(\EROFLEX

GAISLER

TSIM2 Simulator User's Manual

ERC32/LEON2/LEONS3/LEON4 TSIM2-UM
Version 2.0.37
April 2015

Kungsgatan 12 tel +46 31 7758650

411 19 Gothenburg fax +46 31 421407

Sweden www.aeroflex.com/gaisler

(QEROFLEX

TSIM2 Simulator User's Manual i GAISLER

TSIM2 Simulator User's Manual
Copyright © 2015 Aeroflex Gaisler AB

(QEROFLEX

TSIM2 Simulator User's Manual il GAISLER

Table of Contents

O 1 oo [0 1o o RSP P PP SPPPPT 1
N €T 1 1= - | TP TPPPPTTRPPPPTN 1
1.2. Supported platforms and SyStem reqUIreMENEScoevviiieiiiiiie e e 1
1.3. OBtaiNiNg TSIM oottt 1
1.4, ProbIEM FEPOMS ..eueiiiit ettt ettt ettt ettt et et e e e nb e e eaaans 1

2. INSEBITALTION ..ottt aaas 2
2.0 GENEAl i et 2
2.2, License INSEAIIAIONcouuniiiii e 2

R0 < ¢ o] E OO PPPPPTTRTPPPPTN 3
L. OVEIVIBIW ittt ettt e ettt e e et et e ettt e e et e e e e e e eee 3
3.2, SHAING TSIM oottt et e 3
3.3. Standalone MOode COMMANASuuiiiiiiiie et eeaanns 7
3.4. Symbolic debug iNfFOrMELTONuuiiiiiii e e 10
3.5. Breakpoints and WaLCNPOINISuuuiiiiiiei ittt et e eeeees 11
BB, PrOfIIING et 11
3.7, COUE COVEIBOR ...iietueiiiti ettt ettt e e et e ettt e e et e e e et eeeeae s 11
3.8, ChECK-POINTING .. eteetie ettt ettt ettt ettt e e e e e e e e e e e eraa e e enaans 12
3.9, PITOIMMEINCE ...oeii ittt ettt ettt 13
310, BACKIIBCE ...ttt 13
311, CONNECLING O GAD ...ttt 13
N A I 0 11== o BT o] oo AP O SPPPTRRN 14

3.12.1. TSIM thread COMMANGSvuuiiiiiiiee it 14
3.12.2. GDB thread COMMENGASoeeiiiiieiiiii ettt e e e eni e e e 15

4. EMUIELioN Char@CLENISIICSiiiiiii ettt ettt e e e e e e 17

4.1, ComMMON BEhAVIOUN ...t 17
g T T I T 011 o PP 17
B U N = g I TP P PR PPPPT 17
4.1.3. Floating point Unit (FPU)uuiiiiiieiei e 17
4.1.4. Delayed write t0 SPeCial TEJISIEISiiiiii et 17
4.1.5. |dle-100p OPtIMISALIONuuiiiiiii e e 17
4.1.6. Custom inStruction @MUIALTIONoveiiuiiiieiii e 17

4.2. ERC32 SpeCifiC @MUIBLIONiiiiiiiieiiii ettt 18
4.2.1. ProCcessor @MUIBIIONuuieiiiiieeeiii ettt e e 18
4.2.2. MEC @MUIBLION ...uiiiii ettt 18
4.2.3. INterrupt CONIOIIEr .o e 19
A28, WECNAOG - eeeerieeeeii ettt ettt et e et e e et e e e e e e 19
4.2.5. POWEr-0OWN MOUE ...ttt et e e e eeaans 19
4.2.6. MEMOTY EMUIBLIONcoiieiieiiii ettt eneaas 20
A.2.7. EDAC OPEIAION ..ceiiiieeeiii ettt ettt ettt e et e e et e e e e eee 20
4.2.8. Extended RAM and /O @r€8Sc.uuiiiiiiiiieiiiii e 20
4.2.9. SYSAV SIONEl ooiiiiiiiii e 20
4.2.10. EXTINTACK SIgNAl coeniiiiiiie ettt e 20
4211, IWDE SIgNA oot 20

4.3. LEON2 SPECIfiC @MUIBLIONcceeiiiiiiiiii e 21
I T 001> o | PP P PPTUPPTPPN 21
4.3.2. CaChE MEMOTTES ...ttt ettt ettt eeebe s 21
4.3.3. LEON pefipheralS regiSterSocoeuruieiiiiiieeeei ettt 21
4.3.4. INterrupt CONIOIIEr ..o e e 21
4.3.5. POWEr-0OWN MOUE ...uiiiiiiiiei ettt ettt e e eeaans 21
4.3.6. MEMOTY EMUIBLIONcoieiiieiiii ettt e eeenns 21
4.3.7. SPARC V8 MUL/DIV/MAC iNSITUCLIONSccvvviiiiiiiiieeeiiie e 21
4.3.8. DSU and hardware breakpointSoveiiiiiiiiiiiiiieeiii e 21

4.4. LEON3 SPECITIC @MUIBLIONoiiiieiiiiiii e 22
AA.L. GENETAlL e 22

A e 100! | ST 22

(QEROFLEX

TSIM2 Simulator User's Manual iv GAISLER

N A O o 0 N 011 010 1= S PSP 22
4.4.4. POWEr-dOWN MOUE ...uuiiiiiii et e e e e e e e e eaenns 22
4.4.5. LEON3 peripheralS registarscoceuiiiiiieiiii e e e e 22
4.4.6. Interrupt CONLrOIIEroove e e e 22
4.4.7. MemOory eMUIGLIONciiuiiii e e e e e e 22
A.4.8. CASA INSITUCLION ..uttiiiiiiieee ittt et e et e e e et e e e e et e e e eaen s 23
4.4.9. SPARC V8 MUL/DIV/MAC iNSITUCHIONSvveviiieiiiiiieeeeiii e eeii e e e 23
4.4.10. DSU and hardware breakpointScccuuieiiieiiiieiiii e e e e e 23
I AN o | 23S = UL (=0 K [TN 23

