CCSDS frame's first
header pointer field.

TRANSLATE Translate packet payload address from CPU address to remote bus (the bus
grpwrx is resident on). This is useful when dealing with buffers on remote
buses, for example when grpwrx is on a AMBA bus accessed over PCI.
This is the case for GR-RASTA-TMTC.

The grpwrx_list structure represents a linked list, a chain of GRPWRX packets. The data structure holds the first
packet and last packet in chain.

 struct grpwrx_list {
 struct grpwrx_packet *head;
 struct grpwrx_packet *tail;
};

RCC-UM
September 2020, Version 1.3-rc9

290 www.cobhamaes.com/gaisler

Table 43.7. grpwrx_list member descriptions.

Member Description

head First GRPWRX packet in chain

tail Last GRPWRX packet in chain, last packet in list must have it's next field
set to NULL

The grpwrx_ioc_stats structure contain statistics collected by the driver.

 struct grpwrx_ioc_stats {
 unsigned long long packets_received;
 unsigned int err_underrun;
};

Table 43.8. grpwrx_ioc_stats member descriptions.

Member Description

packet_recieved Number of packets successfully received by the GRPWRX core

err_underrun Number of AMBA underrun errors

43.2.4.2. Configuration

The grpwrx core and driver are configured using ioctl calls. The Table 43.7 below lists all supported ioctl calls.
grpwrx_IOC_ must be concatenated with the call number from the table to get the actual constant used in the code.
Return values for all calls are 0 for success and -1 on failure. Errno is set after a failure as indicated in Table 43.6.

An example is shown below where the statistics of the driver is copied to the user buffer stats by using an ioctl call:

struct grpwrx_ioc_stats stats;

result = ioctl(fd, grpwrx_IOC_GET_STATS, &stats);

Table 43.9. ERRNO values for ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The GRPWRX hardware is not in the correct state. Many ioctl calls need the GRP-
WRX core to be in stopped or started mode. One can switch state by calling START
or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands to
fail.

EIO Writing to hardware failed. Feature not available in hardware.

ENODEV Operation aborted due to transmitter being stopped.

Table 43.10. ioctl calls supported by the grpwrx driver.

Call Number Call Mode Description

START Stopped Exit stopped mode, start the receiver.

STOP Started Exit started mode, enter stopped mode. Most of the settings can
only be set when in stopped mode.

ISSTARTED Both Indicates operating status, started or stopped.

SET_BLOCKING_MODE Both Set blocking or non-blocking mode for RECLAIM.

SET_TIMEOUT Both Set time out value used in blocking mode to wake up blocked
task if request takes too long time to complete.

SET_CONFIG Stopped Configure hardware and software driver.

GET_CONFIG Both Get current configuration previously set with SET_CONFIG or
the driver defaults.

RCC-UM
September 2020, Version 1.3-rc9

291 www.cobhamaes.com/gaisler

Call Number Call Mode Description

GET_STATS Both Get statistics collected by driver.

CLR_STATS Both Reset driver statistics.

GET_HW_IMPL Both Returns the features and implemented by the GRPWRX core.

GET_OCFREG Both Returns the address of the OCF/CLCW register, it can be used to
update the transmitted OCF/CLCW.

RECLAIM Both Returns all GRPWRX packets received since last call to RE-
CLAIM, the packets are linked in a chain.

RECV Started Add a chain of GRPWRX packets to the reception queue of the
grpwrx driver.

43.2.4.2.1. START

This ioctl command enables the GRPWRX receiver and changes the driver's operating status to started. Settings
previously set by other ioctl commands are written to hardware just before starting reception. It is necessary to
enter started mode to be able to receive GRPWRX packets using the ioctl command grpwrx_IOC_RECV

The command will fail if the receiver is unable to be brought up, the driver or hardware configuration is invalid
or if the GRPWRX core already is started. In case of failure the return code is negative and errno will be set to
EIO or EINVAL, see Table 43.6.

43.2.4.2.2. STOP

This call makes the GRPWRX core leave started mode and enter stopped mode. The receiver is stopped and no
packets will be received. After calling STOP further ioctl commands such as RECV, RECLAIM, ISSTARTED,
STOP will behave differently or result in error.

The command will fail if the GRPWRX driver already is in stopped mode.

43.2.4.2.3. ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped mode and return
successfully in started mode.

43.2.4.2.4. SET_BLOCKING_MODE

Changes the driver's GRPWRX_IOC_RECLAIM command behaviour. Two modes are available blocking mode
and polling mode, in polling mode the ioctl command RECLAIM always return directly even when no packets are
available. In blocking mode the task calling RECLAIM is blocked until at least one packet can be reclaimed, it is
also possible to make the blocked task time out after some time setting the timeout value using the SET_CONFIG
or SET_TIMEOUT ioctl commands.

The argument is set as as described in the table below.

Table 43.11. SET_BLOCKING_MODE ioctl arguments

Bit number Description

GRPWRX_BLKMODE_POLL Enables polling mode

GRPWRX_BLKMODE_BLK Enables blocking mode

The driver's default is polling mode.

Note that the blocking mode is implemented using the DMA transmit packe interrupt, changing the
isr_desc_proc parameter of the SET_CONFIG command effects the blocking mode characteristics. For ex-
ample, enabling interrupt generation every tenth GRPWRX packet will cause the blocked task to be woken up
after maximum ten packets when going into blocked mode.

This command never fail.

RCC-UM
September 2020, Version 1.3-rc9

292 www.cobhamaes.com/gaisler

43.2.4.2.5. SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up af-
ter this time out expires. The time out value specifies the input to the RTEMS take semaphore operation
rtems_semaphore_obtain(). See the RTEMS documentation for more information how to set the time
out value.

Note that this option has no effect in polling mode.

Note that this option is also set by SET_CONFIG.

This command never fail.

43.2.4.2.6. SET_CONFIG

Configures the driver and core. This call updates the configuration that will be used by the driver during the START
command and during operation. Enabling features not implemented by the GRPWRX core will result in EIO error
when starting the GRPWRX driver. The hardware features available can be obtained by the GET_HW_IMPL
command.

The input is a pointer to an initialized grpwrx_ioc_config structure described in Section 43.2.4.1.

Note that the time out value and blocking mode can also be set with SET_TIMEOUT and
SET_BLOCKING_MODE.

This call fail if the GRPWRX core is in started mode, in that case errno will be set to EBUSY, or if a NULL
pointer is given as argument, in that case errno will be set to EINVAL.

43.2.4.2.7. GET_CONFIG

Returns the current configuration of the driver and hardware. The current configuration is either the driver and
hardware defaults or the configuration previously set by the SET_CONFIG command.

The input to this ioctl command is a pointer to a data area of at least the size of a grpwrx_ioc_config
structure. The data area will be updated according to the grpwrx_ioc_config data structure described in
Section 43.2.4.1

This command only fail if the pointer argument is invalid.

43.2.4.2.8. GET_STATS

This command copies the driver's internal statistics counters to a user provided data area. The format of the data
written is described in the data structure subsection. See the grpwrx_ioc_stats data structure.

The call will fail if the pointer to the data is invalid.

43.2.4.2.9. CLR_STATS

This command reset the driver's internal statistics counters.

This command never fail.

43.2.4.2.10. GET_HW_IMPL

This command copies the GRPWRX core's features implemented to a user provided data area. The format of the
data written is described in the data structure subsection. See the grpwrx_ioc_hw data structure.

Knowing the features supported by hardware can be used to make software run on multiple implementations of
the GRPWRX core.

The call will fail if the pointer to the data is invalid.

RCC-UM
September 2020, Version 1.3-rc9

293 www.cobhamaes.com/gaisler

43.2.4.2.11. RECLAIM

Returns processed GRPWRX oackets to user. All packets returned has been provided by the user in previous calls
to RECV, and need not all to have been successfully received. RECLAIM can be configured to operate in polling
mode, blocking mode and blocking mode with a time out. In polling mode the task always returns with or without
processed packets, in blocking mode the task is blocked until at least one packet has been processed. See the ioctl
command SET_CONFIG and SET_BLOCKING_MODE to change mode of the RECLAIM command.

RECLAIM stores a linked list of processed GRPWRX packets into the data area pointed to by the user argument.
The format for the stored data follows the layout of the grpwrx_list structure described in Section 43.2.2. The
grpwrx_list structure holds the first and last GRPWRX packet processed by the driver. The flags field indicates
if the packet was received or if errors were experienced during transmission of this packet. See Table 43.5 for
flags details.

In started mode, this command enables scheduled GRPWRX packet for transmission as descriptors become free
during the processing of received GRPWRX packet.

The call will fail if the pointer to the data area is invalid (EINVAL), the RECLAIM call operates in blocking
mode and the time out expires (ETIMEDOUT) or the driver was stopped during the calling task was blocked
(ENODEV). See table below.

Table 43.12. ERRNO values for RECLAIM

ERRNO Description

EINVAL An invalid argument.

ETIMEDOUT The blocked task was timed out and still no packets was transmitted.

ENODEV The calling task was woken up from blocking mode by the transmitter being stopped. The
GRPWRX driver has has entered stopped mode. Further calls to RECLAIM will retrieve
received packet.

43.2.4.2.12. RECV

Scheduling reception of packets is done with the ioctl command RECV. The input is a linked list of GRPWRX
packets to be scheduled. When all GRPWRX DMA descriptors are active, enabled and linked to a packet to
transmit, the remaining packets are queued internally by the driver.

Every call to RECV will trigger scheduled GRPWRX packets for reception, calling RECV with the argument set
to NULL will thus trigger previously scheduled GRPWRX packets for reception. This might be necessary when
interrupts are not used to process descriptors or when interrupt generation for GRPWRX packets are disabled,
see SET_CONFIG.

The input to RECV is a pointer to a grpwrx_list data structure described in section Section 43.2.4.1. The
head and tail fields of the data structure points to the first and the last GRPWRX packet to be scheduled for
transmission. The GRPWRX packet structure, grpwrx_packet, used is described in section Section 43.2.2.
The data area to store the received packet is designated by the payload field. In packet mode it has to be at lease
64k, in framing mode it has to be the size indicated by the length field.

Note, that the packet structure and any data pointed to by the packet scheduled for reception must not be accessed
until the packet has been reclaimed using the ioctl command RECLAIM.

RECV will fail if the input packet list is incorrectly set up, errno will be set to EINVAL in such cases.

43.2.5. Reception

Receiving packets are done with the ioctl call using the command RECV and RECLAIM. It is possible to receive
multiple packets in one call, the packets are provided to the driver using a linked list of packets. See the ioctl
commands RECV and RECLAIM for more information.

RCC-UM
September 2020, Version 1.3-rc9

294 www.cobhamaes.com/gaisler

Chapter 44. GRAES GRLIB AES DMA driver

44.1. Introduction

This document is intended as an aid in getting started developing with Aeroflex Gaisler GRLIB AES DMA
(GRAES) core using the driver described in this document. It describes accessing GRAES in a on- chip system
and over PCI. It briefly takes the reader through some of the most important steps in using the driver such as
starting the GRAES driver, configuring the driver and en/decrypt AES packets. The reader is assumed to be well
acquainted with GRAES, AES and RTEMS.

44.1.1. Software Driver

The driver provides means for threads to receive GRAES packets using standard I/O operations.

44.2. User interface

The RTEMS graes driver supports the standard accesses to file descriptors such as open, close and ioctl. User
applications include the graes driver's header file which contains definitions of all necessary data structures and
bit masks used when accessing the driver.

The driver enables the user to configure the hardware and to de/encode AES packets. The allocation of AES blocks
is handled by the user and blocks are given to the driver that processes the blocks in a two step process. In the first
step the driver schedules blocks for de/encryption using the DMA descriptors or they are put into an internal queue
when all descriptors are in use, in the second step all processed packets are put into a second queue that is emptied
when the user reclaims the received blocks. The reclaimed blocks can then be reused in new processing later on.

44.2.1. Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard means, such as
open. The function graes_register_drv whose prototype is provided in graes.h is used for registering
the driver:

grpaes_register_drv();

44.2.2. Opening the device

Opening the device enables the user to access the hardware of a certain graes device. The driver is used for all
graes cores available. The cores are separated by assigning each core a unique name and a number called [minor].
The name is given during the opening of the driver. The first three names are printed out:

Table 44.1. Core number to device name conversion

Core number Filesystem name Location

0 /dev/graes0 On Chip AMBA bus

1 /dev/graes1 On Chip AMBA bus

2 /dev/graes2 On Chip AMBA bus

0 /dev/rastatmtc0/graes0 GR-RASTA-GRAESTC PCI Target

An example of an RTEMS open call is shown below.

fd = open("/dev/graes0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as indicated in Table 44.1.

Table 44.2. Open ERRNO values.

ERRNO Description

ENODEV Illegal device name or not available

EBUSY Device already opened

RCC-UM
September 2020, Version 1.3-rc9

295 www.cobhamaes.com/gaisler

ERRNO Description

ENOMEM Driver failed to allocate necessary memory.

44.2.3. Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the graes driver.

44.2.4. I/O Control interface

The behaviour of the driver and hardware can be changed via the standard system call ioctl. Most operating systems
support at least two arguments to ioctl, the first being an integer which selects ioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the graes driver's header file graes.h. In func-
tions where only one argument is needed the pointer (void *arg) may be converted to an integer and interpreted
directly, thus simplifying the code.

44.2.4.1. Data structures

The graes_ioc_hw data structure indicates what features the GRAES hardware supports and how it has been con-
figured.

 struct graes_ioc_hw {
 unsigned short keysize;
};

Table 44.3. graes_ioc_hw member descriptions.

Member Description

keysize GRAES core key size, fixed 256

The graes_ioc_config struct is used for configuring the driver and the GRAES core.

struct graes_ioc_config {

 /* Interrupt options */
 unsigned int enable_cnt;
 int isr_desc_proc;
 int blocking;
 rtems_interval timeout;
};

Table 44.4. graes_ioc_config member descriptions.

Member Description

enable_cnt Number of blocks between interrupts are generated, zero disables interrupt. Allows
user to fine grain interrupt generation

isr_desc_proc Allow GRAES interrupt service routine (ISR) to process descriptors

blocking Blocking mode select, graes_BLKMODE_POLL for polling mode or
graes_BLMODE_BLK for blocking mode

timeout Blocking mode time out

The graes_block structure is used in for queueing GRAES blocks and retriving processed blocks, it is the driver's
representation of a GRAES block. A GRAES block structure can be chained together using the next field in
graes_block.

RCC-UM
September 2020, Version 1.3-rc9

296 www.cobhamaes.com/gaisler

 struct graes_block {
 unsigned int flags;
 struct graes_block *next;

 int length;
 unsigned char *key;
 unsigned char *iv;
 unsigned char *payload; /* in */
 unsigned char *out; /* out */
};

Table 44.5. graes_block member descriptions.

Member Description

flags Mask indicating options, Processing state and errors for the block. GRAES_FLAGS_XXX.
See Table 44.5

next Points to next GRAES block. This field is used to make driver process multiple GRAES
blocks at the same time, avoiding multiple ioctl calls.

length Length of the block to de/encrypt

key Pointer to iAES-2256 key or null

iv Pointer to initialization vector or null

payload Pointer to Plaintext/Ciphertext

Out Pointer to output buffer or null

Table 44.6. graes_block flags descriptions.

Flag Description

GRAES_BD_ED When set encryption will be performed otherwise decryption

GRAES_FLAGS_PROCESSED Indicates whether the block has been processed or not

GRAES_FLAGS_ERR Indicates if errors has been experienced during processing of the block

TRANSLATE Translate bllock payload addresses from CPU address to remote bus (the
bus graes is resident on). This is useful when dealing with buffers on re-
mote buses, for example when graes is on a AMBA bus accessed over PCI.
This is the case for GR-RASTA-GRAESTC.

TRANSLATE_AND_REMEMBERTranslate bllock payload addresses from CPU address to remote bus (the
bus graes is resident on). This is useful when dealing with buffers on re-
mote buses, for example when graes is on a AMBA bus accessed over PCI.
This is the case for GR-RASTA-GRAESTC.

The graes_list structure represents a linked list, a chain of GRAES blocks. The data structure holds the first block
and last block in chain.

 struct graes_list {
 struct graes_block *head;
 struct graes_block *tail;
};

Table 44.7. graes_list member descriptions.

Member Description

head First GRAES block in chain

tail Last GRAES block in chain, last block in list must have it's next field set to
NULL

The graes_ioc_stats structure contain statistics collected by the driver.

 struct graes_ioc_stats {
 unsigned long long blocks_processed;
 unsigned int err_underrun;
};

RCC-UM
September 2020, Version 1.3-rc9

297 www.cobhamaes.com/gaisler

Table 44.8. graes_ioc_stats member descriptions.

Member Description

blocks_processed Number of blocks successfully processed by the GRAES core

err_underrun Number of AMBA underrun errors

44.2.4.2. Configuration

The graes core and driver are configured using ioctl calls. The Table 44.7 below lists all supported ioctl calls.
graes_IOC_ must be concatenated with the call number from the table to get the actual constant used in the code.
Return values for all calls are 0 for success and -1 on failure. Errno is set after a failure as indicated in Table 44.6.

An example is shown below where the statistics of the driver is copied to the user buffer stats by using an ioctl call:

struct graes_ioc_stats stats;

result = ioctl(fd, graes_IOC_GET_STATS, &stats);

Table 44.9. ERRNO values for ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The GRAES hardware is not in the correct state. Many ioctl calls need the GRAES core
to be in stopped or started mode. One can switch state by calling START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands to fail.

EIO Writing to hardware failed. Feature not available in hardware.

ENODEV Operation aborted due to GRAES being stopped.

Table 44.10. ioctl calls supported by the graes driver.

Call Number Call mode Description

START Stopped Exit stopped mode, start the receiver.

STOP Started Exit started mode, enter stopped mode.
Most of the settings can only be set
when in stopped mode.

ISSTARTED Both Indicates operating status, started or
stopped.

SET_BLOCKING_MODE Both Set blocking or non-blocking mode for
RECLAIM.