4.5, LEON4 SPeCifiC @MUIBEIONuuiiiiiieii i e e e e e e e e e e e e aae e 23
A5, 1. GENErAl et 23
4.5.2. PrOCESSOI ...eeieiiet ettt ettt e e 23
4.5.3. L1 CaChe MEMOITES ..ieutuiiiiiiie ettt e e e e e et e e et e e et e e e e aan s 23
4.5.4. L2 CaChe MEMOIY .uiiiiiiii et e e e e e e e aaeees 23
4.5.5. POWEr-dOWN MOUEuiiiiiiiiei e e s e e e e eaanns 23
4.5.6. LEON4 peripheralS registarsciciuiiiiiiiiiii e e e e e e 24
45.7. Interrupt CONLrOIIEr ..o e e e 24
4.5.8. MemMOry eMUIGLIONciiviiii e e e e e e e e aens 24
4.5.9. CASA INSITUCLION ..uttiiiiiiie et et e et e e et e e e e e e e eaen s 24
4.5.10. SPARC V8 MUL/DIVIMAC iNSITUCLIONScvvvviieeiiiiineeciiiie e e e 24
4.5.11. GRFPU @MUIGLIONuiiiiiiiee e et e e e e et e e et eeeeaen s e e eere e eeees 24
4.5.12. DSU and hardware breakpointScccuiiiiiieiiiieiiii e ee e e e 24
4.5.13. AHB StalUS FEOISIEIS ..uuniiiiiiiiieii e e e et e et e e e e e et e e et e e e e eaaeees 24

5. Loadable MOUUIEScoeeiiieiiii e et e et e e et e a e eaaan 25
5.1. TSIM /O emulation iNtErfaCecoeuuiieiiiiii e e s 25
B5.LL SIMIT SLUCIUIE .t e e e e et e e e s 25
B5.1.2. 10T SEIUCIUIE ..ttt e e et e e e et e e e eatanaeeees 27
5.1.3. Structure to be provided by /O deVviCecccviiiiiiiiiii i 27
5.1.4. Cygwin SPecifiC 10 INIT() ..voevevnieiiiiii i e 28

5.2. LEON AHB emulation iNterfateoooiiviiiiiiiiii et 29
5.2.1. PrOCIHT SITUCKUIE ..niiiiiiiii e e e e e e e e e e e e et e et e e aanees 29
5.2.2. Structure to be provided by AHB modulecooooviiiiiiiiiiii e 30
5.2.3. Big versus little endiangSsscc.oiiiiiiiiiiiiii e 33

5.3. TSIM/LEON CO-processor €MUIAtIONc..oeiiiieiiiieiii e e e e e e e e e e eanes 33
5.3.1. FPUICP INtEITACE .oieviiiiiiiii ittt et e e e e eees 33
5.3.2. SITUCIUrE ElEMENES .ievtieeiiiii et e et e et e e et e e e et e e e ert e e e eeaenaeeees 33
5.3.3. Attaching the FPU and CPcoiiiiiiiii e e e 34
5.3.4. Big versus little endiangSsscc.uviiiiiiiiiiiiii e 34
5.3.5. Additional TSIM COMMENASuiiiiiiinieiiiiiiieeiiii e e e aeeenns 35
5.3.6. EXaMPIE FPU oo 35

L IS LY T o= A (1=) PSP 36
(20 [oo [0 1o PP 36
6.2. FUNCLION INEITACE ...iiiiiii e e e e et e e e e et e e e eatenaeaees 36
6.3. AHB MOUUIES ...t e e e e e e e b 37
T 1@ T 1= o = ot PP 37
B.5. UART hanaling ..ooovniiiiiiiiiei et e e e e et e e et 38
6.6. Linking a TLIB a@pPliCatioNcccuuiiiiiiiiii et e e e e e e e e 38
R I 411 = o] L P 38
7. Aeroflex UTB99/UTB99e AHB MOTUIEuuniiiiiiiiieeii e e e 39
T. L OVEIVIBIW ittt e e e e e et e e e ettt e e e et e e e et e e e et e e e et eaeaa s 39
7.2. Loading the MOdUIEcoouniii e 39
A0S T O 1 PP 40
D = o 18 o (o 11 o 40
7.5. 10/100 Mbps Ethernet Media Access Controller interfacecoceveviiieiiiiiiiiiieiiineeiieens 40
AT S - 1 U o T o] o 1 o 0 S 40
7.5.2. COMIMANAS ..eeviieiiiie ettt e e e e et e e e et e e e et e e e eaan e eeennns 40
7.5.3. DEDUG FlagS .ovvniiiiiiii e 40

7.5.4. Ethernet Packet SEIVEr ...coouiiiiiiiie e 41

(QEROFLEX

TSIM2 Simulator User's Manual \ GAISLER

7.5.5. Ethernet packet Server ProtoColco.viiiiiiiiiiii i 41

7.6. SpaceWire interface With RMAP SUPPOITovviiiiii e e e e e 41
S = 1 U o T o] o 1 o S 42
7.6.2. COMIMANAS ...ieviieiiiie ettt e et e e et e e e et e e e eat e e e eaan e eeenans 42
7.6.3. DEDUG FlagS .ovvniiiiiiiii e 42
7.6.4. SPACEWITE PACKEL SEIVEL ...uuiiiiiicii e eii e e e e e e e e et e e e e et e e e e et e e eaaaeees 43
7.6.5. SpaceWire packet SErver ProtOCOlccccueeiiiiieiiiieiiiieeii e e e e e 43

7.7. PCI initiator/target and GPIO iNterfatecceuviiiiiiiiiieiii e 45
A 5 @ o441 7= o PP 45
T7.7.2. DEDUG FlAgS .ovnniiiiiiii e 45
7.7.3. User supplied dynamicC liDrarycooooiiiiiiiiiiiie e 45
7.7.4. PCl bus MOdel APl oo e 47
7.7.5. GPIO MOCEl APl oo 47

A R O7 N N BT 1= = ot PP 48
AR S - 1 U o T o] o 1 o 0 S 48
7.8.2. COMIMANAS ..eeviieiiiiie ettt e e e e e ettt e e e et e e e eat e e e eaan e eeennns 48
7.8.3. DELUG FlagS .ovvniiiiiiiii e 49
T.8.4. PaCKEL SEIVET .ovuiiiiiii ettt e et e e e e e et aae 49
7.8.5. CAN packet server protoColco.uiiiiiiiiiiiieii e 49