SET_TIMEOUT Both Set time out value used in blocking
mode to wake up blocked task if re-
quest takes too long time to complete.

SET_CONFIG Stopped Configure hardware and software driv-
er.

GET_CONFIG Both Get current configuration previously
set with SET_CONFIG or the driver
defaults

GET_STATS Both Get statistics collected by driver

CLR_STATS Both Reset driver statistics

GET_HW_IMPL Both Returns the features and implemented
by the GRAES core.

RECLAIM Both Returns all GRAES blocks processed
since last call to RECLAIM, the
blocks are linked in a chain.

RCC-UM
September 2020, Version 1.3-rc9

298 www.cobhamaes.com/gaisler

Call Number Call mode Description

ENCRYPT Started Add a chain of GRAES blocks to the
en/decryption queue of the GRAES
driver.

44.2.4.2.1. START

This ioctl command enables the GRAES core and changes the driver's operating status to started. Settings previ-
ously set by other ioctl commands are written to hardware just before starting processing.

44.2.4.2.2. STOP

This call makes the GRAES core leave started mode and enter stopped mode. After calling STOP further ioctl
commands such as ENCRYPT, RECLAIM, ISSTARTED, STOP will behave differently or result in error.

The command will fail if the GRAES driver already is in stopped mode.

44.2.4.2.3. ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped mode and return
successfully in started mode.

44.2.4.2.4. SET_BLOCKING_MODE

Changes the driver's GRAES_IOC_RECLAIM command behaviour. Two modes are available blocking mode and
polling mode, in polling mode the ioctl command RECLAIM always return directly even when no blocks are
available. In blocking mode the task calling RECLAIM is blocked until at least one block can be reclaimed, it is
also possible to make the blocked task time out after some time setting the timeout value using the SET_CONFIG
or SET_TIMEOUT ioctl commands.

The argument is set as as described in the table below.

Table 44.11. SET_BLOCKING_MODE ioctl arguments

Bit number Description

GRAES_BLKMODE_POLL Enables polling mode

GRAES_BLKMODE_BLK Enables blocking mode

The driver's default is polling mode.

Note that the blocking mode is implemented using the DMA de/encrypt block interrupt, changing the
isr_desc_proc parameter of the SET_CONFIG command effects the blocking mode characteristics. For ex-
ample, enabling interrupt generation every tenth GRAES block will cause the blocked task to be woken up after
maximum ten blocks when going into blocked mode.

This command never fail.

44.2.4.2.5. SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up af-
ter this time out expires. The time out value specifies the input to the RTEMS take semaphore operation
rtems_semaphore_obtain(). See the RTEMS documentation for more information how to set the time
out value.

Note that this option has no effect in polling mode.

Note that this option is also set by SET_CONFIG.

This command never fail.

RCC-UM
September 2020, Version 1.3-rc9

299 www.cobhamaes.com/gaisler

44.2.4.2.6. SET_CONFIG

Configures the driver and core. This call updates the configuration that will be used by the driver during the
START command and during operation. Enabling features not implemented by the GRAES core will result in EIO
error when starting the GRAES driver. The hardware features available can be obtained by the GET_HW_IMPL
command.

The input is a pointer to an initialized graes_ioc_config structure described in Section 44.2.4.2.1.

Note that the time out value and blocking mode can also be set with SET_TIMEOUT and
SET_BLOCKING_MODE.

This call fail if the GRAES core is in started mode, in that case errno will be set to EBUSY, or if a NULL pointer
is given as argument, in that case errno will be set to EINVAL.

44.2.4.2.7. GET_CONFIG

Returns the current configuration of the driver and hardware. The current configuration is either the driver and
hardware defaults or the configuration previously set by the SET_CONFIG command.

The input to this ioctl command is a pointer to a data area of at least the size of a graes_ioc_config struc-
ture. The data area will be updated according to the graes_ioc_config data structure described in Sec-
tion 44.2.4.2.1.

This command only fail if the pointer argument is invalid.

44.2.4.2.8. GET_STATS

This command copies the driver's internal statistics counters to a user provided data area. The format of the data
written is described in the data structure subsection. See the graes_ioc_stats data structure.

The call will fail if the pointer to the data is invalid.

44.2.4.2.9. CLR_STATS

This command reset the driver's internal statistics counters.

This command never fail.

44.2.4.2.10. GET_HW_IMPL

This command copies the GRAES core's features implemented to a user provided data area. The format of the
data written is described in the data structure subsection. See the graes_ioc_hw data structure.

Knowing the features supported by hardware can be used to make software run on multiple implementations of
the GRAES core.

The call will fail if the pointer to the data is invalid.

44.2.4.2.11. RECLAIM

Returns processed GRAES block to user. All blocks returned has been provided by the user in previous calls to
ENCRYPT, and need not all to have been successfully de/encrypted. RECLAIM can be configured to operate in
polling mode, blocking mode and blocking mode with a time out. In polling mode the task always returns with or
without processed packets, in blocking mode the task is blocked until at least one packet has been processed. See
the ioctl command SET_CONFIG and SET_BLOCKING_MODE to change mode of the RECLAIM command.

RECLAIM stores a linked list of processed GRAES blocks into the data area pointed to by the user argument.
The format for the stored data follows the layout of the graes_list structure described in Section 44.2.2. The
graes_list structure holds the first and last GRAES block processed by the driver. The flags field indicates
if the block was received or if errors were experienced during processing of this packet. See Table 44.6 for flags
details.

RCC-UM
September 2020, Version 1.3-rc9

300 www.cobhamaes.com/gaisler

In started mode, this command enables scheduled GRAES block for de/encryption as descriptors become free
during the processing of GRAES blocks.

The call will fail if the pointer to the data area is invalid (EINVAL), the RECLAIM call operates in blocking
mode and the time out expires (ETIMEDOUT) or the driver was stopped during the calling task was blocked
(ENODEV). See table below.

Table 44.12. ERRNO values for RECLAIM

ERRNO Description

EINVAL An invalid argument.

ETIMEDOUT The blocked task was timed out and still no blocks was processed.

ENODEV The calling task was woken up from blocking mode by the GRAES code being stopped.
The GRAES driver has has entered stopped mode. Further calls to RECLAIM will re-
trieve processed packet.

44.2.4.2.12. ENCRYPT

Scheduling de/encryption of block is done with the ioctl command ENCRYPT. The input is a linked list of GRAES
blocks to be scheduled. When all GRAES DMA descriptors are active, enabled and linked to a block, the remaining
blocks are queued internally by the driver.

Every call to ENCRYPT will trigger scheduled GRAES blocks for de/encryption, calling PROCESS with the
argument set to NULL will thus trigger previously scheduled GRAES blocks for de/encryption. This might be
necessary when interrupts are not used to process descriptors or when interrupt generation for GRAES blocks are
disabled, see SET_CONFIG.

The input to ENCRYPT is a pointer to a graes_list data structure described in Section 44.2.4.2.1. The head
and tail fields of the data structure points to the first and the last GRAES block to be scheduled for de/encryption.
The GRAES block structure, graes_block, used is described in Section 44.2.2, the data field corresponding
to the GRAES buffer descriptor fields.

Note, that the block structure and any data pointed to by the block scheduled for de/encryption must not be accessed
until the block has been reclaimed using the ioctl command RECLAIM.

ENCRYPT will fail if the input block list is incorrectly set up, errno will be set to EINVAL in such cases.

44.2.5. De/encryption

De/encrypting blocks is done with the ioctl call using the command ENCRYPT and RECLAIM. It is possible to
de/encrypt multiple blocks in one call, the blocks are provided to the driver using a linked list of blocks. See the
ioctl commands ENCRYPT and RECLAIM for more information.

RCC-UM
September 2020, Version 1.3-rc9

301 www.cobhamaes.com/gaisler

Chapter 45. AHB Status register driver

45.1. Overview

This section describes the GRLIB AHBSTAT device driver that is available in the RCC distribution.

45.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
tree rtems-5/c/src/lib/libbsp/sparc.

Table 45.1. Source Location

Filename Description

shared/include/ahbstat.h AHBSTAT user interface definition

shared/amba/ahbstat.c AHBSTAT driver implementation

45.3. Driver registration

The function ahbstat_register_drv whose prototype is provided in ahbstat.h is used for registering the
driver:

ahbstat_register_drv();

45.4. Operation

The AHBSTAT device can generate an interrupt on AHB error responses and other access errors (correctable
errors for example) by monitoring AMBA AHB bus signals. The signals are generated from FT-cores at the time
the correctable AMBA access takes place. The software may through interrupt and by looking at the AHBSTAT
registers determine what type of error happened and the address accessed.

This driver initializes the AHBSTAT and enables interrupt handling on initialization. A default interrupt handler is
installed which prints detected access error to the system console using printk() . The default interrupt handler
also reenables AHB bus monitoring in order to detect the next error. The user may override the default interrupt
handler to do custom handling and some function exists to make accesses to the AHBSTAT easier.

45.5. User interface

The driver provides the ability to assign a custom interrupt error handler and through a simple function interface
read the last error that occurred which as been sampled at the last interrupt.

45.5.1. Assigning a custom interrupt handler

A custom interrupt handler can be installed to handle events as a result of AMBA errors detected. The AHBSTAT
driver has a weak function pointer which can be overridden at compile time or at runtime. Below is the prototype
for the user interrupt handler.

 int (*ahbstat_error)(
 int minor,
 struct ahbstat_regs *regs,
 uint32_t status,
 uint32_t failing_address
)

The function is called from the AHBSTAT Interrupt Service Routine (ISR). The AHBSTAT driver will provide
the custom function with four arguments described in the table below. The return value is interpreted as a 2-bit
bit-mask, where bit zero turns on or off the default printout and the second bit controls whether the AHBSTAT
is to be reenabled or not.

RCC-UM
September 2020, Version 1.3-rc9

302 www.cobhamaes.com/gaisler

Table 45.2. ahbstat_error ISR handler argument description

Argument Name Description

minor AHBSTAT device index

regs Base address of AHBSTAT registers

status STATUS register sampled by the AHBSTAT driver ISR. This tells the custom interrupt
handler what error just occurred.

failing_address FAILING ADDRESS register sampled by the AHBSTAT driver ISR. This tells the custom
interrupt handler at what address the error occurred.

45.5.2. Get the last AHB error occurred

The AHBSTAT driver records the last error into a temporary variable in memory on every error interrupt. The value
may be read with the function ahbstat_last_error, the prototype is listed below. The argument [minor]
determines which AHBSTAT device to request the information from. The second ([status]) and third ([address])
arguments are pointers to memory where the function will store the recorded information to.

 int ahbstat_last_error(
 int minor,
 uint32_t *status,
 uint32_t *address)

45.5.3. AHBSTAT device registers

The registers can be accessed directly in order to support custom handling. The base address of the registers are
returned by the ahbstat_get_regs function. The argument [minor] determines which AHBSTAT device. If
no AHBSTAT matching the [minor] number is found, NULL is returned.

 struct ahbstat_regs *ahbstat_get_regs(int minor)

RCC-UM
September 2020, Version 1.3-rc9

303 www.cobhamaes.com/gaisler

Chapter 46. L2CACHE driver

46.1. Introduction

This section describes the L2CACHE driver for SPARC/LEON processors.

46.1.1. Hardware Support

The L2CACHE core hardware interface is documented in the GRIP Core User's manual. Below is a list of the
major hardware features it supports:

• EDAC.
• Hardware scrubber.
• Split transactions.
• Interrupt generation.
• Locked ways.
• Memory Type Range Registers.
• Multiple write policies.
• Multiple replacement policies.
• Multiple flushing operations.

46.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
tree rtems-5/c/src/lib/libbsp/sparc.

Table 46.1. L2CACHE driver source location

Location Description

shared/include/l2c.h L2CACHE user interface definition

.../libbsp/sparc/shared/l2c/l2c.c L2CACHE driver implementation

46.1.3. Examples

There is a simple example available that uses the L2CACHE to set the MTRR register for a pci transfer. The exam-
ple is part of the RCC distribution, it can be found under /opt/rtems-5/src/samples/pci/pci_demo/
test.c.

46.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing a IO system device. The API is not designed for multi-threadding,
i.e. multiple threads operating on the driver independently. The driver does not contain any lock or protection
for SMP environments. Changing the L2 cache configuration is not intended to be done extensively at runtime
or independently of the rest of the system, since it usually has a big impact on the rest of the system. Therefore
the user must take care of any impact that the different actions might have on other parts of the system (such as
threads, CPUs, DMAs, ...).

46.2.1. Driver usage

The driver provides a set of functions that allow to configure the L2 cache. The following list summarizes the
available actions.

• Enable/disable the L2 cache (see Section 46.3.3).
• Enable/disable EDAC (see Section 46.3.4).
• Using the hardware scrubber (see Section 46.3.5).
• Enable/disable split transactions (see Section 46.3.6).
• Change write policy (see Section 46.3.7).
• Change replacement policy (see Section 46.3.8).

RCC-UM
September 2020, Version 1.3-rc9

304 www.cobhamaes.com/gaisler

• Lock ways of the L2 cache (see Section 46.3.9).
• Set up Memory Type Range Registers (MTRR) (see Section 46.3.10).
• Check L2 cache configuration status (see Section 46.3.11).

The driver also provides a set of functions to flush the cache (see Section 46.3.2). These functions can flush an
address range, a cache line, a cache way or the whole cache. Each flush operation is defined by the different
options in Section 46.2.2.

When dealing with errors, the drivers provides two different interfaces:

• Interrupts (see Section 46.3.12): Allows the user to install an Interrupt Service Routine (ISR) that will be
executed whenever an error occurs

• Polling (see Section 46.3.13): Allows the user to poll the error status to check if an error (or multiple) have
occurred.

Only one of these interfaces can be used at a given time.

The different errors that the L2 cache can report are:

• Backend AHB error.
• Write protection hit.
• Uncorrectable EDAC error.
• Correctable EDAC error.

46.2.2. Flush operations
There are three types of flush operations:

• Invalidate contents: Set valid bit to 0. This means that any contents will be removed and therefore any new
access to that contents will result in a cache miss. If any of the contents was in dirty state, that information
will be lost.

• Writeback contents: Write all dirty contents to the memory. This means that any content in dirty state will be
writen back to memory, therefore consistency between memory and cache contents is achieved.

• Invalidate and Writeback contents: Writeback contents and then invalidate them.

46.2.3. Initialization

During early initialization when the operating system boots the L2CACHE driver, the driver does not modify the
hardware state of the L2 cache.

46.3. L2CACHE user interface

46.3.1. Return values

 L2CACHE_ERR_OK
 L2CACHE_ERR_EINVAL
 L2CACHE_ERR_NOINIT
 L2CACHE_ERR_TOOMANY
 L2CACHE_ERR_ERROR

All the driver function calls return the following values when an error occurred:

• L2CACHE_ERR_OK - Successful execution.
• L2CACHE_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
• L2CACHE_ERR_NOINIT - Driver not initialized.
• L2CACHE_ERR_TOOMANY - Maximum index exceeded.
• L2CACHE_ERR_ERROR - Internal error. Can have different causes.

Some functions also return a positive value upon successful execution, such as the status of the cache or the error
register.

46.3.2. Flushing the L2 cache

 int l2cache_flush(int flush);
 int l2cache_flush_address(uint32_t addr, int size, int flush);

RCC-UM
September 2020, Version 1.3-rc9

305 www.cobhamaes.com/gaisler

 int l2cache_flush_line(int way, int index, int flush);
 int l2cache_flush_way(int way, int flush);

The driver provides this set of functions to flush the cache contents. There are four options available:

• Flush the whole cache contents.
• Flush an address range: The driver will issue multiple consecutive flush operations, one for each cache line

that contains an address in the range. Each flush operation will only have an effect if the address is present
on the cache.

• Flush a specific cache line.
• Flush a specific way: All the cache lines in that way will be flushed.

Each flush operation can be defined by the different options in Section 46.2.2.

This function returns a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns L2CACHE_ERR_OK when successful.

Table 46.2. l2cache_flush function declaration

Proto int l2cache_flush(int flush)

About Flush the whole L2 cache. See Section 46.3.2.

flush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

Param

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.3. l2cache_flush_address function declaration

Proto int l2cache_flush_address(uint32_t addr, int size, int flush)

About Flush an address range if present on the L2 cache. See Section 46.3.2.

addr [IN] IntegerParam

Starting byte address.

size [IN] IntegerParam

Size in bytes of the address range (>0).

flush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

Param

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.4. l2cache_flush_line function declaration

Proto int l2cache_flush_line(int way, int index, int flush)

RCC-UM
September 2020, Version 1.3-rc9

306 www.cobhamaes.com/gaisler

About Flush a single cache line of the L2 cache. See Section 46.3.2.

way [IN] IntegerParam

Way of the cache line.

index [IN] IntegerParam

Index of the cache line.

flush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

Param

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.5. l2cache_flush_way function declaration

Proto int l2cache_flush_way(int way, int flush)

About Flush a single way of the L2 cache. See Section 46.3.2.

way [IN] IntegerParam

Way of the cache to flush.

flush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

Param

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

46.3.3. Enabling/disabing the L2 cache

 int l2cache_enable(int flush)
 int l2cache_disable(int flush)

The driver uses these functions to enable or disable the L2 cache. If a flush options is selected, it will be executed
regardless of the state of the cache.

These functions return a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns L2CACHE_ERR_OK when successful.

Table 46.6. l2cache_enable function declaration

Proto int l2cache_enable(int flush)

About Enable L2 cache. Optionally flush the contents. See Section 46.3.3.

flush [IN] IntegerParam

Flush option.

RCC-UM
September 2020, Version 1.3-rc9

307 www.cobhamaes.com/gaisler

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.7. l2cache_disable function declaration

Proto int l2cache_disable(int flush)

About Disable L2 cache. Optionally flush the contents. See Section 46.3.3.

flush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

Param

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

46.3.4. Enabling/disabing EDAC

 int l2cache_edac_enable(int flush)
 int l2cache_edac_disable(int flush)

The driver uses these functions to enable or disable EDAC. If the L2 cache design is not fault tolerant (doesn't
support EDAC), these functions return L2CACHE_ERR_ERROR. To enable/disable EDAC these functions first
disable the L2 cache, passing the flush parameter to the disable function. If a flush options is selected, it will be
executed regardless of the state of the cache. After executing, they leave the cache in the same state that it was
before calling the function, i.e. if it was enabled they will re-enable the cache, otherwise it will remain disabled.
They both reset the error status register.

These functions return a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns L2CACHE_ERR_OK when successful.

Table 46.8. l2cache_edac_enable function declaration

Proto int l2cache_edac_enable(int flush)

About Enable L2 cache EDAC (if supported). Optionally flush the contents. See Section 46.3.4.

flush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

Param

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

RCC-UM
September 2020, Version 1.3-rc9

308 www.cobhamaes.com/gaisler

Table 46.9. l2cache_edac_disable function declaration

Proto int l2cache_edac_disable(int flush)

About Disable L2 cache EDAC (if supported). Optionally flush the contents. See Section 46.3.4.

flush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

Param

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

46.3.5. Using the hardware scrubber

 int l2cache_scrub_enable(int delay)
 int l2cache_scrub_disable(void)
 int l2cache_scrub_line(int way, int index)

The driver uses these functions to enable or disable the hardware scrubber. If the L2 cache design is not fault
tolerant (doesn't support EDAC), these functions return L2CACHE_ERR_ERROR. The hardware scrubber can
be used in two different ways:

• Automatic scrubbing: Use the enable and disable functions to start the hardware scrubber that will continu-
ously loop through each cache line. The delay parameter defines the amount of clock cycles between each
cache line scrub operation.

• Manual scrubbing: Use the scrub line function to scrub an specific cache line, identified by way and index.

Note that only one of the methods can be used at a given time.

These functions return a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns L2CACHE_ERR_OK when successful.

Table 46.10. l2cache_scrub_enable function declaration

Proto int l2cache_scrub_enable(int delay)

About Enable L2 cache scrubber with a given delay. See Section 46.3.5.

delay [IN] IntegerParam

Scrubber delay (from 0 to 65535).

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.11. l2cache_scrub_disable function declaration

Proto int l2cache_scrub_disable(void)

About Disable L2 cache scrubber. See Section 46.3.5.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.12. l2cache_scrub_line function declaration

Proto int l2cache_scrub_line(int way, int index)

About Scrub a single L2 cache line (if supported). Only allowed if the scrubber is off. See Section 46.3.5.

RCC-UM
September 2020, Version 1.3-rc9

309 www.cobhamaes.com/gaisler

way [IN] IntegerParam

Way of the cache line.

index [IN] IntegerParam

Index of the cache line.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

46.3.6. Enabling/disabling split transactions

 int l2cache_split_enable(void)
 int l2cache_split_disable(void)

The driver uses these functions to enable or disable split transactions. If the L2 cache does not support split trans-
actions, these functions return L2CACHE_ERR_ERROR.

These functions return a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns L2CACHE_ERR_OK when successful.

Table 46.13. l2cache_split_enable function declaration

Proto int l2cache_split_enable(void)

About Enable split response on L2 cache (if supported). See Section 46.3.6.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.14. l2cache_split_disable function declaration

Proto int l2cache_split_disable(void)

About Disable split response on L2 cache (if supported). See Section 46.3.6.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

46.3.7. Chagning the write policy

 int l2cache_writethrough(int flush)
 int l2cache_writeback(int flush)

The driver uses these functions to set the write policy of the L2 cache to writethrough or writeback. To change the
write policy EDAC these functions first disable the L2 cache, passing the flush parameter to the disable function.
If a flush options is selected, it will be executed regardless of the state of the cache. After executing, they leave
the cache in the same state that it was before calling the function, i.e. if it was enabled they will re-enable the
cache, otherwise it will remain disabled.

These functions return a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns L2CACHE_ERR_OK when successful.

Table 46.15. l2cache_writethrough function declaration

Proto int l2cache_writethrough(int flush)

About Set L2 cache write policy to writethrough. Optionally flush the contents. See Section 46.3.7.

flush [IN] Integer

Flush option.

Value Description

Param

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

RCC-UM
September 2020, Version 1.3-rc9

310 www.cobhamaes.com/gaisler

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.16. l2cache_writeback function declaration

Proto int l2cache_writeback(int flush)

About Set L2 cache write policy to writeback. Optionally flush the contents. See Section 46.3.7.

flush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

Param

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

46.3.8. Chagning the replacement policy

 int l2cache_replacement(int policy, int flush)

The driver uses this function to set the replacement policy of the L2 cache to one of the following options:

• LRU.
• (Pseudo-) random.
• Master-index using the index-replace field. In this policy the way used for the index-replace field is passed

as part of the options.
• Master-index using the modulus function.

To change the replacement policy this function first disables the L2 cache, passing the flush parameter to the disable
function. If a flush options is selected, it will be executed regardless of the state of the cache. After executing, it
leaves the cache in the same state that it was before calling the function, i.e. if it was enabled they will re-enable
the cache, otherwise it will remain disabled.

This function returns a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns L2CACHE_ERR_OK when successful.

Table 46.17. l2cache_replacement function declaration

Proto int l2cache_replacement(int options, int flush)

About Set L2 cache replacement policy. Optionally flush the contents. See Section 46.3.8.

options [IN] Integer

Replacement options.

Value Description

L2CACHE_OPTIONS_REPL_MASTERIDX_MOD Master-index using the modulus func-
tion.

L2CACHE_OPTIONS_REPL_MASTERIDX_IDX | (way
<< L2CACHE_OPTIONS_REPL_INDEX_WAY_BIT)

Master-index using the index-replace
field, which is set to way.

Param

L2CACHE_OPTIONS_REPL_RANDOM (Pseudo-) random.

RCC-UM
September 2020, Version 1.3-rc9

311 www.cobhamaes.com/gaisler

L2CACHE_OPTIONS_REPL_LRU LRU.

flush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

Param

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache con-
tents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

46.3.9. Locking ways of the L2 cache

 int l2cache_lock_way(uint32_t tag, int options, int flush, int enable)
 int l2cache_unlock(void)

The driver uses the lock way function to lock a way of the L2 cache with the given tag and options. The options
include fetching (or not) the data from memory and setting (or not) the valid and dirty bits. If no unlocked ways
are available the function returns L2CACHE_ERR_TOOMANY. A locked way cannot be replaced or flushed
(unless a way flush is issued). To lock a way, the function first disables the L2 cache, passing the flush parameter
to the disable function. If a flush options is selected, it will be executed regardless of the state of the cache. After
locking the way, the enable parameter defines if the cache should be enabled or disabled, otherwise the function
leaves the cache in the same state that it was before calling the function, i.e. if it was enabled they will re-enable
the cache, otherwise it will remain disabled.

The unlock function, unlocks all ways of the cache, therefore enabling replacement and flushing on all ways. It
does not perform any other action.

These functions return a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns L2CACHE_ERR_OK when successful.

Please note that a complete flush of the L2 cache is recommended when locking a way to avoid having an address
on the locked way and in another part of the cache. This situation will lead to an incorrect behavior.

Please note that when locking a way, if another entity (core, DMA, ...) in the system writes to the memory region
being fetch on the locked way, before enabling the L2 cache, it will result into an inconsistent memory state. The
enable parameter allows to enable the L2 cache inmediately after locking the way, however, this does not remove
all the risk since there are few cycles in which we are at risk due to hardware limitations. Therefore we recommend
to avoid having any other entity on the system running while locking the ways of the L2 cache. Locking the L2
cache ways should be done at startup, when no other entity in the system is performing work.

Please note that when unlocking the cache, all ways are unlocked which can affect other parts of the system.
For instance, assume an AMP configuration with two software systems. The boot code sets 2 out of 4 ways
locked for the other software system. This means that our software can lock up to 2 ways. However, if our system
unlocks the ways, it will also unlock the ways of the other software system. Special care needs to be taken in
such configurations.

Table 46.18. l2cache_lock_way function declaration

Proto int l2cache_lock_way(uint32_t tag, int options, int flush, int en-
able)

About Lock a single cache way of the L2 cache with the given tag and options. See Section 46.3.9.

tag [IN] IntegerParam

Tag to put on the locked way. Only bits [31:10] are used.

RCC-UM
September 2020, Version 1.3-rc9

312 www.cobhamaes.com/gaisler

options [IN] Integer

Lock options. Set any of these flags independently (by ORing between them).

Flag Description

L2CACHE_OPTIONS_FETCH Fetch data from memory. If this flag is not
set, the locked way will not contain the data
from memory.

L2CACHE_OPTIONS_VALID Set valid bit. If this flag is not set, the valid
bit is 0.

Param

L2CACHE_OPTIONS_DIRTY Set dirty bit. If this flag is not set, the dirty bit
is 0.

flush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

Param

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

enable [IN] Integer

Enable option. Choose what to do with the L2cache after locking the way

Value Description

L2CACHE_OPTIONS_NONE Leave the cache in the previous state.

L2CACHE_OPTIONS_ENABLE Enable the cache.

Param

L2CACHE_OPTIONS_DISABLE Disable the cache.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.19. l2cache_unlock function declaration

Proto int l2cache_unlock(void)

About Unlock all L2 cache ways. See Section 46.3.9.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

46.3.10. Setting up Memory Type Range Register (MTRR)

 int l2cache_mtrr_enable(int id, uint32_t addr, uint32_t mask, int options, int flush)
 int l2cache_mtrr_disable(int id)

The driver uses the enable function to set up a MTRR register with the given addr, mask and options. The options
include writethrough or uncached and write protection. The MTRR register is identified by the id parameter. If no
MTRR register is available the function returns L2CACHE_ERR_TOOMANY. To enable a MTRR, the function
first disables the L2 cache, passing the flush parameter to the disable function. If a flush options is selected, it will
be executed regardless of the state of the cache. After setting up the MTRR, the function leaves the cache in the
same state that it was before calling the function, i.e. if it was enabled they will re-enable the cache, otherwise
it will remain disabled.

The disable function disables a given MTRR. It does not perform any other action.

These functions return a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns L2CACHE_ERR_OK when successful.

RCC-UM
September 2020, Version 1.3-rc9

313 www.cobhamaes.com/gaisler

Please note that a complete flush of the L2 cache is required when enabling MTRR to avoid having an address on
the MTRR and in another part of the cache. This situation will lead to an incorrect behavior.

Table 46.20. l2cache_mtrr_enable function declaration

Proto int l2cache_mtrr_enable(int id, uint32_t addr, uint32_t mask, int
options, int flush)

About Enable a given MTRR of the L2 cache with the given address, mask and options. See Section 46.3.10.

id [IN] IntegerParam

Indicates the index of the MTRR.

addr [IN] IntegerParam

Address to put on the MTRR. Only bits [31:18] are used.

mask [IN] IntegerParam

Mask to put on the MTRR. Only bits [31:18] are used.

options [IN] Integer

Lock options. Set two of these flags independently (by ORing between them). You need to choose be-
tween writethrough and uncached (only one) and write protection enabled or not.

Flag Description

L2CACHE_OPTIONS_MTRR_ACCESS_WRITETHROUGH Set region to writethrough. If this flag
is not set, the region will be set to un-
cached.

L2CACHE_OPTIONS_MTRR_ACCESS_UNCACHED Set region to uncached.

L2CACHE_OPTIONS_MTRR_WRITEPROT_ENABLE Enable write protection. If this flag
is not set, the write protection is dis-
abled.

Param

L2CACHE_OPTIONS_MTRR_WRITEPROT_DISABLE Disable write protection.

flush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS_FLUSH_WRITEBACK Writeback cache contents.

Param

L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache con-
tents.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.21. l2cache_mtrr_disable function declaration

Proto int l2cache_mtrr_disable(int id)

About Disable a given MTRR. See Section 46.3.10.

id [IN] IntegerParam

Indicates the index of the MTRR.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

46.3.11. Checking the L2 cache configuration status

 int l2cache_status(void)

RCC-UM
September 2020, Version 1.3-rc9

314 www.cobhamaes.com/gaisler

The driver provides this function to return the configuration of the L2 cache, including:

• Enabled/disabled.
• Split status.
• EDAC status.
• Scrubber status.
• Replacement policy.
• Write policy.
• Locked ways.
• Interrupt mask status.

The driver header file contains helper macros that allow to easily check any of these configurations based on the
value returned by the status function.

This function returns a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns L2CACHE_ERR_OK when successful.

Table 46.22. l2cache_status function declaration

Proto int l2cache_status(void)

About Returns the status of the L2 cache. See Section 46.3.11.

Return int. A positive value indicating the status when successful. Otherwise, returns a negative value if
something went wrong, as explained in Section 46.3.1.

46.3.12. Interrupts on the L2 cache

 typedef void (*l2cache_isr_t)(void *arg, uint32_t addr, uint32_t status);
 int l2cache_isr_register(l2cache_isr_t isr, void * arg, int options);
 int l2cache_interrupt_mask(int options);
 int l2cache_interrupt_unmask(int options);

The driver provides this set of functions to handle interrupts. There are four sources of interrupt in the L2 cache:

• Backend AHB error.
• Write protection hit
• Uncorrectable EDAC error.
• Correctable EDAC error.

The first thing to do is to register an ISR using the isr_register function. This function takes the user ISR and its
argument, that will be passed when the ISR is called, and an options parameter that defines which interrupts will
be unmasked, i.e. activated.

Once an ISR has been registered, the user can mask or unmask any specific interrupt source with the provided
functions.

The driver allows to register a new ISR again, which will effectively replace the previously registered ISR. It is
only possible to have one ISR registered at a given time.

This function returns a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns L2CACHE_ERR_OK when successful.

Table 46.23. l2cache_isr_register function declaration

Proto int l2cache_isr_register(l2cache_isr_t isr, void * arg, int op-
tions)

About Registers an ISR for the L2 cache. The options parameter defines which interrupts are going to be
unmasked (i.e. enabled). See Section 46.3.12.

Param isr [IN] Pointer

RCC-UM
September 2020, Version 1.3-rc9

315 www.cobhamaes.com/gaisler

The ISR function pointer.

arg [IN] PointerParam

The ISR argument pointer.

options [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of this flags is accepted.

Value Description

L2CACHE_INTERRUPT_ALL Unmask all interrupts.

L2CACHE_INTERRUPT_BACKENDERROR Unmask backend AHB error interrupts.

L2CACHE_INTERRUPT_WPROTHIT Unmask write-protection hit interrupts.

L2CACHE_INTERRUPT_UNCORRERROR Unmask uncorrectable error interrupts.

Param

L2CACHE_INTERRUPT_CORRERROR Unmask correctable error interrupts.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.24. l2cache_interrupt_mask function declaration

Proto int l2cache_interrupt_mask(int options)

About Mask certain interrupts (i.e. disable), leaving the rest in their current state (only available if an ISR has
been register before). The options parameter defines which interrupts are going to be masked. See
Section 46.3.12.

options [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of this flags is accepted.

Value Description

L2CACHE_INTERRUPT_ALL Mask all interrupts.

L2CACHE_INTERRUPT_BACKENDERROR Mask backend AHB error interrupts.

L2CACHE_INTERRUPT_WPROTHIT Mask write-protection hit interrupts.

L2CACHE_INTERRUPT_UNCORRERROR Mask uncorrectable error interrupts.

Param

L2CACHE_INTERRUPT_CORRERROR Mask correctable error interrupts.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.25. l2cache_interrupt_unmask function declaration

Proto int l2cache_interrupt_unmask(int options)

About Unmask certain interrupts (i.e. enable), leaving the rest in their current state (only available if an
ISR has been register before). The options parameter defines which interrupts are going to be un-
masked. See Section 46.3.12.

options [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of this flags is accepted.

Value Description

L2CACHE_INTERRUPT_ALL Unmask all interrupts.

L2CACHE_INTERRUPT_BACKENDERROR Unmask backend AHB error interrupts.

L2CACHE_INTERRUPT_WPROTHIT Unmask write-protection hit interrupts.

L2CACHE_INTERRUPT_UNCORRERROR Unmask uncorrectable error interrupts.

Param

L2CACHE_INTERRUPT_CORRERROR Unmask correctable error interrupts.

Return int. L2CACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

RCC-UM
September 2020, Version 1.3-rc9

316 www.cobhamaes.com/gaisler

46.3.13. Polling the error status of the L2 cache

 int l2cache_error_status(uint32_t * addr, uint32_t * status);

The driver provides this function to handle errors as an alternative to interrupts. There are four sources of errors
in the L2 cache:

• Backend AHB error.
• Write protection hit
• Uncorrectable EDAC error.
• Correctable EDAC error.

This function will return if a error has occurred (or multiple). If it is the case, then it will copy the address of the
cacheline that generated the error in the value pointed by addr (if a valid pointer is given), and the value of the
error status register on the value pointed by status (if a valid pointer is given).

If an error has been detected, this function will internally reset the error status register to be able to catch new errors.

Please note that this function should not be used when interrupts are being used.

This function returns a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns the error status when successful.

Table 46.26. l2cache_error_status function declaration

Proto int l2cache_error_status(uint32_t * addr, uint32_t * status)

About Poll the state of the error status register. Returns if a error (or multiple) have been detected or not. Op-
tionally can provide the error address and the error status contents for the first error detected (even if
multiple errors happened). See Section 46.3.13.

addr [OUT] PointerParam

If a non NULL pointer is given, and in the case of new errors, the value pointed will be updated with
the error address. Note that this address only reflects the state of the first error detected. If multiple er-
rors are detected, this address still represents the first one.

status [OUT] PointerParam

If a non NULL pointer is given, and in the case of new errors, the value pointed will be updated with
the error status register content. Note that this value only reflects the state of the first error detected. If
multiple errors are detected, this value still represents the first one.

int. A positive value indicating the status when successful. Otherwise, returns a negative value if
something went wrong, as explained in Section 46.3.1. The values can be:

Value Description

L2CACHE_STATUS_NOERROR (or 0) No error.