8. Aeroflex UT700 AHB MOGUIEcccuueiiieiiiieee e e e e e e et e eeeat e eeene 51
B. L. OVEIVIBIW ittt ettt e e e e et e e e ettt e e e e e e et et e e e et e e et aeaa s 51
8.2. Loading the ModUIEcouniii e 51
8.3. SPI BUS MOTEl APl oo 52
9. Aeroflex Gaisler GR712 AHB MOTUIEuuiiiiiiiiiee i e e 53
0.1, OVEIVIBIW ittt ee ettt e et e e e et e e e ettt e e e e ettt e e e et e e e et e e e et eaeaa s 53
9.2. Loading the MOdUIEcoovniii e e 53
LG 1= o 18 o (o 11 0 [N 53
S 07N (NI o1 = = ot PP 53
LS B TS v 1 U o T o]0 1 o S 53

S B2 e 1110 7= [0 = PP 54
G T B 1= o 10 o I = L 54
.44, PaCKEL SEIVET .ouuiiiiiii et e et e e et e e et e e et e e e et aaae 54
9.4.5. CAN packet server protoColcoouiiiiiiiiiiii e 54

9.5. 10/100 Mbps Ethernet Media Access Controller interfacecceveviiiiiiiiiiiiieiiineeieens 56
LS TS = 1 U o T o] o 1 o 0 S 56
1SS e 1110 7= [0 PP 56
0.5.3. DEDUG FlagS .ovvniiiiiiii e 57
9.5.4. Ethernet Packet SEIVEruiiiii i 57
9.5.5. Ethernet packet Server ProtoColco.uviiiiiiiiiii i 57

9.6. SpaceWire interface With RMAP SUPPOIToovuiiiiiciii e e e e 58
LSS = 1 U o o]0 1 o S 58
9.6.2. COMIMANAS ..eevtieeiiii et e et e et e e e e et e e ettt e e e e et e e e eat e e e esan e eeenans 59

S G I B = o 10 o I = L 59
9.6.4. SPACEWITE PACKEL SEIVEL ...uuiiiiiiciii e eii e e et e e e et e et e e e e et e e e e et e eaaaaeees 59
9.6.5. SpaceWire packet SErVer ProtOCOlcccueeiiiiieiiiieriiieeiiie e e e e e e e 59

9.7. SPI and GPIO USEr MOTUIESuuiiiiiiiiee e e e e et 61
9.7.1. SPIL bus MOEl APL .o 62
9.7.2. GPIO MOEl APl oo 63

0.8, UART INEEITACES oiiviiieiiiiii ettt e e e et e e e era s 63
0.8.1. SEAt UP OPLIONS ..uiiiiiiiiii i eii e e et e e e e e e e e e e e e e e et e e e et e e et eaanas 63
SRS 2 e 0110 7= [0 PP 63

10. Atmel ATB97 PCl @MUIBLIONuuuieiiiiiieeiiii et e e et e e et e e e et e e e e ere s 64
FO. L. OVEIVIBIW ettt e ettt e e et e e e e et e e e e et e e e e bt e e e et e e e eran s 64
10.2. Loading the MOAUIEiiieii e e e 64
10.3. ATB97 INILIAEOT MOTE ..oevvuiiiiiie ettt e e et e e et e e e eaen s 64
O N e A = 1= 111 [R 65
10.5. DEfINITIONS ..uiiiitteeeiii et e e e et e e e et e e e e et e e e eata e e e eate e eeeete e eaentnaeaees 65

10.5.1. PCl command tablEoiuniiiiiiiiei e 65

TSIM2 Simulator User's Manual vi [\EROFLEX

GAISLER
10.6. Read/write function installed by PCI moduleccocouiiiiiiiiiiici e, 65
10.7. Read/write function installed by AT697 modulecocoviiiiiiiiiii e, 65
O = T = £ P 66
O T B T= o 10 o I = o PP 66
10.10. COMMEBNAS ..vuueeieiieeeeei ettt e et e e e e e et e e et e e e e et e e e e st e e e e st e e e eatneeeesennens 67
RS U] o] 1 PPN 68

12. Disclaimer 69

(QEROFLEX

TSIM2 Simulator User's Manual 1 GAISLER

1. Introduction

1.1. General

TSIM isageneric SPA RC! architecture simulator capable of emulating ERC32- and LEON-based computer
systems.

TSIM provides several unique features:

» Emulation of ERC32 and LEONZ2/3/4 processors

* Superior performance: up to 60 MIPS on high-end PC (Intel i7-2600K @3.4GHz)

» Accelerated processor standby mode, allowing faster-than-realtime simulation speeds
» Standalone operation or remote connection to GNU debugger (gdb)

» Also provided aslibrary to be included in larger simulator frameworks

» 64-bit timefor practically unlimited simulation periods

* Instruction trace buffer

» EDAC emulation (ERC32)

* MMU emulation (LEON2/3/4)

» SRAM emulation and functional emulation of SDRAM (with SRAM timing) (LEONZ2/3/4)
» Locd scratch-pad RAM (LEON3/4)

* Loadable modulesto include user-defined 1/O devices

* Non-intrusive execution time profiling

» Code coverage monitoring

* Instruction trace buffer

 Stack backtrace with symbolic information

 Check-pointing capability to save and restore complete simulator state

» Unlimited number of breakpoints and watchpoints

» Pre-defined functional simulation modules for GR712, UT699, UT700 and AT697

1.2. Supported platforms and system requirements

TSIM supportsthe following platforms: Solaris 2.8, Linux, Linux-x64, Windows X P/7, and Windows XP/7
with Cygwin Unix emulation.

1.3. Obtaining TSIM

The primary site for TSIM is www.gaisler.com where the latest version of TSIM can be ordered and eval-
uation versions downloaded.

1.4. Problem reports

Please send problem reports or comments to support@gaisier.com.