L2CACHE_STATUS_NEWERROR (>0) One new error detected.

Return

L2CACHE_STATUS_MULTIPLEERRORS (>0) More than one error detected.

46.4. API reference

This section lists all functions part of the L2CACHE driver API, and in which section(s) they are described. The
API is also documented in the source header file of the driver, see Section 46.1.2.

Table 46.27. L2CACHE function reference

Prototype Section

int l2cache_flush(int flush) 46.3.2

int l2cache_flush_address(uint32_t addr, int size, int flush) 46.3.2

int l2cache_flush_line(int way, int index, int flush) 46.3.2

RCC-UM
September 2020, Version 1.3-rc9

317 www.cobhamaes.com/gaisler

Prototype Section

int l2cache_flush_way(int way, int flush) 46.3.2

int l2cache_enable(int flush) 46.3.3

int l2cache_disable(int flush) 46.3.3

int l2cache_edac_enable(int flush) 46.3.4

int l2cache_edac_disable(int flush) 46.3.4

int l2cache_scrub_enable(int delay) 46.3.5

int l2cache_scrub_disable(void) 46.3.5

int l2cache_scrub_line(int way, int index) 46.3.5

int l2cache_split_enable(void) 46.3.6

int l2cache_split_disable(void) 46.3.6

int l2cache_writethrough(int flush) 46.3.7

int l2cache_writeback(int flush) 46.3.7

int l2cache_replacement(int policy, int flush) 46.3.8

int l2cache_lock_way(uint32_t tag, int options, int flush, int en-
able)

46.3.9

int l2cache_unlock(void) 46.3.9

int l2cache_mtrr_enable(int id, uint32_t addr, uint32_t mask, int
options, int flush)

46.3.10

int l2cache_mtrr_disable(int id) 46.3.10

int l2cache_status(void) 46.3.11

int l2cache_isr_register(l2cache_isr_t isr, void * arg, int op-
tions)

46.3.12

int l2cache_interrupt_mask(int options) 46.3.12

int l2cache_interrupt_unmask(int options) 46.3.12

int l2cache_error_status(uint32_t * addr, uint32_t * status) 46.3.13

RCC-UM
September 2020, Version 1.3-rc9

318 www.cobhamaes.com/gaisler

Chapter 47. GRIOMMU driver

47.1. Introduction

This section describes the GRIOMMU driver for SPARC/LEON processors.

47.1.1. Hardware Support

The GRIOMMU core hardware interface is documented in the GRIP Core User's manual. Below is a list of the
major hardware features it supports:

• Multibus bridge operation.
• Access protection based on Access Protection Vector (APV) functionality.
• Access protection and address translation based on IOMMU functionality.
• Group access control.
• APV cache/TLB.
• Interrupt generation.

47.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
tree rtems-5/c/src/lib/libbsp/sparc.

Table 47.1. GRIOMMU driver source location

Location Description

shared/include/griommu.h GRIOMMU user interface definition

.../libbsp/sparc/shared/iommu/griommu.c GRIOMMU driver implementation

47.1.3. Examples

There is a simple example available that uses the GRIOMMU to route the DMA master for a PCI transfer.
The example is part of the RCC distribution, it can be found under /opt/rtems-5/src/samples/pci/
pci_demo/test.c.

47.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing a IO system device. The API is not designed for multi-threadding,
i.e. multiple threads operating on the driver independently. The driver does not contain any lock or protection for
SMP environments. Changing the GRIOMMU configuration is not intended to be done extensively at runtime
or independently of the rest of the system, since it usually has a big impact on the rest of the system. Therefore
the user must take care on any impact that the different actions might have on other parts of the system (such as
threads, CPUs, DMAs, ...).

47.2.1. Driver usage

The driver provides a set of functions that allow to configure the GRIOMMU. The following list summarizes the
available actions.

• Setting up the GRIOMMU core (see Section 47.3.2).
• Enable/disable the access protection (see Section 47.3.3).
• Finding and configuring a master (see Section 47.3.4).
• Configuring a group (see Section 47.3.6).
• Managing the APV of a group (see Section 47.3.5).

The normal use case for the IOMMU is the following: First we should setup the GRIOMMU with the wanted
configuration and pagesize (see Section 47.3.2). Once the IOMMU is configured, we can find the masters we are
interested on and configure their respective groups and routing (see Section 47.3.4).

RCC-UM
September 2020, Version 1.3-rc9

319 www.cobhamaes.com/gaisler

After the masters are configured and assigned to groups, if we plan to use the APV to control the access of the
groups, we need to set it up. The first thing to do is to allocate it, using the helper functions provided by the driver
or by other means. Please note the size and alignment requirements of the APV. Once the APV is allocated, we
can initailize it and then set different addresses or pages to match our needs. All this is covered in Section 47.3.5).

Now we can setup the groups, assigning their APV if necessary (see Section 47.3.6). After GRIOMMU, masters
and groups are properly setup, the access control can be enabled (see Section 47.3.3).

When dealing with errors, the driver provides two different interfaces:

• Interrupts (see Section 47.3.7): Allows the user to install an Interrupt Service Routine (ISR) that will be
executed whenever an error occurs

• Polling (see Section 47.3.8): Allows the user to poll the error status to check if an error (or multiple) have
occurred.

Only one of these interfaces can be used at a given time.

The different errors that the GRIOMMU can report are:

• Parity error.
• Flush started.
• Flush completed.
• Access denied.
• Translation error.

47.2.2. Initialization

During early initialization when the operating system boots the GRIOMMU driver, the driver does not modify
the hardware state of the GRIOMMU.

47.3. GRIOMMU user interface

47.3.1. Return values

 GRIOMMU_ERR_OK
 GRIOMMU_ERR_EINVAL
 GRIOMMU_ERR_NOINIT
 GRIOMMU_ERR_ERROR

All the driver function calls return the following values when an error occurred:

• GRIOMMU_ERR_OK - Successful execution.
• GRIOMMU_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
• GRIOMMU_ERR_NOINIT - Driver not initialized.
• GRIOMMU_ERR_ERROR - Internal error. Can have different causes.

Some functions also return a positive value upon successful execution, such as the status of the cache or the error
register.

47.3.2. Configuring the GRIOMMU core

 int griommu_setup(int options)
 int griommu_status(void)

The driver provides the setup function to configure the GRIOMUU, including:

• Lookup bus.
• APV cache.
• APV cache group addressing.
• Write protection only.
• Always update AHB failing access.

RCC-UM
September 2020, Version 1.3-rc9

320 www.cobhamaes.com/gaisler

• Pagesize.
• Prefetch.

The status function returns the value of the GRIOMMU control register, which represents the configuration status.

This function returns a negative value if something went wrong, as explained in Section 47.3.1. Otherwise, the
function returns GRIOMMU_ERR_OK when successful.

Table 47.2. griommu_setup function declaration

Proto int griommu_setup(int options)

About Setup the IOMMU cache with the given options. See Section 47.3.2.

mode [IN] Integer

Mode option. Select between different flags by ORing them. If a value of a pair is not selected, the de-
fault will be chosen.

Flag Description

GRIOMMU_OPTIONS_LOOKUPBUS_BUS0 Select primary bus for lookup bus (de-
fault).

GRIOMMU_OPTIONS_LOOKUPBUS_BUS0 Select secondary bus for lookup bus.

Flag Description

GRIOMMU_OPTIONS_CACHE_DISABLE Disable APV cache (default).

GRIOMMU_OPTIONS_CACHE_ENABLE Enable APV cache.

Flag Description

GRIOMMU_OPTIONS_GROUPADDRESSING_DISABLE Disable APV cache group addressing
(default).

GRIOMMU_OPTIONS_GROUPADDRESSING_ENABLE Enable APV cache group addressing.

Flag Description

GRIOMMU_OPTIONS_WPROTONLY_DISABLE Disable write protection only (default).

GRIOMMU_OPTIONS_WPROTONLY_ENABLE Enable write protection only.

Flag Description

GRIOMMU_OPTIONS_AHBUPDATE_DISABLE Disable update always AHB status (de-
fault).

GRIOMMU_OPTIONS_AHBUPDATE_ENABLE Enable update always AHB status.

Flag Description

GRIOMMU_OPTIONS_PREFECTH_ENABLE Enable prefetching (default).

GRIOMMU_OPTIONS_PREFETCH_DISABLE Disable prefetching.

Flag Description

GRIOMMU_OPTIONS_PAGESIZE_4KIB Pagesize 4 KiB (default).

GRIOMMU_OPTIONS_PAGESIZE_8KIB Pagesize 8 KiB.

GRIOMMU_OPTIONS_PAGESIZE_16KIB Pagesize 16 KiB.

GRIOMMU_OPTIONS_PAGESIZE_32KIB Pagesize 32 KiB.

GRIOMMU_OPTIONS_PAGESIZE_64KIB Pagesize 64 KiB.

GRIOMMU_OPTIONS_PAGESIZE_128KIB Pagesize 128 KiB.

GRIOMMU_OPTIONS_PAGESIZE_256KIB Pagesize 256 KiB.

Param

GRIOMMU_OPTIONS_PAGESIZE_512KIB Pagesize 512 KiB.

Return int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

RCC-UM
September 2020, Version 1.3-rc9

321 www.cobhamaes.com/gaisler

Table 47.3. griommu_status function declaration

Proto int griommu_status(void)

About Return the configuration status of the IOMMU. See Section 47.3.2.

Return int. Contents of GRIOMMU control register when successful. Otherwise, returns a negative value if
something went wrong, as explained in Section 47.3.1.

47.3.3. Enabling/disabing the access protection

 int griommu_enable(int mode)
 int griommu_disable(void)

The driver uses these functions to enable or disable the GRIOMMU. The mode options decides which mode to use:

• IOMMU mode.
• Group/APV mode.

These functions return a negative value if something went wrong, as explained in Section 47.3.1. Otherwise, the
function returns GRIOMMU_ERR_OK when successful.

Table 47.4. griommu_enable function declaration

Proto int griommu_enable(int mode)

About Enable the IOMMU. See Section 47.3.3.

mode [IN] Integer

Mode option.

Value Description

GRIOMMU_MODE_IOMMU IOMMU mode. Not supported by current driver.

Param

GRIOMMU_MODE_GROUPAPV Group/APV protection mode.

Return int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

Table 47.5. griommu_disable function declaration

Proto int griommu_disable(void)

About Disable the IOMMU. See Section 47.3.3.

Return int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

47.3.4. Finding and configuring a master

 int griommu_master_find(int vendor, int device, int instance)
 int griommu_master_setup (int master, int group, int options)
 int griommu_master_info(int master, uint32_t * info)

The driver uses the find function to find a specific instance of a device. The device is identified by vendor and
device number ids. The instance parameter defines the instance index of the device (starting at 0), to be
able to differentiate then when there are multiple devices. When a device is found, a non-negative master index
is returned, otherwise GRIOMMU_ERR_NOTFOUND is returned.

The setup function uses the master index to setup the group and routing of a master.

The info function copies the master configuration register contents to the value pointed by the info input pointer.

These functions return a negative value if something went wrong, as explained in Section 47.3.1. Otherwise, the
function returns GRIOMMU_ERR_OK when successful.

RCC-UM
September 2020, Version 1.3-rc9

322 www.cobhamaes.com/gaisler

Table 47.6. griommu_master_find function declaration

Proto int griommu_master_find(int vendor, int device, int instance)

About Find a specific instance of a master on the IOMMU. The master is defined by the vendor and device
id numbers. The function returns the master index when successfull. See Section 47.3.4.

vendor [IN] IntegerParam

Vendor id number.

device [IN] IntegerParam

Device id number.

Return int. Returns the master index when successful. Otherwise, returns GRIOMMU_ERR_NOTFOUND or
a negative value if something went wrong, as explained in Section 47.3.1.

Table 47.7. griommu_master_setup function declaration

Proto int griommu_master_setup(int master, int group, int options)

About Setup a specific master with group index group and given options. The master is identified by the
master index. See Section 47.3.4.

master [IN] IntegerParam

Master index number.

group [IN] IntegerParam

Group index number.

options [IN] Integer

Options.

Value Description

GRIOMMU_OPTIONS_BUS0 Route master in primary bus.

Param

GRIOMMU_OPTIONS_BUS1 Route master in secondary bus.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

Table 47.8. griommu_master_info function declaration

Proto int griommu_master_info(int master, uint32_t * info)

About Get info from a specific master. The master is identified by the master index. See Section 47.3.4.

master [IN] IntegerParam

Master index number.

info [IN] PointerParam

Pointer to where the info will be written.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

47.3.5. Managing the APV

 void * griommu_apv_new(void)
 void griommu_apv_delete(void * apv)
 int griommu_apv_init(void * apv, int options)
 int griommu_apv_address_set(void * apv, uint32_t addr, int size, int options)
 int griommu_apv_page_set(void * apv, int index, int size, int options)
 int griommu_apv_flush(void)

All these functions work with the apv pointer. The pointer needs to have 1 bit per page for all 4 GiB memory space.
To simplify the calculation, the allocated size should be GRIOMMU_APV_SIZE/pagesize and it should be

RCC-UM
September 2020, Version 1.3-rc9

323 www.cobhamaes.com/gaisler

aligned to 16 bytes or GRIOMMU_APV_ALIGN. The new and delete functions take care of the size and alignment
internally to provide allocation and deallocation of APV.

The init, address_set and page_set functions do conceptually the same, they all set a certain range of pages to the
following access control:

• Allowed.
• Not allowed.

The init function initializes all pages of the APV. The page_set function only initializes a range of pages. The
address_set function takes an input range of addresses and translates it to a page range and then initializes it.

The flush function flushes the whole APV cache in case it is enabled. Note that this is required if some APV
that might be on the cache is modified. Flushing the whole APV cache might affect other masters or groups. If
group addressing is enabled, the group functions offer an alternative to flush only an specific group, as explained
in Section 47.3.6.

Except new and delete, these functions return a negative value if something went wrong, as explained in Sec-
tion 47.3.1. Otherwise, the function returns GRIOMMU_ERR_OK when successful.

Table 47.9. griommu_apv_new function declaration

Proto void * griommu_apv_new(void)

About Allocates an APV vector using the configured page size in the driver. See Section 47.3.5.

Return void *. Pointer to the allocated APV. If a NULL pointer is returned, something went wrong.

Table 47.10. griommu_apv_delete function declaration

Proto void griommu_apv_delete(void * apv)

About Deallocates an APV vector. See Section 47.3.5.

apv [IN] PointerParam

Pointer to the allocated APV.

Return None.

Table 47.11. griommu_apv_init function declaration

Proto int griommu_apv_init(void * apv, int options)

About Initialize the given APV. The driver assumes the pagesize configured in the GRIOMMU (with
griommu_setup). This function will not take care of the APV cache flush. The user has to flush the
APV cache is the APV migth be contained on the cache. See Section 47.3.5.

apv [IN] PointerParam

APV pointer. Has to meet the alignment requirements explained in Section 47.3.5.

options [IN] Integer

Initialize options.

Value Description

GRIOMMU_OPTIONS_APV_ALLOW Set all pages to allow access.

Param

GRIOMMU_OPTIONS_APV_DONTALLOW Set all pages to not allow access.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

Table 47.12. griommu_apv_page_set function declaration

Proto int griommu_apv_page_set(void * apv, int index, int size, int op-
tions)

About Set a specific range of pages with the given options in the given APV. The range is defined by index
and size. The first page of the range is index and the last index + size - 1. The driver as-
sumes the pagesize configured in the GRIOMMU (with griommu_setup). This function will not take

RCC-UM
September 2020, Version 1.3-rc9

324 www.cobhamaes.com/gaisler

care of the APV cache flush. The user has to flush the APV cache is the APV migth be contained on
the cache. See Section 47.3.5.

apv [IN] PointerParam

APV pointer. Has to meet the alignment requirements explained in Section 47.3.5.

index [IN] IntegerParam

Starting page of the range.

size [IN] IntegerParam

Size of the pages range (>0).

options [IN] Integer

Initialize options.

Value Description

GRIOMMU_OPTIONS_APV_ALLOW Set pages to allow access.

Param

GRIOMMU_OPTIONS_APV_DONTALLOW Set pages to not allow access.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

Table 47.13. griommu_apv_address_set function declaration

Proto int griommu_apv_address_set(void * apv, uint32_t addr, int size,
int options)

About Set a specific range of pages defined by a range of addresses with the given options in the given APV.
The range is defined by addr and size. The first address of the range is addr and the last addr +
size - 1. All the pages that include any of the addresses in this range will be affected. The driv-
er assumes the pagesize configured in the GRIOMMU (with griommu_setup). This function will not
take care of the APV cache flush. The user has to flush the APV cache is the APV migth be contained
on the cache. See Section 47.3.5.

apv [IN] PointerParam

APV pointer. Has to meet the alignment requirements explained in Section 47.3.5.

addr [IN] IntegerParam

Starting address of the range.

size [IN] IntegerParam

Size of the address range (>0).

options [IN] Integer

Initialize options.

Value Description

GRIOMMU_OPTIONS_APV_ALLOW Set pages to allow access.

Param

GRIOMMU_OPTIONS_APV_DONTALLOW Set pages to not allow access.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

Table 47.14. griommu_apv_flush function declaration

Proto int griommu_apv_flush(void)

About Flush the APV cache. See Section 47.3.5.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

47.3.6. Configuring a group

RCC-UM
September 2020, Version 1.3-rc9

325 www.cobhamaes.com/gaisler

 int griommu_group_setup(int group, void * apv, int options)
 int griommu_group_info(int group, uint32_t * info)
 int griommu_group_apv_init(int group, int options)
 int griommu_group_apv_address_set(int group, uint32_t addr, int size, int options)
 int griommu_group_apv_page_set(int group, int index, int size, int options)
 int griommu_group_flush(void)

The setup function uses the group index to setup the group. The group access control can be:

• Disabled (all accesses blocked).
• Enabled (requires providing a valid APV). In this case, the APV will be check for access protection.
• Pass-through (all accesses allowed).