ISPARC is aregistered trademark of SPARC International

http://www.gaisler.com

(QEROFLEX

TSIM2 Simulator User's Manual 2 GAISLER

2. Installation
2.1. General
TSIM isdistributed as atar-file (e.g. tsim-erc32-2.0.37.tar.gz) with the following contents:

Table 2.1. TS M content

doc TSIM documentation

samples Sample programs

iomod Example I/0 modules
tsim/cygwin TSIM binary for cygwin
tsim/linux TSIM binary for linux
tsim/linux-x64 TSIM binary for linux-x64
tsim/solaris TSIM binary for solaris
tsim/win32 TSIM binary for native windows
tlib/cygwin TSIM library for cygwin
tlib/linux TSIM library for linux
tlib/linux-x64 TSIM library for linux-x64
tlib/solaris TSIM library for solaris
tlib/win32 TSIM library for native windows

The tar-file can beinstalled at any location with the following command:

gunzip -c tsimerc32-2.0.37.tar.gz | tar xf -

2.2. License installation

TSIM islicensed using aHASP USB hardware key. Before use, adevice driver for the key must beinstalled.
The latest drivers can be found at http://sentinel customer.saf enet-inc.com/sentinel downl oads.

http://sentinelcustomer.safenet-inc.com/sentineldownloads/?s=&c=End+User&p=HASP+HL&o=all&t=Runtime+%26+Device+Driver&l=all

(QEROFLEX

TSIM2 Simulator User's Manual 3 GAISLER

3. Operation

3.1.

3.2.

Overview

TSIM can operate in two modes: standalone and attached to gdb. In standalone mode, ERC32 or LEON
applications can be loaded and simulated using a command line interface. A number of commands are
available to examine data, insert breakpoints and advance simulation. When attached to gdb, TSIM actsasa
remote gdb target, and applications are loaded and debugged through gdb (or a gdb front-end such as ddd).

Starting TSIM

TSIM is started as follows on acommand line:

tsim-erc32 [opti ons] [i nput _fil es]

tsim-leon [opt i ons] [i nput _fi | es]

tsim-leon3[opti ons] [i nput _fil es]

tsim-leon4 [opt i ons] [i nput _fi | es]

The following command line options are supported by TSIM:

-ahbmahb_nodul e
Use ahb_nodul e as loadable AHB module rather than the default ahb.so (LEON only). If multi-
ple -ahbm switches are specified up to 16 AHB modules can be loaded. The enviromental variable
TSIM_MODULE_PATH canbesettoa‘:’ separated (*;" in WIN32) list of search paths.

- ahbst at us
Adds AHB status register support.

-asi 1lnoal | ocate
Makes ASI 1 reads not allocate cache lines (LEON3/4 only).

-at697e
Configure caches according to the Atmel AT697E device (LEONZ2 only).

- banks ram banks
Sets how many RAM banks the SRAM is divided on. Supported values are 1, 2 or 4. Default is 1.
(LEON only).

- bopt
Enables idle-loop optimisation (see Section 4.1.5).

- bp
Enables emulation of LEON3/4 branch prediction

-cfile
Reads commands from f i | e and executes them at startup.

-cfgfile
Reads extra configuration optionsfromf i | e.

-cfgreg_and and_mask, - cf greg_or or_mask
LEONZ only: Patch the Leon Configuration Register (0x80000024). The new value will be: (reg &
and_nask) |or _nask.

-covtrans
Enable MMU tranglations for the coverage system. Needed when MMU is enabled and not mapping
1-to-1.

(QEROFLEX

TSIM2 Simulator User's Manual 4 GAISLER

-cpmcp_nodul e
Use cp_nodul e as loadable co-processor module file name (LEON). The enviromental variable
TSIM_MODULE_PATH canbesettoa‘:’ separated (*;" in WIN32) list of search paths.

-cas
When running a VXWORKS SMP image the SPARCV9 “casd’ instruction is used. The option - cas
enables thisinstruction (LEON3/4 only).

-dcsi ze si ze
Defines the set-size (KiB) of the LEON data cache. Allowed values are powers of two in therange 1 -
64 for LEONZ2 and 1-256 for LEON3/4. Default is 4 KiB.

- dl ock
Enable data cache line locking. Default is disabled. (LEON only).

-dl ramaddr si ze
Allocates si ze KiB of local dcache scratchpad memory at address addr . (LEON3/4)

-dl si ze si ze
Setsthe line size of the LEON data cache (in bytes). Allowed values are 16 or 32. Default is 16.

-drepl repl
Sets the replacement agorithm for the LEON data cache. Allowed valuesarer nd (default for LEON2)
for random replacement, | r u (default for LEON3/4) for the least-recently-used replacement algorithm
and| rr for the least-recently-replaced replacement algorithm.

-dsets sets
Defines the number of setsin the LEON data cache. Allowed values are 1 - 4.

-exc2b
I ssue Ox2b memory exception on memory write store error (LEON2 only)

-ext nr
Enable extended irq ctrl with extended irq number nr (LEON3/4 only)

-fast _uart
Run UARTSs at infinite speed, rather than with correct (slow) baud rate.

- f pmf p_nodul e
Usef p_nodul e asloadable FPU modulerather than the default fp.so (LEON only). The enviromental
variable TSIM_MODULE_PATH canbesettoa‘:’ separated (*;’ in WIN32) list of search paths.

-freqsystem cl ock
Sets the smulated system clock (MHz). Will affect UART timing and performance statistics. Default
is 14 for ERC32 and 50 for LEON.

- gdb
Listen for GDB connection directly at start-up.

- gdbuartfwd
Forward output from first UART to GDB.

-gr702rc
Set cache parameters to emulate the GR702RC device.

-gr712rc
Set parameters to emulate the GR712RC device. Must be used when using the GR712 AHB module.

-grfpu
Emulate the GRFPU floating point unit, rather then Melko or GRFPU-lite (LEON only).

(QEROFLEX

TSIM2 Simulator User's Manual 5 GAISLER

- hwbp
Use TSIM hardware breakpoints for gdb breakpoints.

-icsizesize
Defines the set-size (KiB) of the LEON instruction cache. Allowed values are powers of two in the
range 1 - 64 for LEON2 and 1-256 for LEON3/4. Default is4 KiB.

-ift
Generate illegal instruction trap on IFLUSH. Emulates the IFT input on the ERC32 processor.

-1l ock
Enable instruction cache line locking. Default is disabled.

-il ramaddr si ze
Allocates si ze bytes of local icache scratchpad memory at address addr . (LEON3/4)

-ilsizesize
Setsthe line size of the LEON instruction cache (in bytes). Allowed values are 16 or 32. Default is 16
for LEON2/3 and 32 for LEONA4.

-iomio_nodul e
Use i o_nodul e as loadable I/O module rather than the default i0.s0. The enviromental variable
TSIM_MODULE_PATH canbesettoa‘:’ separated (*;" in WIN32) list of search paths.

-irepl repl
Sets the replacement algorithm for the LEON instruction cache. Allowed values are r nd (default for
LEONZ) for random replacement, | r u (default for LEON3/4) for the least-recently-used replacement
algorithm and | r r for the |least-recently-replaced replacement al gorithm.

-isetssets
Defines the number of setsin the LEON instruction cache. Allowed values are 1(default) - 4.

-iwde
Set the IWDE input to 1. Default is 0. (TSC695E only)

-1 2wsi ze si ze
Enable emulation of L2 cache (LEON4 only) with si ze KiB. Thesi ze must be binary aligned (e.g.
16, 32,64 ...).

-logfilefil enane
Logsthe console outputtof i | ename. If fi | enane ispreceded by ‘+' output is append.

-nf ail ok
Do not fail on startup even if explicitely requested io/ahb modules fails to load.

-nfl at
This switch should be used when the application software has been compiled with the gcc - nf | at
option, and debugging with gdb is done.

-
Adds MMU support (LEON only).

-nb
Do not break on error exceptions when debugging through GDB.

-nfp
Disables the FPU to emulate system without FP hardware. Any FP instruction will generate an FP
disabled trap.

- nomac
Disable LEON MAC instruction. (LEON only).

(QEROFLEX

TSIM2 Simulator User's Manual 6 GAISLER

-noreadl i ne
Disable loading and use of libreadline.(so|dIl).

-nosram
Disable SRAM on startup. SDRAM will appear at 0x40000000 (LEON only).

- not hr eads
Disable threads support.

-noti ners
Disable the LEON timer unit.

-nouart
Disable emulation of UARTS. All accessto UART registers will be routed to the 1/O module.

-nov8
Disable SPARC V8 MUL/DIV instructions (LEON only).

-nrtimersval
Adds support for morethan 2 timers. Valueval canbeintherangeof 2 - 8 (LEON3/4 only). Default:
2.Seedsothe -sametinerirq and -ti merirgbase nuber switches.

- nunbp num
Sets the upper limit on number of possible breakpoints.

- NUMAP num
Sets the upper limit on number of possible watchpoints.

-nwi nw n
Definesthe number of register windowsin the processor. Thedefault is8. Only applicableto LEON3/4.

- port portnum
Use por t numfor gdb communication (port 1234 is default)

- pr
Enable profiling.

-ramram si ze
Sets the amount of simulated RAM (KiB). Default is 4096.

-rest file_nane
Restore saved state from file_name.tss. See Section 3.8.

-romrom si ze
Sets the amount of simulated ROM (KiB). Default is 2048.

-rons, -romnl6
By default, the PROM area at reset timeis considered to be 32-bit. Specifying - r on8 or - r omL6 will
initialise the memory width field in the memory configuration register to 8- or 16-bits. The only visible
differenceisin the instruction timing.

-rtens ver
Override autodetected RTEM S version for thread support. ver should be 46, 48, 48-edisoft or 410.

-sametinerirq
Force the irg number to be the same for al timers. Default: separate increasing irgs for each timer.
(LEON3/4 only). Seedsothe -nrtiners val and -tinerirgbase nunber switches.

-sdramsdram si ze
Sets the amount of simulated SDRAM (MiB). Default is0. (LEON only)

(QEROFLEX

TSIM2 Simulator User's Manual 7 GAISLER

3.3.

- sdbanks <1| 2>
Sets the SDRAM banks. This parameter is used to calculate the used SDRAM in conjunction with the
mcfg2.sdramsize field. The actually used SDRAM at runtime is sdbanks* mcfg2.sdramsize. Default:1
(LEON only)

-symfile
Read symbolsfrom f i | e. Useful for self-extracting applications

-timer32
Use 32 hit timersinstead of 24 bit. (LEONZ2 only)

-timerirgbase nunber
Set the irg number of thefirst timer to interrupt number nunber (LEON3/4 only). Default: 8. See also
the -nrtimersval and -sanetinmerirqg switches.

-tsc691
Emulate the TSC691 device, rather than TSC695

-tsc695e
Obsolete. TSIM/ERC32 now always emulates the TSC695 device rather that the early ERC32 chip-set.

-uart Xdevi ce

Here X, canbe 1 or 2. By default, UART1 isconnected to stdin/stdout and UART?2 isdisconnected. This
switch can be used to connect the uarts to other devices. E.g., ‘-uartl /dev/ptypc’ will attach UART1 to
ptypc. On Linux ‘-uartl /dev/ptmx‘ can be used in which case the pseudo terminal slave’'s name to use
will be printed. If you use minicom to connect to the uart then use minicom’'s -p <pseudo term -
nal > option. On windows use //./coml, //./lcom2 etc. to access the seria ports. The seria port settings
can be adjusted by doubleclicking the “Ports (COM and LPT)” entry in control panel->system->hard-
ware->devicemanager. Use the “ Port Setting” tab in the dialogue that pops up.

-ut 699
Set parameters to emulate the UT699 device. Must be used when using the UT699 AHB module.

- ut 699e
Set parameters to emulate the UT699E device. Must be used when using the UT699E AHB module.

-ut 700
Set parameters to emulate the UT700 device. Must be used when using the UT700 AHB module.

-wdfreqfreq
Specify the frequency of the watchdog clock. (ERC32 only)

i nput _files
Executablefilesto beloaded into memory. Theinput fileisloaded into the emul ated memory according
to the entry point for each segment. Recognized formats are elf32, aout and srecords.