The setup function always assigns the provided apv to the selected group. However, it only requires a valid apv
when enabling a group access control. The provided apv will be assigned to the group, so that APV managing
functions can be executed. Allocating and deallocating the APV can be done through helper functions provided
by the driver. See Section 47.3.5 for more details on how to manage the APV.

The info function copies the group configuration register contents to the value pointed by the info input pointer.

The apv functions do the same functionality as the one shown in Section 47.3.5, using the group index to get
the assigned APV of the group. They all require that the user has configured before an APV for the group. These
functions take care internally of flushing the APV cache.

The flush function flushes the group APV cache contents in case group addressing is enabled. Otherwise the whole
APV cache is flushed. Note that this is required if some APV that might be on the cache is modified, however,
the above mentioned functions take care of it.

These functions return a negative value if something went wrong, as explained in Section 47.3.1. Otherwise, the
function returns GRIOMMU_ERR_OK when successful.

Table 47.15. griommu_group_setup function declaration

Proto int griommu_group_setup(int group, void * apv, int options)

About Setup a specific group with given options. The group is identified by the group index. See Sec-
tion 47.3.6.

group [IN] IntegerParam

Group index number.

apv [IN] PointerParam

Pointer to an allocated APV vector. Only used if the group is enabled .

options [IN] Integer

Choose the group options.

Value Description

GRIOMMU_OPTIONS_GROUP_ENABLE Enable the group access control.

GRIOMMU_OPTIONS_GROUP_DISABLE Disable the group access.

Param

GRIOMMU_OPTIONS_GROUP_PASSTHROUGH Enable Pass-through group access.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

Table 47.16. griommu_group_info function declaration

Proto int griommu_group_info(int group, uint32_t * info)

About Get info from a specific group. The group is identified by the group index. See Section 47.3.6.

group [IN] IntegerParam

Group index number.

Param info [IN] Pointer

RCC-UM
September 2020, Version 1.3-rc9

326 www.cobhamaes.com/gaisler

Pointer to where the info will be written.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

Table 47.17. griommu_group_apv_init function declaration

Proto int griommu_group_apv_init(int group, int options)

About Initialize the APV of a specific group. The group is identified by the group index. If the APV cache
is enabled, this function will call the group flush internally. See Section 47.3.5.

group [IN] IntegerParam

Group index number.

options [IN] Integer

Initialize options.

Value Description

GRIOMMU_OPTIONS_APV_ALLOW Set all pages to allow access.

Param

GRIOMMU_OPTIONS_APV_DONTALLOW Set all pages to not allow access.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

Table 47.18. griommu_group_apv_page_set function declaration

Proto int griommu_group_apv_page_set(int group, int index, int size, int
options)

About Set a specific range of pages with the given options in the APV of a specific group. The range is de-
fined by index and size. The first page of the range is index and the last index + size - 1.
The group is identified by the group index. If the APV cache is enabled, this function will call the
group flush internally. See Section 47.3.5.

group [IN] IntegerParam

Group index number.

index [IN] IntegerParam

Starting page of the range.

size [IN] IntegerParam

Size of the pages range (>0).

options [IN] Integer

Initialize options.

Value Description

GRIOMMU_OPTIONS_APV_ALLOW Set pages to allow access.

Param

GRIOMMU_OPTIONS_APV_DONTALLOW Set pages to not allow access.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

Table 47.19. griommu_group_apv_address_set function declaration

Proto int griommu_group_apv_address_set(int group, uint32_t addr, int
size, int options)

About Set a specific range of pages defined by a range of addresses with the given options in the APV of a
specific group. The range is defined by addr and size. The first address of the range is addr and
the last addr + size - 1. All the pages that include any of the addresses in this range will be af-
fected. The group is identified by the group index. If the APV cache is enabled, this function will
call the group flush internally. See Section 47.3.5.

RCC-UM
September 2020, Version 1.3-rc9

327 www.cobhamaes.com/gaisler

group [IN] IntegerParam

Group index number.

addr [IN] IntegerParam

Starting address of the range.

size [IN] IntegerParam

Size of the address range (>0).

options [IN] Integer

Initialize options.

Value Description

GRIOMMU_OPTIONS_APV_ALLOW Set pages to allow access.

Param

GRIOMMU_OPTIONS_APV_DONTALLOW Set pages to not allow access.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

Table 47.20. griommu_group_apv_flush function declaration

Proto int griommu_group_apv_flush(int group)

About Flush the APV cache. If group addressing is being used, the function will only flush the group cache
given by group. See Section 47.3.6.

group [IN] IntegerParam

Group index number.

Return int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 47.3.1.

47.3.7. Interrupts on the GRIOMMU

 typedef void (*griommu_isr_t)(void *arg, uint32_t access, uint32_t status);
 int griommu_isr_register(griommu_isr_t isr, void * arg, int options);
 int griommu_interrupt_mask(int options);
 int griommu_interrupt_unmask(int options);

The driver provides this set of functions to handle interrupts. There are five sources of interrupt in the GRIOMMU:

• Parity error.
• Flush started.
• Flush completed.
• Access denied.
• Translation error.

The first thing to do is to register an ISR using the isr_register function. This function takes the user ISR and its
argument, that will be passed when the ISR is called, and an options parameter that defines which interrupts will
be unmasked, i.e. activated.

Once an ISR has been registered, the user can mask or unmask any specific interrupt source with the provided
functions.

The driver allows to register a new ISR again, which will effectively replace the previously registered ISR. It is
only possible to have one ISR registered at a given time.

This function returns a negative value if something went wrong, as explained in Section 47.3.1. Otherwise, the
function returns GRIOMMU_ERR_OK when successful.

Table 47.21. griommu_isr_register function declaration

Proto int griommu_isr_register(griommu_isr_t isr, void * arg, int op-
tions)

RCC-UM
September 2020, Version 1.3-rc9

328 www.cobhamaes.com/gaisler

About Registers an ISR for the IOMMU. The options parameter defines which interrupts are going to be
unmasked (i.e. enabled). See Section 47.3.7.

isr [IN] PointerParam

The ISR function pointer.

arg [IN] PointerParam

The ISR argument pointer.

options [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of this flags is accepted.

Value Description

GRIOMMU_INTERRUPT_ALL Unmask all interrupts.

GRIOMMU_INTERRUPT_PARITY_ERROR Unmask parity error interrupts.

GRIOMMU_INTERRUPT_FLUSH_COMPLETED Unmask flush completed interrupts.

GRIOMMU_INTERRUPT_FLUSH_STARTED Unmask flush started interrupts.

GRIOMMU_INTERRUPT_ACCESS_DENIED Unmask access denied interrupts.

Param

GRIOMMU_INTERRUPT_TRANSLATION_ERROR Unmask translation error interrupts.

Return int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

Table 47.22. griommu_interrupt_mask function declaration

Proto int griommu_interrupt_mask(int options)

About Mask certain interrupts (i.e. disable), leaving the rest in their current state (only available if an ISR has
been register before). The options parameter defines which interrupts are going to be masked. See
Section 47.3.7.

options [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of this flags is accepted.

Value Description

GRIOMMU_INTERRUPT_ALL Mask all interrupts.

GRIOMMU_INTERRUPT_PARITY_ERROR Mask parity error interrupts.

GRIOMMU_INTERRUPT_FLUSH_COMPLETED Mask flush completed interrupts.

GRIOMMU_INTERRUPT_FLUSH_STARTED Mask flush started interrupts.

GRIOMMU_INTERRUPT_ACCESS_DENIED Mask access denied interrupts.

Param

GRIOMMU_INTERRUPT_TRANSLATION_ERROR Mask translation error interrupts.

Return int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 47.23. griommu_interrupt_unmask function declaration

Proto int griommu_interrupt_unmask(int options)

About Unmask certain interrupts (i.e. enable), leaving the rest in their current state (only available if an
ISR has been register before). The options parameter defines which interrupts are going to be un-
masked. See Section 47.3.7.

options [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of this flags is accepted.

Value Description

GRIOMMU_INTERRUPT_ALL Unmask all interrupts.

Param

GRIOMMU_INTERRUPT_PARITY_ERROR Unmask parity error interrupts.

RCC-UM
September 2020, Version 1.3-rc9

329 www.cobhamaes.com/gaisler

GRIOMMU_INTERRUPT_FLUSH_COMPLETED Unmask flush completed interrupts.

GRIOMMU_INTERRUPT_FLUSH_STARTED Unmask flush started interrupts.

GRIOMMU_INTERRUPT_ACCESS_DENIED Unmask access denied interrupts.

GRIOMMU_INTERRUPT_TRANSLATION_ERROR Unmask translation error interrupts.

Return int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

47.3.8. Polling the error status of the GRIOMMU

 int griommu_error_status(uint32_t * access);

The driver provides this function to handle errors as an alternative to interrupts. There are five sources of interrupt
in the GRIOMMU:

• Parity error.
• Flush started.
• Flush completed.
• Access denied.
• Translation error.

This function will return the status register contents if a error has occurred. If it is the case, then it will copy the
AHB failing access register to the value pointed by access (if a valid pointer is given).

If an error has been detected, this function will internally reset the error status register to be able to catch new errors.

Please note that this function should not be used when interrupts are being used.

This function returns a negative value if something went wrong, as explained in Section 47.3.1. Otherwise, the
function returns the error status when successful.

Table 47.24. griommu_error_status function declaration

Proto int l2cache_error_status(uint32_t * access)

About Poll the state of the error status register. Returns the status register value if an error have been detect-
ed. Also this function clears the hardware error flags if an error has been detected. Optionally can pro-
vide the AHB failing access register content. See Section 47.3.8.

access [OUT] PointerParam

If a non NULL pointer is given, and in the case of an errors, the value pointed will be updated with the
AHB failing access register.

Return int. A positive value indicating the status register value when succesful. Otherwise, returns a negative
value if something went wrong, as explained in Section 47.3.1.

47.4. API reference

This section lists all functions part of the GRIOMMU driver API, and in which section(s) they are described. The
API is also documented in the source header file of the driver, see Section 47.1.2.

Table 47.25. GRIOMMU function reference

Prototype Section

int griommu_setup(int options) 47.3.2

int griommu_status(void) 47.3.2

int griommu_enable(int mode) 47.3.3

int griommu_disable(void) 47.3.3

int griommu_master_find(int vendor, int device, int instance) 47.3.4

RCC-UM
September 2020, Version 1.3-rc9

330 www.cobhamaes.com/gaisler

Prototype Section

int griommu_master_setup(int master, int group, int options) 47.3.4

int griommu_master_info(int master, uint32_t * info) 47.3.4

void * griommu_apv_new(void) 47.3.5

void griommu_apv_delete(void * apv) 47.3.5

int griommu_apv_init(void * apv, int options) 47.3.5

int griommu_apv_address_set(void * apv, uint32_t addr, int size,
int options)

47.3.5

int griommu_apv_page_set(void * apv, int index, int size, int op-
tions)

47.3.5

int griommu_apv_flush(void) 47.3.5

int griommu_group_setup(int group, void * apv, int options) 47.3.6

int griommu_group_info(int group, uint32_t * info) 47.3.6

int griommu_group_apv_init(int group, int options) 47.3.6

int griommu_group_apv_address_set(int group, uint32_t addr, int
size, int options)

47.3.6

int griommu_group_apv_page_set(int group, int index, int size, int
options)

47.3.6

int griommu_group_apv_flush(int group) 47.3.6

int griommu_isr_register(griommu_isr_t isr, void * arg, int op-
tions)

47.3.7

int griommu_interrupt_mask(int options) 47.3.7

int griommu_interrupt_unmask(int options) 47.3.7

int griommu_error_status(uint32_t * access) 47.3.8

RCC-UM
September 2020, Version 1.3-rc9

331 www.cobhamaes.com/gaisler

Chapter 48. L4STAT/L3STAT driver

48.1. Introduction

This section describes the L4STAT driver for SPARC/LEON processors. This driver is also compatible with the
L3STAT core. Everything explained in the next sections is also applicable to the L3STAT core.

48.1.1. Hardware Support

The L4STAT core hardware interface is documented in the GRIP Core User's manual. The L4STAT core is used
to count events in the LEON4 processor and the AHB bus in order to create performance statistics.

48.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
tree rtems-5/c/src/lib/libbsp/sparc.

Table 48.1. L4STAT driver source location

Location Description

shared/include/l4stat.h L4STAT user interface definition

.../libbsp/sparc/shared/stat/l4stat.c L4STAT driver implementation

48.1.3. Examples

There is a simple example available that uses the L4STAT driver to poll the execution time counter every second.
The example is part of the RCC distribution, it can be found under /opt/rtems-5/src/samples/l4stat/
test.c.

48.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing a IO system device. The API is SMP safe. The driver does not contain
any locking mechanism on SMP environments.

48.2.1. Driver usage

The driver provides a set of functions that allow to configure and operate each of the available L4STAT counters
independently. The following list summarizes the available actions.

• Enable/disable a counter (see Section 48.3.2).
• Get/set/clear a counter (see Section 48.3.3).
• Get/set max counter value (see Section 48.3.4).
• Get/set timestamp (see Section 48.3.5).

48.2.2. Initialization

During early initialization when the operating system boots the L4STAT driver, the driver does not modify the
hardware state of the L4STAT.

48.3. L4STAT user interface

48.3.1. Return values

 L4STAT_ERR_OK
 L4STAT_ERR_EINVAL
 L4STAT_ERR_TOOMANY
 L4STAT_ERR_ERROR

All the driver function calls return the following values when an error occurred:

• L4STAT_ERR_OK - Successful execution.

RCC-UM
September 2020, Version 1.3-rc9

332 www.cobhamaes.com/gaisler

• L4STAT_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
• L4STAT_ERR_TOOMANY - Maximum index exceeded.
• L4STAT_ERR_ERROR - Internal error. Can have different causes.

48.3.2. Enabling/disabing a counter

 int l4stat_counter_enable(unsigned int counter, int event, int cpu, int options)
 int l4stat_counter_disable(unsigned int counter)

The driver uses these functions to enable or disable a L4STAT counter identified by the counter parameter.

These functions return a negative value if something went wrong, as explained in Section 48.3.1. Otherwise, the
function returns L4STAT_ERR_OK when successful.

Table 48.2. l4stat_counter_enable function declaration

Proto int l4stat_counter_enable(unsigned int counter, int event, int cpu,
int options)

About Enable a L4STAT counter. See Section 48.3.2.

counter [IN] IntegerParam

Index of the counter.

event [IN] IntegerParam

Event ID to be counted.

cpu [IN] IntegerParam

CPU or AHB master to monitor (if applicable to the counted event).

options [IN] Integer

Options of the counter.

Value Description

L4STAT_OPTIONS_EVENT_LEVEL_ENABLE Enable event level.

L4STAT_OPTIONS_EVENT_LEVEL_DISABLE Disable event level (default).

L4STAT_OPTIONS_MAXIMUM_DURATION Maximum value mode.

L4STAT_OPTIONS_SUPERVISOR_MODE_FILTER Only count supervisor mode events (if applies
to the counted event).

L4STAT_OPTIONS_USER_MODE_FILTER Only count user mode events (if applies to the
counted event).

L4STAT_OPTIONS_NO_FILTER Count all events (default).

Param

L4STAT_OPTIONS_CLEAR_ON_READ Clear counter value when read.

Return int. L4STAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.3. l4stat_counter_disable function declaration

Proto int l4stat_counter_enable(unsigned int counter)

About Disable a L4STAT counter. See Section 48.3.2.

counter [IN] IntegerParam

Index of the counter.

Return int. L4STAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

48.3.3. Getting/setting/clearing a counter

RCC-UM
September 2020, Version 1.3-rc9

333 www.cobhamaes.com/gaisler

 int l4stat_counter_get(unsigned int counter, uint32_t *val)
 int l4stat_counter_set(unsigned int counter, uint32_t val)
 int l4stat_counter_clear(unsigned int counter)

The driver uses these functions to get or set the value of a counter identified by the counter parameter. The
clear function is equivalent to setting a counter to value 0.

These functions return a negative value if something went wrong, as explained in Section 48.3.1. Otherwise, the
function returns L4STAT_ERR_OK when successful.

Table 48.4. l4stat_counter_get function declaration

Proto int l4stat_counter_get(unsigned int counter, uint32_t *val)

About Get the value of a L4STAT counter. See Section 48.3.3.

counter [IN] IntegerParam

Index of the counter.

val [IN] PointerParam

Pointer to 32-bit value.

Return int. L4STAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.5. l4stat_counter_set function declaration

Proto int l4stat_counter_set(unsigned int counter, uint32_t val)

About Set the value of a L4STAT counter. See Section 48.3.3.

counter [IN] IntegerParam

Index of the counter.

val [IN] IntegerParam

32-bit value.

Return int. L4STAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.6. l4stat_counter_clear function declaration

Proto int l4stat_counter_clear(unsigned int counter)

About Clear the value of a L4STAT counter. See Section 48.3.3.

counter [IN] IntegerParam

Index of the counter.

Return int. L4STAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

48.3.4. Getting/setting the maximum value of a counter

 int l4stat_counter_max_get(unsigned int counter, uint32_t *val)
 int l4stat_counter_max_set(unsigned int counter, uint32_t val)

The driver uses these functions to get or set the maximum value of a counter identified by the counter parameter.
Note that this maximum value only applies if certain options are enabled (see Section 48.3.2).

These functions return a negative value if something went wrong, as explained in Section 48.3.1. Otherwise, the
function returns L4STAT_ERR_OK when successful.

Table 48.7. l4stat_counter_max_get function declaration

Proto int l4stat_counter_max_get(unsigned int counter, uint32_t *val)

RCC-UM
September 2020, Version 1.3-rc9

334 www.cobhamaes.com/gaisler

About Get the maximum value of a L4STAT counter. See Section 48.3.4.

counter [IN] IntegerParam

Index of the counter.

val [IN] PointerParam

Pointer to 32-bit value.