Command line options can also be specified in the file .tsimcfg in the home directory. Thisfile will beread
at startup and the contents will be appended to the command line.

Standalone mode commands

TSIM dynamically loads libreadline.so if available on the host system, this will provide command history
and completion with the tab-key. If libreadline.so is not found a simpler commandline will be used with no
history and poor editing capabilities.

If the file .tsimrc exists in the home directory, it will be used as a batch file and the commands in it will
be executed at startup.

Below is a description of commands that are recognized by the simulator when used in standalone mode:

batchfil e
Execute a batch file of TSIM commands.

(QEROFLEX

TSIM2 Simulator User's Manual 8 GAISLER

+bp, break addr ess
Adds an breakpoint at addr ess.

bp, break
Prints all breakpoints and watchpoints.

-bp, del [num
Deletes breakpoint/watchpoint num If numis omitted, all breakpoints and watchpoints are del eted.

bt
Print backtrace.

cont [count /ti me]
Continue execution at present position. See the go [addr ess] [count/ti ne] command for how
to specify count or time.

coverage <enable | disable|save[f i | e_nan®e] |clear | print address [l en] >
Code coverage control. Coverage can be enabled, disabled, cleared, saved to a file or printed to the
console.

dumpfil eaddress|ength
Dumps memory content to filef i | e, in whole aligned words. Theaddr ess argument can be asym-
bol.

dis[addr] [count]
Disassemble [count] instructions at address [addr]. Default values for count is 16 and addr isthe
program counter address.

echostring
Print st r i ng to the ssmulator window.

edac [clear | cerr | merr addr ess]
Insert EDAC errors, or clear EDAC checksums (ERC32 only)

event
Print events in the event queue. Only user-inserted events are printed.

flush [all |icache | dcache | addr]
Flush the LEON caches. Specifying all will flush both the icache and dcache. Specifying icache or
dcache will flush the respective cache. Specifying addr will flush the corresponding line in both
caches.

float
Prints the FPU registers

gdb
Listen for gdb connection.

go[addr ess] [count/ti ne]
The go command will set pc to addr ess and npc to addr ess + 4, and resume execution. No other
initialisation will bedone. If addressisnot given, the default |oad addresswill be assumed. If acount is
specified, execution will stop after the specified number of instructions. If atimeisgiven, execution will
continue until t i me isreached (relative to the current time). The time can be given in micro-seconds,
milliseconds, seconds, minutes, hours or days by adding ‘us’, ‘ms’, ‘s, ‘min’, ‘h’ or ‘d" to the time
expression. Example: go 0x40000000 400 ms.

NOTE: For the go command, if the count / t i me parameter isgiven, addr ess must be specified.

help
Print a small help menu for the TSIM commands.

(QEROFLEX

TSIM2 Simulator User's Manual 9 GAISLER

hist [I engt h]
Enable the instruction trace buffer. The | engt h last executed instructions will be placed in the trace
buffer. A hist command without | engt h will display the trace buffer. Specifying a zero trace length
will disable the trace buffer. See the inst [| engt h] command for displaying only a part of the in-
struction trace buffer.

icache, dcache
Dumps the contents of tag and data cache memories (LEON only).

inctime
Increment simulator time without executing instructions. Time is given in the same format asfor the go
command. Event queue is evaluated during the advancement of time.

inst [engt h]
Display the latest | engt h (default 30) instructions in the instruction trace buffer. See the hist
[l engt h] command for how to enable the instruction trace buffer.

leon
Display LEON peripherals registers.

loadfil es
Load fi | es into simulator memory.

I2cache
Display contents of L2 cache. (LEON4 only)

mec
Display ERC32 MEC registers.

mem [addr] [count]
Display memory at addr for count bytes. Same default values as for dis. Unimplemented registers
are displayed as zero.

vmem [vaddr] [count]
Same as mem but doesaMMU tranglation on vaddr first (LEON only).

mmu
Display the MMU registers (LEON only).

quit
Exits the ssmulator.

perf [reset]
The perf command will display various execution statistics. A ‘perf reset’ command will reset the
statistics. This can be used if statistics shall be calculated only over apart of the program. Therun and
reset command also resets the statistic information.

prof [O]1] [sti nme]
Enable (‘prof 1') or disable (‘prof 0') profiling.Without parameters, profiling information is printed.
Default sampling period is 1000 clock cycles, but can be changed by specifying st i nme.

reg [r eg_nane val ue]
Prints and sets the |U registers in the current register window. reg without parameters prints the 1U
registers.regr eg_nane val ue setsthe corresponding register to value. Valid register names are psr,
tbr, wim, y, g1-g7, 00-07 and 10-17. To view the other register windows, usereg wn, wheren is0- 7.

r eset
Performs a power-on reset. This command is equal to run O.

restorefil e
Restore ssmulator state fromfi | e.

(QEROFLEX

TSIM2 Simulator User's Manual 10 GAISLER

3.4.

run [addr] [count/ti ne]
Resetsthe simulator and startsexecution from addressaddr , thedefault is0. The event queueisemptied
but any set breakpoints remain. Seethe go[addr ess] [count/t i me] command on how to specify
the time or count.

savefil e
Save simulator statetofi | e.

step
Execute and disassemble one instruction. Seeaso trace [num .

sym|[fil e]
Load symbol tablefromfi | e. If fi | e isomitted, prints current (.text) symbols.

trace [num
Executes and disassembles unbounded or up to num instruction(s), until finished, hitting a break-
point/watchpoint or some other reason to stop.

version
Prints the TSIM version and build date.

walk addr ess [iswritelisid|issu]*
If the MMU is enabled printout a table walk for the given address. The flags iswrite, isid and issu are
specifying the context: iswrite for awrite access (default read), isid for aicache access (default dcache),
issu for a supervisor access (default user).

watch addr ess
Adds awatchpoint at addr ess.

wmem, wmemh, wmemb addr ess val ue
Write aword, half-word or byte directly to simulated memory.

xwmem asi addr ess val ue
Write aword to simulated memory using ASl=asi . Applicable to LEON3/4.

Typing a ‘Ctrl-C’ will interrupt a running simulator. Short forms of the commands are allowed, e.g ¢, co,
or con, are all interpreted as cont.

Symbolic debug information

TSIM will automatically extract (.text) symbol information from elf-files. The symbols can be used where
an address is expected:

tsinme break nmain
breakpoi nt 3 at 0x020012f0: main
tsink dis strcnp 5

02002c04 84120009 or %0, %1, %2
02002c08 8088a003 andcc %g2, 0x3, %0
02002c0c 3280001a bne, a 0x02002c74
02002c10 ¢64a0000 | dsh [%0], %3
02002c14 ¢6020000 |d [%0], %3

The sym command can be used to display all symboals, or to read in symbols from an alternate (elf) file:

tsinm> sym/opt/rtens/src/exanpl es/ sanpl es/ dhry
read 234 synbols

tsinme sym
0x02000000
0x02000000
0x02000000 text_start
0x02000000 start

L _text_start
L
L
L
0x0200102c L _wi ndow overfl ow
L
L
T

_trap_table

0x02001084 L _wi ndow_underfl ow
0x020010dc _fpdis
0x02001a4c Proc_3

(QEROFLEX

TSIM2 Simulator User's Manual 11 GAISLER

3.5.

3.6.

3.7.

Reading symbols from alternate files is necessary when debugging self-extracting applications, such as
bootproms created with mkprom or linux/uClinux.

Breakpoints and watchpoints

TSIM supports execution breakpoints and write datawatchpoints. | n standal one mode, hardware breakpoints
are aways used and no instrumentation of memory is made. When using the gdb interface, the gdb ‘ break’
command normally uses software breakpoints by overwriting the breakpoint addresswitha‘tal’ instruction.
Hardware breakpoints can be inserted by using the gdb ‘hbreak’ command or by starting tsim with -hwbp,
which will force the use of hardware breakpoints also for the gdb ‘break’ command. Data write watchpoints
areinserted using the ‘watch’ command. A watchpoint can only cover one word address, block watchpoints
are not available.

Profiling

The profiling function calculates the amount of execution time spent in each subroutine of the simulated
program. Thisis made without intervention or instrumentation of the code by periodicaly sample the exe-
cution point and the associated call tree. Cyclesin the call graph are properly handled, as well as sections of
the code where no stack is available (e.g. trap handlers). The profiling information is printed as alist sorted
on highest execution time ration. Profiling is enabled through the prof 1 command. The sampling period is
by default 1000 clocks which typically provides a good compromise between accuracy and performance.
Other sampling periods can aso be set through the prof 1 n command. Profiling can be disabled through
the prof 0 command. Below is an example profiling the dhrystone benchmark:

bash$t si merc32 /opt/rtens/src/exanpl es/ sanpl es/ dhry
tsine pro 1

profiling enabl ed, sanple period 1000

tsin> go

resum ng at 0x02000000

Execution starts, 200000 runs through Dhrystone

St opped at time 23375862 (1.670e+00 s)

tsine pro

function sanpl es ratio(%
start 36144 100. 00
_start 36144 100. 00
nmai n 36134 99. 97
Proc_1 10476 28.98
Func_2 9885 27.34
strcnp 8161 22.57
Proc_8 2641 7.30
.div 2097 5.80
Proc_6 1412 3.90
Proc_3 1321 3.65
Proc_2 1187 3.28
. unul 1092 3.02
Func_1 777 2.14
Proc_7 772 2.13
Proc_4 731 2.02
Proc_5 453 1.25
Func_3 227 0.62
printf 8 0.02
viprintf 8 0.02
_vfiprintf_r 8 0.02
tsinme

Code coverage

To aid software verification, the professional version of TSIM includes support for code coverage. When en-
abled, code coverage keeps arecord for each 32-bit word in the emulated memory and monitors whether the
location has been read, written or executed. The coverage function is controlled by the coverage command:

cover age enable enable coverage
coverage disable disable coverage
cover age save [filename] write coverage data to file (file name optional)

(QEROFLEX

TSIM2 Simulator User's Manual 12 GAISLER
coverage print address[len] print coverage data to console, starting at address
cover age clear reset coverage data

3.8.

The coverage data for each 32-bit word of memory consists of a 5-bit field, with bitO (Isb) indicating that
the word has been executed, bitl indicating that the word has been written, and bit2 that the word has been
read. Bit3 and bit4 indicates the presence of a branch instruction; if bit3 is set then the branch was taken
while bit4 is set if the branch was not taken.

As an example, a coverage data of 0x6 would indicate that the word has been read and written, while Ox1
would indicate that the word has been executed. When the coverage datais printed to the console or saveto
afile, itis presented for one block of 32 words (128 bytes) per line:

tsine cov print start

02000000 : 11110000000000000000111111110000
02000080 : 00 0O0O00O00000000000000O00O00O00O0D0O0O0OOOOOOOO
02000100 : 00 0O0O00O000000000000000O00O00O00O0O0OOOOOOOO
02000180 : 00 0O0O00O000000000000000O000O00O0O0OOOOOOOO

When the code coverage is saved to file, only blocks with at least one coverage field set are written to the
file. Block that have all the coverage fields set to zero are not saved in order to decrease thefile size.

NOTE: Only theinternally emulated memory (PROM, SRAM and SDRAM) are subject for code coverage.
Any memory emulated in the user's I/O module must be handled by a user-defined coverage function.

The address ranges that are monitored are based on TSIM's startup parameters. For instance, the range
corresponding to the SDRAM for LEON will begin at address 0x40000000 if TSIM was started with -
nosram or -ram O, or will begin at 0x60000000 otherwise. Reconfiguration of the memory controller during
execution will not be taken into account for monitored address ranges. Coverage information on memory
reads will be recorded even for cache hits.

NOTE on MMU and coverage: The monitored ranges are based on physical addresses. The TSIM coverage
system does no address trandations by default, for performance reasons. To get proper physical address
coverage when the MMU is is enabled and not mapping 1-to-1, use the - covt r ans option. There is no
support for getting virtual address coverage.