Return int. L4STAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.8. l4stat_counter_max_set function declaration

Proto int l4stat_counter_max_set(unsigned int counter, uint32_t val)

About Set the maximum value of a L4STAT counter. See Section 48.3.4.

counter [IN] IntegerParam

Index of the counter.

val [IN] IntegerParam

32-bit value.

Return int. L4STAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

48.3.5. Getting/setting the timestamp

 int l4stat_tstamp_get(uint32_t *val)
 int l4stat_tstamp_set(uint32_t val)

The driver uses these functions to get or set the value of the timestamp register.

These functions return a negative value if something went wrong, as explained in Section 48.3.1. Otherwise, the
function returns L4STAT_ERR_OK when successful.

Table 48.9. l4stat_tstamp_get function declaration

Proto int l4stat_tstamp_get(uint32_t *val)

About Get the value of the L4STAT timestamp register. See Section 48.3.5.

val [IN] PointerParam

Pointer to 32-bit value.

Return int. L4STAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.10. l4stat_tstamp_set function declaration

Proto int l4stat_tstamp_set(uint32_t val)

About Set the value of the L4STAT timestamp register. See Section 48.3.5.

val [IN] IntegerParam

32-bit value.

Return int. L4STAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

48.4. API reference

This section lists all functions part of the L4STAT driver API, and in which section(s) they are described. The
API is also documented in the source header file of the driver, see Section 48.1.2.

RCC-UM
September 2020, Version 1.3-rc9

335 www.cobhamaes.com/gaisler

Table 48.11. L4STAT function reference

Prototype Section

int l4stat_counter_enable(unsigned int counter, int event, int cpu,
int options)

48.3.2

int l4stat_counter_disable(unsigned int counter) 48.3.2

int l4stat_counter_get(unsigned int counter, uint32_t val) 48.3.3

int l4stat_counter_set(unsigned int counter, uint32_t *val) 48.3.3

int l4stat_counter_clear(unsigned int counter) 48.3.3

int l4stat_counter_max_get(unsigned int counter, uint32_t val) 48.3.4

int l4stat_counter_max_set(unsigned int counter, uint32_t *val) 48.3.4

int l4stat_tstamp_get(uint32_t val) 48.3.5

int l4stat_tstamp_set(uint32_t *val) 48.3.5

RCC-UM
September 2020, Version 1.3-rc9

336 www.cobhamaes.com/gaisler

Chapter 49. Memory Scrubber driver

49.1. Introduction

This section describes the Memory Scrubber (MEMSCRUB) driver for SPARC/LEON processors.

49.1.1. Hardware Support

The MEMSCRUB core hardware interface is documented in the GRIP Core User's manual. The MEMSCRUB
core is used to monitor the memory AHB bus and can be programmed to scrub a memory area.

49.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
tree rtems-5/c/src/lib/libbsp/sparc.

Table 49.1. MEMSCRUB driver source location

Location Description

shared/include/memscrub.h MEMSCRUB user interface definition

.../libbsp/sparc/shared/scrub/
memscrub.c

MEMSCRUB driver implementation

49.1.3. Examples

There is a simple example available that uses the MEMSCRUB driver to scrub a memory area and log the dif-
ferent events. The example is part of the RCC distribution, it can be found under /opt/rtems-5/src/sam-
ples/memscrub/test.c.

49.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing a IO system device.

The API is not designed for multi-threadding, i.e. multiple threads operating on the driver independently. The
driver does not contain any lock or protection for SMP environments. Changing the MEMSCRUB configuration
is not intended to be done extensively at runtime or independently of the rest of the system, since it usually has
a system-level impact. Therefore the user must take care of any impact that the different actions might have on
other parts of the system (such as threads, CPUs, DMAs, ...).

49.2.1. Driver usage

The driver provides a set of functions that allow to start and stop the scrubber in different modes. The first step is
to setup the memory range (or memory ranges) in which the scrubber is going to act (see Section 49.3.2).

After setting up the range we can start the scrubber in one of the three modes available (see Section 49.3.3):

• Init mode: Initialize the memory area.
• Scrub mode: Scrub the memory area.
• Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for

correcting many errors.

Note that scrub and regen mode can be changed on the fly.

The driver provides functions to check if the scrubber is active and to stop it (see Section 49.3.3).

When dealing with errors, the drivers provides two different interfaces:

• Interrupts (see Section 49.3.5): Allows the user to install an Interrupt Service Routine (ISR) that will be exe-
cuted whenever an error exceeds its corresponding threshold. Also the MEMSCRUB core allows to generate
an interrupt when its done.

• Polling (see Section 49.3.6): Allows the user to poll the error status to check if an error have occurred.

RCC-UM
September 2020, Version 1.3-rc9

337 www.cobhamaes.com/gaisler

Only one of these interfaces can be used at a given time.

The different errors that the MEMSCRUB can report are:

• AHB correctable error.
• AHB uncorrectable error.
• Scrubber run count errors.
• Scrubber block count errors.

There are functions that allow to configure the error count thresholds for each type of error individually (see
Section 49.3.4). When the error count for a certain type exceeds the threshold, the error status is updated and an
interrupt is generated. If a threshold is disabled, the error status is not updated and no interrupt is generated.

49.2.2. Initialization

During early initialization when the operating system boots the MEMSCRUB driver, the driver does not modify
the hardware state of the MEMSCRUB, apart from clearing the error and interrupt status.

49.3. Memory scrubber user interface

49.3.1. Return values

 MEMSCRUB_ERR_OK
 MEMSCRUB_ERR_EINVAL
 MEMSCRUB_ERR_ERROR

All the driver function calls return the following values when an error occurred:

• MEMSCRUB_ERR_OK - Successful execution.
• MEMSCRUB_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
• MEMSCRUB_ERR_ERROR - Internal error. Can have different causes.

49.3.2. Configuring the memory range

 int memscrub_range_set(uint32_t start, uint32_t end)
 int memscrub_range_get(uint32_t * start, uint32_t * end)
 int memscrub_secondary_range_set(uint32_t start, uint32_t end)
 int memscrub_secondary_range_get(uint32_t * start, uint32_t * end)
 int memscrub_scrub_position(uint32_t * position)

The driver uses these functions to setup the primary and secondary memory ranges of the MEMSCRUB core. The
scrubber will act on the range from address start to end, both inclusive.

The position function shows the actual position of the MEMSCRUB whithin the memory range.

These functions return a negative value if something went wrong, as explained in Section 49.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 49.2. memscrub_range_set function declaration

Proto int memscrub_range_set(uint32_t start, uint32_t end)

About Set the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 49.3.2.

start [IN] IntegerParam

32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] IntegerParam

32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

RCC-UM
September 2020, Version 1.3-rc9

338 www.cobhamaes.com/gaisler

Table 49.3. memscrub_range_get function declaration

Proto int memscrub_range_get(uint32_t * start, uint32_t * end)

About Get the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 49.3.2.

start [IN] PointerParam

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] PointerParam

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

Table 49.4. memscrub_secondary_range_set function declaration

Proto int memscrub_secondary_range_set(uint32_t start, uint32_t end)

About Set the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 49.3.2.

start [IN] IntegerParam

32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] IntegerParam

32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

Table 49.5. memscrub_secondary_range_get function declaration

Proto int memscrub_secondary_range_get(uint32_t * start, uint32_t * end)

About Get the secondary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 49.3.2.

start [IN] PointerParam

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] PointerParam

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

Table 49.6. memscrub_scrub_position function declaration

Proto int memscrub_scrub_position(uint32_t * position)

About Get the position of the scrubber within the memory range. See Section 49.3.2.

position [IN] PointerParam

Pointer to the 32-bit position address.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

49.3.3. Starting/stoping different modes.

 int memscrub_init_start(uint32_t value, uint8_t delay, int options)
 int memscrub_scrub_start(uint8_t delay, int options)
 int memscrub_regen_start(uint8_t delay, int options)
 int memscrub_stop()
 int memscrub_active()

RCC-UM
September 2020, Version 1.3-rc9

339 www.cobhamaes.com/gaisler

The driver uses these functions to start or stop the different modes of the MEMSCRUB core:

• Init mode: Initialize the memory area.
• Scrub mode: Scrub the memory area.
• Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for

correcting many errors.

All the modes act on the configured memory range (see Section 49.3.2).

The active functions checks if the scrubber is currently running.

These functions return a negative value if something went wrong, as explained in Section 49.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 49.7. memscrub_init_start function declaration

Proto int memscrub_init_start(uint32_t value, uint8_t delay, int op-
tions)

About Start the initialization mode of the scrubber. See Section 49.3.3.

value [IN] IntegerParam

32-bit value to be written into each memory position.

delay [IN] IntegerParam

8-bit delay value. Processor cycles delay time between processed blocks.

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.

MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).

MEMSCRUB_OPTIONS_EXTERNALSTART_ENABLE Enable external start.

MEMSCRUB_OPTIONS_EXTERNALSTART_DISABLE Disable external start (de-
fault).

MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.

MEMSCRUB_OPTIONS_LOOPMODE_DISABLE Disable loop mode (default).

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE Enable secondary memory
range.

Param

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE Disable secondary memory
range (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

Table 49.8. memscrub_scrub_start function declaration

Proto int memscrub_scrub_start(uint8_t delay, int options)

About Start the scrubbing mode of the scrubber. See Section 49.3.3.

delay [IN] IntegerParam

8-bit delay value. Processor cycles delay time between processed blocks.

options [IN] Integer

Options.

Param

Value Description

RCC-UM
September 2020, Version 1.3-rc9

340 www.cobhamaes.com/gaisler

MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.

MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).

MEMSCRUB_OPTIONS_EXTERNALSTART_ENABLE Enable external start.

MEMSCRUB_OPTIONS_EXTERNALSTART_DISABLE Disable external start (de-
fault).

MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.

MEMSCRUB_OPTIONS_LOOPMODE_DISABLE Disable loop mode (default).

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE Enable secondary memory
range.

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE Disable secondary memory
range (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

Table 49.9. memscrub_regen_start function declaration

Proto int memscrub_regen_start(uint8_t delay, int options)

About Start the regeneration mode of the scrubber. See Section 49.3.3.

delay [IN] IntegerParam

8-bit delay value. Processor cycles delay time between processed blocks.

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.

MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).

MEMSCRUB_OPTIONS_EXTERNALSTART_ENABLE Enable external start.

MEMSCRUB_OPTIONS_EXTERNALSTART_DISABLE Disable external start (de-
fault).

MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.

MEMSCRUB_OPTIONS_LOOPMODE_DISABLE Disable loop mode (default).

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE Enable secondary memory
range.

Param

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE Disable secondary memory
range (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

Table 49.10. memscrub_stop function declaration

Proto int memscrub_stop(void)

About Stop the scrubber. See Section 49.3.3.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

Table 49.11. memscrub_active function declaration

Proto int memscrub_active(void)

RCC-UM
September 2020, Version 1.3-rc9

341 www.cobhamaes.com/gaisler

About Returns the active status of the scrubber. When the scrubber is active, it returns a non-zero positive
value. When the scrubber is stopped, it returns zero. See Section 49.3.3.

Return int. Positive value when successful. Otherwise, returns a negative value if something went wrong, as
explained in Section 49.3.1.

49.3.4. Setting up error thresholds

 int memscrub_ahberror_setup(int uethres, int cethres, int options)
 int memscrub_scruberror_setup(int blkthres, int runthres, int options)

The driver uses these functions to setup the thresholds for ahb and scrub errors respectively. The following thresh-
olds can be enabled or disabled:

• AHB correctable error.
• AHB uncorrectable error.
• Scrubber run count errors.
• Scrubber block count errors.

If a threshold is disabled, no error status or interrupt will be generated for that type of error. If a threshold is
enabled, the error status or interrupt will be triggered when the error count exceeds the threshold value.

These functions return a negative value if something went wrong, as explained in Section 49.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 49.12. memscrub_ahberror_setup function declaration

Proto int memscrub_ahberror_setup(int uethres, int cethres, int options)

About Setup the AHB correctable and uncorrectable error thresholds for the MEMSCRUB core. See Sec-
tion 49.3.4.

uethres [IN] IntegerParam

AHB uncorrectable error threshold value (only 8 LSB used).

cethres [IN] IntegerParam

AHB correctable error threshold value (only 10 LSB used).

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_AHBERROR_CORTHRES_ENABLE Enable AHB correctable er-
ror threshold.

MEMSCRUB_OPTIONS_AHBERROR_CORTHRES_DISABLE Disable AHB correctable
error threshold (default).

MEMSCRUB_OPTIONS_AHBERROR_UNCORTHRES_ENABLE Enable AHB uncorrectable
error threshold.

Param

MEMSCRUB_OPTIONS_AHBERROR_UNCORTHRES_DISABLE Disable AHB uncorrectable
error threshold (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

Table 49.13. memscrub_scruberror_setup function declaration

Proto int memscrub_scruberror_setup(int blkthres, int runthres, int op-
tions)

About Setup the scrubber run and block count error thresholds for the MEMSCRUB core. See Sec-
tion 49.3.4.

Param blkthres [IN] Integer

RCC-UM
September 2020, Version 1.3-rc9

342 www.cobhamaes.com/gaisler

Block count error threshold value (only 8 LSB used).

runthres [IN] IntegerParam

Run count error threshold value (only 10 LSB used).

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_SCRUBERROR_RUNTHRES_ENABLE Enable run count error
threshold.

MEMSCRUB_OPTIONS_SCRUBERROR_RUNTHRES_DISABLE Disable run count error
threshold (default).

MEMSCRUB_OPTIONS_SCRUBERROR_BLOCKTHRES_ENABLE Enable block count error
threshold.

Param

MEMSCRUB_OPTIONS_SCRUBERROR_BLOCKTHRES_DISABLE Disable block count error
threshold (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

49.3.5. Registering an ISR

 typedef void (*memscrub_isr_t) (void *arg, uint32_t ahbaccess, uint32_t ahbstatus, uint32_t scrubstatus)
 int memscrub_isr_register(memscrub_isr_t isr, void * data)
 int memscrub_isr_unregister()

The driver uses these functions to register and unregister an ISR for error interrupts. When registering an ISR, in-
terrupts are enabled. To set the error thresholds that trigger interrupts use the functions described in Section 49.3.4.

These functions return a negative value if something went wrong, as explained in Section 49.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 49.14. memscrub_isr_register function declaration

Proto int memscrub_isr_register(memscrub_isr_t isr, void * arg)

About Registers an ISR for the MEMSCRUB core. See Section 49.3.5.

isr [IN] PointerParam

The ISR function pointer.

arg [IN] PointerParam

The ISR argument pointer.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

Table 49.15. memscrub_isr_unregister function declaration

Proto int memscrub_isr_unregister()

About Unregisters an ISR for the MEMSCRUB core. See Section 49.3.5.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

49.3.6. Polling the error status

 int memscrub_error_status(uint32_t * ahbaccess, uint32_t * ahbstatus, uint32_t * scrubstatus)

The driver uses this function to poll the error status and clear the error status in case an error is found. To set the
error thresholds that trigger error status use the functions described in Section 49.3.4.

RCC-UM
September 2020, Version 1.3-rc9

343 www.cobhamaes.com/gaisler

This function returns a negative value if something went wrong, as explained in Section 49.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 49.16. memscrub_error_status function declaration

Proto int memscrub_error_status(uint32_t * ahbaccess, uint32_t * ahbsta-
tus, uint32_t * scrubstatus)

About Poll the state of the error status registers. Returns the status registers and the AHB failing access reg-
ister. If a error has been detected the function automatically clears the status in order to catch new er-
rors. See Section 49.3.6.

ahbaccess [OUT] PointerParam

The value pointed will be updated with the AHB failing access.

ahbstatus [OUT] PointerParam

The value pointed will be updated with the AHB error status register content.

scrubstatus [OUT] PointerParam

The value pointed will be updated with the scrub error status register content.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 49.3.1.

49.4. API reference

This section lists all functions part of the MEMSCRUB driver API, and in which section(s) they are described.
The API is also documented in the source header file of the driver, see Section 49.1.2.

Table 49.17. MEMSCRUB function reference

Prototype Section

int memscrub_range_get(uint32_t *start, uint32_t *end) 49.3.2

int memscrub_range_set(uint32_t start, uint32_t end) 49.3.2

int memscrub_secondary_range_get(uint32_t *start, uint32_t *end) 49.3.2

int memscrub_secondary_range_set(uint32_t start, uint32_t end) 49.3.2

int memscrub_scrub_position(uint32_t *position) 49.3.2

int memscrub_init_start(uint32_t value, uint8_t delay, int options) 49.3.3

int memscrub_scrub_start(uint8_t delay, int options) 49.3.3

int memscrub_regen_start(uint8_t delay, int options) 49.3.3

int memscrub_stop() 49.3.3

int memscrub_active() 49.3.3

int memscrub_ahberror_setup(int uethres, int cethres, int options) 49.3.4

int memscrub_scruberror_setup(int blkthres, int runthres, int op-
tions)

49.3.4

int memscrub_isr_register(memscrub_isr_t isr, void * data) 49.3.5

int memscrub_isr_unregister() 49.3.5

int memscrub_error_status(uint32_t *ahbaccess, uint32_t *ahbstatus,
uint32_t *scrubstatus)

49.3.6

RCC-UM
September 2020, Version 1.3-rc9

344 www.cobhamaes.com/gaisler

Cobham Gaisler AB
Kungsgatan 12
411 19 Gothenburg
Sweden
www.cobhamaes.com/gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described
herein at any time without notice. Consult Cobham or an authorized sales representative to verify that
the information in this document is current before using this product. Cobham does not assume any
responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product
or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no
warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2020 Cobham Gaisler AB

	
	Table of Contents
	Chapter 1. Introduction
	1.1. General
	1.2. Installation on host platform
	1.2.1. Host requirements
	1.2.2. Installing RCC on Windows platforms
	1.2.2.1. Installing MSYS
	1.2.2.2. Building Newlib from sources
	1.2.2.3. Installing RTEMS source
	1.2.2.4. Building RTEMS from source

	1.2.3. Installing on Linux platform
	1.2.3.1. Building Newlib from sources
	1.2.3.2. Installing RTEMS source
	1.2.3.3. Building RTEMS from sources

	1.3. Contents of /opt/rcc-1.3-rc9
	1.4. RCC tools
	1.5. Documentation
	1.6. RCC source Git access
	1.7. Changes since RCC-1.2
	1.8. Known limitations in this release
	1.9. Support

	Chapter 2. Using RCC
	2.1. General development flow
	2.2. Compiler toolchain
	2.2.1. sparc-gaisler-rtems5 toolchain BSP selection
	2.2.2. Common compiler options
	2.2.3. GNU GCC toolchain
	2.2.3.1. sparc-gaisler-rtems5-gcc specific options
	2.2.3.2. LEON target GNU GCC compiler options
	2.2.3.3. GCC multi-libs

	2.2.4. LLVM Clang toolchain
	2.2.4.1. Overview
	2.2.4.2. sparc-gaisler-rtems5-clang specific options
	2.2.4.3. LEON target LLVM Clang compiler options
	2.2.4.4. Clang multi-libs

	2.2.5. Floating-point considerations
	2.2.6. SPARC V8 instructions
	2.2.7. LEON CASA instruction
	2.2.8. LEON UMAC/SMAC instructions
	2.2.9. LEON3/4/5 CPU counter
	2.2.10. Enabling/Disabling Interrupt by use of Write Partial PSR instruction

	2.3. RTEMS applications
	2.4. Memory organisation
	2.5. Board-support packages (BSPs)
	2.5.1. LEON3 BSP
	2.5.1.1. Multi processing (ASMP and SMP) configurations

	2.5.2. GR740 BSP
	2.5.3. GR712RC BSP
	2.5.4. UT699 BSP
	2.5.5. UT699E/UT700 BSP
	2.5.6. AT697F BSP

	2.6. Driver Manager
	2.6.1. Initialization
	2.6.2. Configuration
	2.6.3. Driver configuration
	2.6.4. drvmgr command

	2.7. Network configuration
	2.8. PCI
	2.9. LEON3 BSP multiprocessing configurations
	2.9.1. Memory and device resource sharing
	2.9.2. Interrupt considerations
	2.9.2.1. Interrupt Controller IRQ(A)MP
	2.9.2.2. Inter processor interrupt (IPI)
	2.9.2.3. Interrupt affinity (SMP only)

	2.9.3. Symmetric multiprocessing (SMP) configuration
	2.9.3.1. Processor selection

	2.9.4. Asymmetric multiprocessing (AMP) configuration
	2.9.4.1. MP testsuite

	2.9.5. RTEMS SMP AMP example

	2.10. Making boot-proms

	Chapter 3. Examples
	3.1. Overview
	3.2. Building

	Chapter 4. Execution and debugging
	4.1. TSIM
	4.2. GRMON
	4.3. GDB with GRMON and TSIM
	4.4. Using DDD graphical front-end to gdb

	Device drivers reference
	Chapter 5. GRLIB AMBA Plug&Play bus
	5.1. Introduction
	5.1.1. AMBA Plug&Play terms and names
	5.1.2. Sources

	5.2. Overview
	5.3. Initialization
	5.4. Finding AMBAPP devices by Plug&Play
	5.5. Allocating a device structure
	5.6. Name database
	5.7. Frequency of a device

	Chapter 6. Driver Manager
	6.1. Introduction
	6.1.1. Driver manager terms and names
	6.1.2. Sources

	6.2. Overview
	6.2.1. Bus and bus driver
	6.2.1.1. Bus specific device information

	6.2.2. Root driver
	6.2.3. Device driver
	6.2.4. Device
	6.2.5. Driver resources
	6.2.6. Driver interface

	6.3. Configuration
	6.3.1. Available LEON drivers

	6.4. Initialization
	6.4.1. LEON3/4 BSP

	6.5. Interrupt
	6.6. Address translation
	6.7. Function Interface

	Chapter 7. RMAP Stack
	7.1. Introduction
	7.1.1. Examples

	7.2. Driver Interface
	7.3. Logical and Path addressing
	7.4. Zero-copy implementation
	7.5. RMAP GRSPW driver
	7.6. Thread-safe
	7.7. User interface
	7.7.1. Data structures
	7.7.2. Function interface description
	7.7.2.1. rmap_init
	7.7.2.2. rmap_ioctl
	7.7.2.3. rmap_send
	7.7.2.4. rmap_crc_calc
	7.7.2.5. rmap_write and rmap_read

	Chapter 8. SpaceWire Network model
	8.1. Introduction
	8.2. Overview
	8.3. Requirements
	8.4. Node Description
	8.4.1. The Node ID

	8.5. Read and write operation
	8.6. Interrupt handling
	8.7. Using the spacewire bus driver

	Chapter 9. AMBA over SpaceWire
	9.1. Introduction
	9.2. Overview
	9.3. Requirements
	9.4. Interrupt handling
	9.5. Memory allocation on target
	9.6. Differences between on-chip AMBA drivers

	Chapter 10. LEON PCI host bridge drivers
	10.1. Introduction
	10.1.1. Examples

	10.2. Sources
	10.3. Configuration
	10.3.1. GRPCI
	10.3.2. GRPCI2
	10.3.3. AT697

	10.4. User interface
	10.4.1. PCI address space
	10.4.2. PCI interrupt
	10.4.3. PCI endianess

	Chapter 11. GRPCI2 DMA driver
	11.1. Introduction
	11.1.1. Hardware Support
	11.1.2. Driver sources
	11.1.3. Examples

	11.2. Software design overview
	11.2.1. Driver usage
	11.2.2. Driver resource configuration
	11.2.3. Initialization
	11.2.4. DMA control
	11.2.5. DMA buffer handling
	11.2.6. SMP Support

	11.3. DMA user interface
	11.3.1. Return values
	11.3.2. Opening/closing a channel
	11.3.3. Starting/stopping a channel
	11.3.4. Registering an ISR for a channel
	11.3.5. Enabling interrupts for data descriptors
	11.3.6. Allocating data descriptors
	11.3.7. Prepare a transfer
	11.3.8. Push a transfer into a channel
	11.3.9. Get the status of a transfer

	11.4. API reference

	Chapter 12. GR-RASTA-ADCDAC PCI peripheral
	Chapter 13. GR-RASTA-IO PCI peripheral
	Chapter 14. GR-RASTA-TMTC PCI peripheral
	Chapter 15. GR-RASTA-SPW_ROUTER PCI Peripheral
	Chapter 16. GR-CPCI-LEON4-N2X PCI Peripheral
	16.1. Driver registration
	16.2. Driver resource configuration

	Chapter 17. GR-CPCI-GR740 PCI Peripheral
	17.1. Driver registration
	17.2. Driver resource configuration

	Chapter 18. GRSPW Packet driver
	18.1. Introduction
	18.1.1. GRSPW packet driver vs. old GRSPW driver
	18.1.2. Hardware Support
	18.1.3. Driver sources
	18.1.4. Show routines
	18.1.5. Examples
	18.1.6. Known driver limitations

	18.2. Software design overview
	18.2.1. Overview
	18.2.2. Driver resource configuration
	18.2.3. Initialization
	18.2.4. Link control
	18.2.5. Time Code support
	18.2.6. RMAP support
	18.2.7. Port support
	18.2.8. SpaceWire node address configuration
	18.2.9. SpaceWire Interrupt Code support
	18.2.10. User DMA buffer handling
	18.2.10.1. Buffer List help routines

	18.2.11. Driver DMA buffer handling
	18.2.11.1. DMA Queues
	18.2.11.2. DMA Queue operations

	18.2.12. Polling and blocking mode
	18.2.13. Interrupt and work-task
	18.2.14. Starting and stopping DMA
	18.2.15. Thread concurrency

	18.3. Device Interface
	18.3.1. Opening and closing device
	18.3.2. Hardware capabilities
	18.3.3. Link Control
	18.3.4. Node address configuration
	18.3.5. Time Code support
	18.3.6. Port Control
	18.3.7. RMAP Control
	18.3.8. Statistics

	18.4. DMA interface
	18.4.1. Opening and closing DMA channels
	18.4.2. Starting and stopping DMA operation
	18.4.3. Packet buffer description
	18.4.4. Blocking/Waiting on DMA activity
	18.4.5. Sending packets
	18.4.6. Receiving packets
	18.4.7. Transmission queue status
	18.4.8. Statistics
	18.4.9. DMA channel configuration

	18.5. API reference
	18.5.1. Data structures
	18.5.2. Device functions
	18.5.3. DMA functions

	Chapter 19. GRSPW GRLIB SpaceWire driver
	19.1. Introduction
	19.1.1. Software driver
	19.1.2. Examples

	19.2. User interface
	19.2.1. Driver registration
	19.2.2. Driver resource configuration
	19.2.2.1. Custom DMA area parameters

	19.2.3. Opening the device
	19.2.4. Closing the device
	19.2.5. I/O Control interface
	19.2.5.1. Data structures
	19.2.5.2. Configuration
	19.2.5.2.1. START
	19.2.5.2.2. STOP
	19.2.5.2.3. SET_NODEADDR
	19.2.5.2.4. SET_RXBLOCK
	19.2.5.2.5. SET_DESTKEY
	19.2.5.2.6. SET_CLKDIV
	19.2.5.2.7. SET_TIMER
	19.2.5.2.8. SET_DISCONNECT
	19.2.5.2.9. SET_COREFREQ
	19.2.5.2.10. SET_PROMISCUOUS
	19.2.5.2.11. SET_RMAPEN
	19.2.5.2.12. SET_RMAPBUFDIS
	19.2.5.2.13. SET_CHECK_RMAP
	19.2.5.2.14. SET_RM_PROT_ID
	19.2.5.2.15. SET_TXBLOCK
	19.2.5.2.16. SET_TXBLOCK_ON_FULL
	19.2.5.2.17. SET_DISABLE_ERR
	19.2.5.2.18. SET_LINK_ERR_IRQ
	19.2.5.2.19. SET_PACKETSIZE
	19.2.5.2.20. GET_LINK_STATUS
	19.2.5.2.21. GET_CONFIG
	19.2.5.2.22. GET_STATISTICS
	19.2.5.2.23. CLR_STATISTICS
	19.2.5.2.24. SEND
	19.2.5.2.25. LINKDISABLE
	19.2.5.2.26. LINKSTART
	19.2.5.2.27. SET_EVENT_ID
	19.2.5.2.28. SET_TCODE_CTRL
	19.2.5.2.29. SET_TCODE
	19.2.5.2.30. GET_TCODE

	19.2.6. Transmission
	19.2.7. Reception

	19.3. Receiver example

	Chapter 20. GRSPW ROUTER driver
	20.1. Introduction
	20.1.1. Hardware Support
	20.1.2. Driver sources
	20.1.3. Examples

	20.2. Software design overview
	20.2.1. Driver usage
	20.2.2. Initialization
	20.2.3. SMP Support and thread safe

	20.3. GRSPW ROUTER user interface
	20.3.1. Return values
	20.3.2. Opening/closing a router
	20.3.3. Configuring the router
	20.3.4. Configuring the router registers
	20.3.5. Configuring the routing table
	20.3.6. Individual route configuration
	20.3.7. Port configuration
	20.3.8. Link configuration
	20.3.9. Port counters
	20.3.10. Timecode handling
	20.3.11. Interrupt code generation
	20.3.12. Polling the error status of a port

	20.4. API reference
	20.4.1. Data structures
	20.4.2. Device functions

	Chapter 21. SPWTDP driver
	21.1. Introduction
	21.1.1. Hardware Support
	21.1.2. Driver sources
	21.1.3. Examples

	21.2. Software design overview
	21.2.1. Driver usage
	21.2.2. Initialization

	21.3. SPWTDP user interface
	21.3.1. Return values
	21.3.2. Opening a SPWTDP device
	21.3.3. Setting up the frequency and time generation
	21.3.4. Configuring as initiator or target
	21.3.5. Getting the elapsed time or timestamps
	21.3.6. Handling SPWTDP AMBA interrupts
	21.3.7. Checking the SPWTDP status

	21.4. API reference

	Chapter 22. GR1553B GRLIB MIL-STD-1553B driver
	22.1. Introduction
	22.2. GR1553B Hardware
	22.3. Software driver
	22.4. Driver Registration
	22.5. Examples

	Chapter 23. GR1553B remote terminal driver
	23.1. Introduction
	23.1.1. GR1553B Remote Terminal Hardware
	23.1.2. Examples

	23.2. User Interface
	23.2.1. Overview
	23.2.1.1. Accessing an RT device
	23.2.1.2. Introduction to the RT Memory areas
	23.2.1.3. Sub Address Table
	23.2.1.4. Descriptors
	23.2.1.5. Data Buffers
	23.2.1.6. Event Logging
	23.2.1.7. Interrupt service
	23.2.1.8. Indication service
	23.2.1.9. Mode Code support
	23.2.1.10. RT Time

	23.2.2. Application Programming Interface
	23.2.2.1. Data structures
	23.2.2.2. gr1553rt_open
	23.2.2.3. gr1553rt_close
	23.2.2.4. gr1553rt_config
	23.2.2.5. gr1553rt_start
	23.2.2.6. gr1553rt_stop
	23.2.2.7. gr1553rt_status
	23.2.2.8. gr1553rt_indication
	23.2.2.9. gr1553rt_evlog_read
	23.2.2.10. gr1553rt_set_vecword
	23.2.2.11. gr1553rt_set_bussts
	23.2.2.12. gr1553rt_sa_setopts
	23.2.2.13. gr1553rt_list_sa
	23.2.2.14. gr1553rt_sa_schedule
	23.2.2.15. gr1553rt_irq_err
	23.2.2.16. gr1553rt_irq_mc
	23.2.2.17. gr1553rt_irq_sa
	23.2.2.18. gr1553rt_list_init
	23.2.2.19. gr1553rt_bd_init
	23.2.2.20. gr1553rt_bd_update

	Chapter 24. GR1553B bus monitor driver
	24.1. Introduction
	24.1.1. GR1553B Remote Terminal Hardware
	24.1.2. Examples

	24.2. User Interface
	24.2.1. Overview
	24.2.1.1. Accessing a BM device
	24.2.1.2. BM Log memory
	24.2.1.3. Accessing the BM Log memory
	24.2.1.4. Time
	24.2.1.5. Filtering
	24.2.1.6. Interrupt service

	24.2.2. Application Programming Interface
	24.2.2.1. Data structures
	24.2.2.2. gr1553bm_open
	24.2.2.3. gr1553bm_close
	24.2.2.4. gr1553bm_config
	24.2.2.5. gr1553bm_start
	24.2.2.6. gr1553bm_stop
	24.2.2.7. gr1553bm_time
	24.2.2.8. gr1553bm_available
	24.2.2.9. gr1553bm_read

	Chapter 25. GR1553B bus controller driver
	25.1. Introduction
	25.1.1. GR1553B Bus Controller Hardware
	25.1.2. Software driver
	25.1.3. Examples

	25.2. BC Device Handling
	25.2.1. Device API
	25.2.1.1. Data Structures
	25.2.1.2. gr1553bc_open
	25.2.1.3. gr1553bc_close
	25.2.1.4. gr1553bc_start
	25.2.1.5. gr1553bc_pause
	25.2.1.6. gr1553bc_resume
	25.2.1.7. gr1553bc_stop
	25.2.1.8. gr1553bc_indication
	25.2.1.9. gr1553bc_status
	25.2.1.10. gr1553bc_ext_trig
	25.2.1.11. gr1553bc_irq_setup

	25.3. Descriptor List Handling
	25.3.1. Overview
	25.3.2. Example: steps for creating a list
	25.3.3. Major Frame
	25.3.4. Minor Frame
	25.3.5. Slot (Descriptor)
	25.3.6. Changing a scheduled BC list (during BC-runtime)
	25.3.7. Custom Memory Setup
	25.3.8. Interrupt handling
	25.3.9. List API
	25.3.9.1. Data structures
	25.3.9.2. gr1553bc_list_alloc
	25.3.9.3. gr1553bc_list_free
	25.3.9.4. gr1553bc_list_config
	25.3.9.5. gr1553bc_list_link_major
	25.3.9.6. gr1553bc_list_set_major
	25.3.9.7. gr1553bc_minor_table_size
	25.3.9.8. gr1553bc_list_table_size
	25.3.9.9. gr1553bc_list_table_alloc
	25.3.9.10. gr1553bc_list_table_free
	25.3.9.11. gr1553bc_list_table_build
	25.3.9.12. gr1553bc_major_alloc_skel
	25.3.9.13. gr1553bc_list_freetime
	25.3.9.14. gr1553bc_slot_alloc
	25.3.9.15. gr1553bc_slot_free
	25.3.9.16. gr1553bc_mid_from_bd
	25.3.9.17. gr1553bc_slot_bd
	25.3.9.18. gr1553bc_slot_irq_prepare
	25.3.9.19. gr1553bc_slot_irq_enable
	25.3.9.20. gr1553bc_slot_irq_disable
	25.3.9.21. gr1553bc_slot_jump
	25.3.9.22. gr1553bc_slot_exttrig
	25.3.9.23. gr1553bc_slot_transfer
	25.3.9.24. gr1553bc_slot_dummy
	25.3.9.25. gr1553bc_slot_empty
	25.3.9.26. gr1553bc_slot_update
	25.3.9.27. gr1553bc_slot_raw
	25.3.9.28. gr1553bc_show_list

	Chapter 26. B1553BRM GRLIB Actel Core1553BRM driver
	26.1. Introduction
	26.1.1. BRM Hardware
	26.1.2. Software Driver
	26.1.3. Supported OS

	26.2. User Intrerface
	26.2.1. Driver registration
	26.2.2. Driver resource configuration
	26.2.2.1. Custom DMA area parameter

	26.2.3. Opening the device
	26.2.4. Closing the device
	26.2.5. I/O Control interface
	26.2.5.1. Data structures
	26.2.5.1.1. Remote Terminal operating mode
	26.2.5.1.2. Bus Controller operating mode
	26.2.5.1.3. Bus Monitor operating mode

	26.2.6. Configuration
	26.2.6.1. SET_MODE
	26.2.6.2. SET_BUS
	26.2.6.3. SET_MSGTO
	26.2.6.4. SET_RT_ADDR
	26.2.6.5. BRM_SET_STD
	26.2.6.6. BRM_SET_BCE
	26.2.6.7. BRM_TX_BLOCK
	26.2.6.8. BRM_RX_BLOCK
	26.2.6.9. BRM_CLR_STATUS
	26.2.6.10. BRM_GET_STATUS
	26.2.6.11. BRM_EST_EVENTID

	26.2.7. Remote Terminal operation
	26.2.8. Bus Controller operation
	26.2.9. Bus monitor operation

	Chapter 27. B1553RT GRLIB Actel Core1553 RT driver
	27.1. Introduction
	27.1.1. RT Hardware
	27.1.2. 1.1.2 Examples

	27.2. User interface
	27.2.1. Driver registration
	27.2.2. Driver resource configuration
	27.2.2.1. Custom DMA area parameter

	27.2.3. Opening the device
	27.2.4. Closing the device
	27.2.5. I/O Control interface
	27.2.5.1. Data structures
	27.2.5.1.1. Remote Terminal operating mode

	27.2.6.
	27.2.6.1. RT_SET_ADDR
	27.2.6.2. RT_SET_BCE
	27.2.6.3. RT_SET_VECTORW
	27.2.6.4. RT_RX_BLOCK
	27.2.6.5. RT_SET_EXTMDATA
	27.2.6.6. RT_SET_STATUS
	27.2.6.7. RT_GET_STATUS
	27.2.6.8. RT_SET_EVENTID

	27.2.7. Remote Terminal operation

	Chapter 28. GRCAN CAN driver
	28.1. Introduction
	28.1.1. Driver registration
	28.1.2. Driver resource configuration
	28.1.2.1. Custom DMA area parameters

	28.2. User Interface
	28.2.1. Opening and closing device
	28.2.2. Operation mode
	28.2.2.1. Starting and stopping

	28.2.3. Configuration
	28.2.3.1. Channel selection
	28.2.3.2. Timing parameters
	28.2.3.3. Blocking mode

	28.2.4. Receive filters
	28.2.4.1. Data structures
	28.2.4.2. Acceptance filter
	28.2.4.3. Sync filter

	28.2.5. Driver statistics
	28.2.6. Device status
	28.2.7. CAN bus transfers
	28.2.7.1. Data structures
	28.2.7.2. Transmission
	28.2.7.3. Reception
	28.2.7.4. Bus-off recovery
	28.2.7.5. AHB error recovery

	28.2.8. Multitasking support

	Chapter 29. CAN_OC GRLIB Opencores CAN driver
	29.1. Introduction
	29.1.1. CAN Hardware
	29.1.2. Software Driver
	29.1.3. Examples

	29.2. User interface
	29.2.1. Driver registration
	29.2.2. Driver resource configuration
	29.2.3. Opening the device
	29.2.4. Closing the device
	29.2.5. I/O Control interface
	29.2.5.1. Data structures
	29.2.5.2. Configuration
	29.2.5.2.1. START
	29.2.5.2.2. STOP
	29.2.5.2.3. GET_STATS
	29.2.5.2.4. GET_STATUS
	29.2.5.2.5. SET_SPEED
	29.2.5.2.6. SET_BTRS
	29.2.5.2.7. SET_BLK_MODE
	29.2.5.2.8. SET_BUFLEN
	29.2.5.2.9. Transmission

	29.2.6. Reception

	Chapter 30. SatCAN driver (SatCAN)
	30.1. Introduction
	30.1.1. SatCAN Hardware Wrapper
	30.1.2. Software Driver
	30.1.3. Examples

	30.2. User interface
	30.2.1. Driver registration
	30.2.2. Opening the device
	30.2.3. Closing the device
	30.2.4. Reading from the device
	30.2.5. Writing to the device
	30.2.6. I/O Control interface
	30.2.6.1. Data structures
	30.2.6.2. Configuration
	30.2.6.2.1. DMA_2K
	30.2.6.2.2. DMA_8K
	30.2.6.2.3. GET_REG
	30.2.6.2.4. SET_REG
	30.2.6.2.5. SET_REG
	30.2.6.2.6. AND_REG
	30.2.6.2.7. AND_REG
	30.2.6.2.8. EN_TX2_DIS_TX1
	30.2.6.2.9. GET_DMA_MODE
	30.2.6.2.10. SET_DMA_MODE
	30.2.6.2.11. ACTIVATE_DMA
	30.2.6.2.12. DEACTIVATE_DMA
	30.2.6.2.13. GET_DOFFSET
	30.2.6.2.14. SET_DOFFSET
	30.2.6.2.15. GET_TIMEOUT
	30.2.6.2.16. SET_TIMEOUT

	Chapter 31. CAN_MUX driver (CAN_MUX)
	31.1. Introduction
	31.1.1. CAN_MUX Hardware
	31.1.2. Software Driver
	31.1.3. Examples

	31.2. User interface
	31.2.1. Driver registration
	31.2.2. Opening the device
	31.2.3. Closing the device
	31.2.4. I/O Control interface
	31.2.4.1. Configuration

	Chapter 32. GRASCS driver
	32.1. Introduction
	32.1.1. Software driver
	32.1.2. Examples

	32.2. User interface
	32.2.1. ASCS_init
	32.2.2. ASCS_input_select
	32.2.3. ASCS_etr_select
	32.2.4. ASCS_start
	32.2.5. ASCS_stop
	32.2.6. ASCS_iface_status
	32.2.7. ASCS_TC_send
	32.2.8. ASCS_TC_send_block
	32.2.9. ASCS_TC_sync_start
	32.2.10. ASCS_TC_sync_stop
	32.2.11. ASCS_TM_recv
	32.2.12. ASCS_TM_recv_block

	32.3. Examples code

	Chapter 33. APBUART console driver
	33.1. Introduction
	33.1.1. Functioning mode
	33.1.2. Hardware support

	33.2. User interface
	33.2.1. Driver registration
	33.2.2. Driver resource configuration
	33.2.3. Opening the device
	33.2.4. Closing the device
	33.2.5. Control interface
	33.2.6. Startup-parameter inheritance
	33.2.7. Transmission
	33.2.8. Reception

	Chapter 34. SPICTRL GRLIB SPI master driver
	34.1. Introduction
	34.1.1. SPI Hardware
	34.1.2. Examples

	34.2. User interface
	34.2.1. Driver registration
	34.2.2. Accessing the SPI bus
	34.2.3. Extensions to the standard RTEMS interface
	34.2.3.1. PERIOD_START
	34.2.3.2. PERIOD_STOP
	34.2.3.3. CONFIG
	34.2.3.4. STATUS
	34.2.3.5. STATUS
	34.2.3.6. PERIOD_READ

	Chapter 35. I2CMST GRLIB I2C Master driver
	35.1. Introduction
	35.1.1. I2C Hardware
	35.1.2. Examples

	35.2. User interface
	35.2.1. Driver registration
	35.2.2. Accessing the I2C bus

	Chapter 36. GPIO Library
	36.1. Introduction
	36.1.1. Examples

	36.2. Driver interface
	36.3. User interface
	36.3.1. Accessing a GPIO port
	36.3.2. Interrupt handler registration
	36.3.3. Data structures
	36.3.4. Function prototype description
	36.3.4.1. GPIO Library functions
	36.3.4.1.1. grpiolib_set_config
	36.3.4.1.2. grpiolib_set
	36.3.4.1.3. grpiolib_get
	36.3.4.1.4. grpiolib_irq_clear
	36.3.4.1.5. grpiolib_irq_force
	36.3.4.1.6. grpiolib_irq_enable
	36.3.4.1.7. grpiolib_irq_disable
	36.3.4.1.8. grpiolib_irq_register

	Chapter 37. GRGPIO GRLIB GPIO driver
	37.1. Introduction
	37.1.1. GPIO Hardware
	37.1.2. Examples

	37.2. User interface
	37.2.1. Driver registration
	37.2.2. Driver resource configuration
	37.2.3. Accessing GPIO ports

	Chapter 38. GRADCDAC GRLIB ADC/DAC driver
	38.1. Introduction
	38.1.1. ADC/DAC Hardware
	38.1.2. Examples

	38.2. User interface
	38.2.1. Driver registration
	38.2.2. Driver resource configuration
	38.2.3. Accessing ADC/DAC
	38.2.4. Interrupt handler registration
	38.2.5. Data structures
	38.2.6. Function prototype description
	38.2.6.1. General ADC/DAC functions
	38.2.6.1.1. gradcdac_set_config
	38.2.6.1.2. gradcdac_get_config
	38.2.6.1.3. gradcdac_set_cfg
	38.2.6.1.4. gradcdac_get_cfg
	38.2.6.1.5. gradcdac_get_status
	38.2.6.1.6. gradcdac_get_adrinput
	38.2.6.1.7. gradcdac_get_adroutput
	38.2.6.1.8. gradcdac_set_adroutput
	38.2.6.1.9. gradcdac_get_adrdir
	38.2.6.1.10. gradcdac_set_adrdir
	38.2.6.1.11. gradcdac_get_datainput
	38.2.6.1.12. gradcdac_get_dataioutput
	38.2.6.1.13. gradcdac_set_dataioutput
	38.2.6.1.14. gradcdac_get_datadir
	38.2.6.1.15. gradcdac_set_datadir

	38.2.6.2. Status interpretation help function
	38.2.6.3. ADC functions
	38.2.6.3.1. gradcdac_adc_convert_start
	38.2.6.3.2. gradcdac_adc_convert_try
	38.2.6.3.3. gradcdac_adc_convert

	38.2.6.4. DAC functions
	38.2.6.4.1. grandcdac_dac_convert_try
	38.2.6.4.2. grandcdac_dac_convert

	Chapter 39. GRTC GRLIB CCSDS Telecommand driver
	39.1. INTRODUCTION
	39.1.1. TC Hardware
	39.1.2. Software Driver
	39.1.2.1. GRTC over SpaceWire

	39.2. User interface
	39.2.1. Driver registration
	39.2.2. Opening the device
	39.2.3. Closing the device
	39.2.4. I/O Control interface
	39.2.4.1. Data structures
	39.2.4.2. Configuration
	39.2.4.2.1. START
	39.2.4.2.2. STOP
	39.2.4.2.3. ISSTARTED
	39.2.4.2.4. SET_BLOCKING_MODE
	39.2.4.2.5. SET_TIMEOUT
	39.2.4.2.6. SET_MODE
	39.2.4.2.7. SET_BUF_PARAM
	39.2.4.2.8. SET_CONFIG
	39.2.4.2.9. GET_CONFIG
	39.2.4.2.10. GET_BUF_PARAM
	39.2.4.2.11. GET_HW_STATUS
	39.2.4.2.12. GET_CLCW_ADR
	39.2.4.2.13. GET_STATS
	39.2.4.2.14. CLR_STATS
	39.2.4.2.15. POOLS_SETUP
	39.2.4.2.16. ASSIGN_FRM_POOL
	39.2.4.2.17. ADD_BUF
	39.2.4.2.18. RECV

	39.2.5. Operating mode
	39.2.5.1. Driver frame pools

	39.2.6. Reception in FRAME mode
	39.2.7. Reception using RAW mode

	Chapter 40. GRTM GRLIB CCSDS Telemetry Driver
	40.1. Introduction
	40.1.1. TM Hardware
	40.1.2. Software Driver
	40.1.2.1. GRTM over SpaceWire

	40.2. User interface
	40.2.1. Driver registration
	40.2.2. Opening the device
	40.2.3. Closing the device
	40.2.4. I/O Control interface
	40.2.4.1. Data structures
	40.2.4.2. Configuration
	40.2.4.2.1. START
	40.2.4.2.2. STOP
	40.2.4.2.3. ISSTARTED
	40.2.4.2.4. SET_BLOCKING_MODE
	40.2.4.2.5. SET_TIMEOUT
	40.2.4.2.6. SET_CONFIG
	40.2.4.2.7. GET_CONFIG
	40.2.4.2.8. GET_STATS
	40.2.4.2.9. CLR_STATS
	40.2.4.2.10. GET_HW_IMPL
	40.2.4.2.11. GET_OCFREG
	40.2.4.2.12. RECLAIM
	40.2.4.2.13. SEND

	40.2.5. Transmission

	Chapter 41. GRCTM driver
	41.1. Introduction
	41.1.1. Examples
	41.1.2. User interface
	41.1.2.1. Overview
	41.1.2.1.1. Accessing the GRCTM core
	41.1.2.1.2. Interrupt service

	41.1.2.2. Application Programming Interface
	41.1.2.2.1. Data structures

	Chapter 42. SPWCUC driver
	42.1. Introduction
	42.1.1. Examples

	42.2. User interface
	42.2.1. Overview
	42.2.1.1. Accessing the SPWCUC core
	42.2.1.2. Interrupt service

	42.2.2. Application Programming Interface
	42.2.2.1. Data structures

	Chapter 43. GRPWRX GRLIB PacketWire Receiver driver
	43.1. Introduction
	43.1.1. Software Driver

	43.2. User interface
	43.2.1. Driver registration
	43.2.2. Opening the device
	43.2.3. Closing the device
	43.2.4. I/O Control interface
	43.2.4.1. Data structures
	43.2.4.2. Configuration
	43.2.4.2.1. START
	43.2.4.2.2. STOP
	43.2.4.2.3. ISSTARTED
	43.2.4.2.4. SET_BLOCKING_MODE
	43.2.4.2.5. SET_TIMEOUT
	43.2.4.2.6. SET_CONFIG
	43.2.4.2.7. GET_CONFIG
	43.2.4.2.8. GET_STATS
	43.2.4.2.9. CLR_STATS
	43.2.4.2.10. GET_HW_IMPL
	43.2.4.2.11. RECLAIM
	43.2.4.2.12. RECV

	43.2.5. Reception

	Chapter 44. GRAES GRLIB AES DMA driver
	44.1. Introduction
	44.1.1. Software Driver

	44.2. User interface
	44.2.1. Driver registration
	44.2.2. Opening the device
	44.2.3. Closing the device
	44.2.4. I/O Control interface
	44.2.4.1. Data structures
	44.2.4.2. Configuration
	44.2.4.2.1. START
	44.2.4.2.2. STOP
	44.2.4.2.3. ISSTARTED
	44.2.4.2.4. SET_BLOCKING_MODE
	44.2.4.2.5. SET_TIMEOUT
	44.2.4.2.6. SET_CONFIG
	44.2.4.2.7. GET_CONFIG
	44.2.4.2.8. GET_STATS
	44.2.4.2.9. CLR_STATS
	44.2.4.2.10. GET_HW_IMPL
	44.2.4.2.11. RECLAIM
	44.2.4.2.12. ENCRYPT

	44.2.5. De/encryption

	Chapter 45. AHB Status register driver
	45.1. Overview
	45.2. Driver sources
	45.3. Driver registration
	45.4. Operation
	45.5. User interface
	45.5.1. Assigning a custom interrupt handler
	45.5.2. Get the last AHB error occurred
	45.5.3. AHBSTAT device registers

	Chapter 46. L2CACHE driver
	46.1. Introduction
	46.1.1. Hardware Support
	46.1.2. Driver sources
	46.1.3. Examples

	46.2. Software design overview
	46.2.1. Driver usage
	46.2.2. Flush operations
	46.2.3. Initialization

	46.3. L2CACHE user interface
	46.3.1. Return values
	46.3.2. Flushing the L2 cache
	46.3.3. Enabling/disabing the L2 cache
	46.3.4. Enabling/disabing EDAC
	46.3.5. Using the hardware scrubber
	46.3.6. Enabling/disabling split transactions
	46.3.7. Chagning the write policy
	46.3.8. Chagning the replacement policy
	46.3.9. Locking ways of the L2 cache
	46.3.10. Setting up Memory Type Range Register (MTRR)
	46.3.11. Checking the L2 cache configuration status
	46.3.12. Interrupts on the L2 cache
	46.3.13. Polling the error status of the L2 cache

	46.4. API reference

	Chapter 47. GRIOMMU driver
	47.1. Introduction
	47.1.1. Hardware Support
	47.1.2. Driver sources
	47.1.3. Examples

	47.2. Software design overview
	47.2.1. Driver usage
	47.2.2. Initialization

	47.3. GRIOMMU user interface
	47.3.1. Return values
	47.3.2. Configuring the GRIOMMU core
	47.3.3. Enabling/disabing the access protection
	47.3.4. Finding and configuring a master
	47.3.5. Managing the APV
	47.3.6. Configuring a group
	47.3.7. Interrupts on the GRIOMMU
	47.3.8. Polling the error status of the GRIOMMU

	47.4. API reference

	Chapter 48. L4STAT/L3STAT driver
	48.1. Introduction
	48.1.1. Hardware Support
	48.1.2. Driver sources
	48.1.3. Examples

	48.2. Software design overview
	48.2.1. Driver usage
	48.2.2. Initialization

	48.3. L4STAT user interface
	48.3.1. Return values
	48.3.2. Enabling/disabing a counter
	48.3.3. Getting/setting/clearing a counter
	48.3.4. Getting/setting the maximum value of a counter
	48.3.5. Getting/setting the timestamp

	48.4. API reference

	Chapter 49. Memory Scrubber driver
	49.1. Introduction
	49.1.1. Hardware Support
	49.1.2. Driver sources
	49.1.3. Examples

	49.2. Software design overview
	49.2.1. Driver usage
	49.2.2. Initialization

	49.3. Memory scrubber user interface
	49.3.1. Return values
	49.3.2. Configuring the memory range
	49.3.3. Starting/stoping different modes.
	49.3.4. Setting up error thresholds
	49.3.5. Registering an ISR
	49.3.6. Polling the error status

	49.4. API reference