When coverage is enabled, disassembly will include an extra column after the address, indicating the cov-
erage data. This makes it easier to analyse which instructions has not been executed:

tsinmp di start

02000000 1 a0100000 clr %0

02000004 1 29008004 sethi %i (0x2001000), %4
02000008 1 81c52000 jnp % 4

0200000c 1 01000000 nop

02000010 0 91d02000 ta 0x0

02000014 0 01000000 nop

02000018 0 01000000 nop

The coverage data is not saved or restored during check-pointing operations. When enabled, the coverage
function reduces the simulation performance of about 30%. When disabled, the coverage function does not
impact simulation performance. Individual coverage fields can be read and written using the TSIM function
interface using thet si m cover age() call (see Section 6.2). Enabling and disabling the coverage func-
tionality from the function interface should be doneusingt si m cnd() .

Example scripts for annotating C code using saved coverage information from TSIM can be found in the
coverage sub-directory.

Check-pointing
The professional version of TSIM can save and restore its complete state, allowing to resume simulation

from a saved check-point. Saving the state is done with the save command:
tsm>save fil e_nane

(QEROFLEX

TSIM2 Simulator User's Manual 13 GAISLER

3.9.

Thestateissavedtofi | e_name. t ss. To restore the state, use the r estor e command:
tsm>restore file_nane

The state will be restored from f i | e_nane. t ss. Restore directly at startup can be performed with the
‘-rest fil e_nane’ command line switch.

NOTE: TSIM command line options are not stored (such as aternate UART devices, etc.).

NOTE: AT697, UT699, UT700 and GR712 simulation modules do not support check-pointing.
Performance

TSIM is highly optimised, and capable of simulating ERC32 systems faster than realtime. On high-end
Athlon processors, TSIM achievesmore than 1 MIPS/ 100 MHz (CPU fregquency of host). Enabling various
debugging features such as watchpoints, profiling and code coverage can however reduce the simulation
performance with up to 40%.

3.10. Backtrace

The bt command will display the current call backtrace and associated stack pointer:

tsinm bt
%c Y%sp
#0 0x0200190c 0x023ffcc8 Proc_1 + OxfO
#1 0x02001520 0x023ffd38 nmin + 0x230
#2 0x02001208 0x023ffe00 _start + Ox60
#3 0x02001014 0x023ffe40 start + 0x1014

3.11. Connecting to gdb

TSIM can act asaremote target for gdb, allowing symbolic debugging of target applications. To initiate gdb
communication, start the simulator with the - gdb switch or use the TSIM gdb command:

bash-2.04$% ./tsim-gdb

TSI M LEON - renote SPARC sinmulator, build 2001.01.10 (deno version)
serial port A on stdin/stdout

al | ocated 4096 K RAM nenory

al | ocated 2048 K ROM nenory

gdb interface: using port 1234

Then, start gdb in a different window and connect to TSIM using the extended-remote protocol:

bash-2. 04$ sparc-rtenms-gdb t4.exe

(gdb) target extended-renpte |ocal host: 1234
Renot e debuggi ng using | ocal host: 1234

0x0 in ?? ()

(gdb)

To interrupt simulation, Ctrl-C can be typed in both gdb and TSIM windows. The program can be restarted
using the gdb run command but aload hasfirst to be executed to rel oad the program imageinto the simul ator:

(gdb) | oad

Loadi ng section .text, size 0x14e50 | ma 0x40000000
Loadi ng section .data, size 0x640 | ma 0x40014e50
Start address 0x40000000 , |oad size 87184

Transfer rate: 697472 bits/sec, 278 bytes/wite.
(gdb) run

The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) vy

Starting program /hone/jgais/src/gnc/t4.exe

If gdb isdetached using the detach command, the simulator returnsto the command prompt, and the program
can be debugged using the standard TSIM commands. The simulator can also be re-attached to gdb by

(QEROFLEX

TSIM2 Simulator User's Manual 14 GAISLER

issuing the gdb command to the simulator (and the tar get command to gdb). While attached, normal TSIM
commands can be executed using the gdb monitor command. Output from the TSIM commands is then
displayed in the gdb console.

TSIM translates SPARC trapsinto (Unix) signalswhich are properly communicated to gdb. If the application
encounters afatal trap, simulation will be stopped exactly on the failing instruction. The target memory and
register values can then be examined in gdb to determine the error cause.

Profiling an application executed from gdb is possibleif the symbol tableisloaded in TSIM before execution
is started. gdb does not download the symbol information to TSIM, so the symbol table should be loaded
using the monitor command:

(gdb) nonitor symt4. exe
read 158 synbol s

When an application that has been compiled using the gec -mflat option is debugged through gdb, TSIM
should be started with -mflat in order to generate the correct stack frames to gdb.

3.12. Thread support

TSIM has thread support for the RTEMS operating system. Additional OS support will be added to future
versions. The GDB interface of TSIM is also thread aware and the related GDB commands are described
later.

3.12.1. TSIM thread commands
thread info - lists all known threads. The currently running thread is marked with an asterisk. (The wide

example output below has been split into two parts.)

tsinme thread info

Narme | Type | 1d | Prio| Tinme (h:ms) | Entry point

S Int. | internal | 0x08010001 | 255 | 5:30.682722 | bsp_idie thread
U1 | classic | 0x0a010001 | 100 | 0.041217 | systeminit
ntwk | classic | 0x0a010002 | 100 | 0.251199 | soconnsieep
ETHO | classic | 0x0a010003 | 100 | 0.000161 | soconnsieep
AL | classic | 0x0a010004 | 1| 0.034739 | prep_timer
TA2 | classic | 0x0a010005 | 1| 0.025740 | prep_timer
TA3 | classic | 0x0a010006 | 1| 0.021357 | prep_timer
TGP | classic | 0x0a010007 | 100 | 0.002014 | rtems ttcpmin

| PC | State

| Ox4004dbec _Thread Dispatch + Oxd8 | READY

| Ox4004dbec _Thread Dispatch + Oxdg | SUSP

| Ox4004dbec _Thread Dispatch + Oxd8 | READY

| Ox4004dbec _Thread Dispatch + Oxdg | vevnt

| 0x40006a28 printf + 0x4 | READY

| Ox4004dbec _Thread Dispatch + Oxdg | DELAY

| Ox4004dbec _Thread Dispatch + Oxd8 | DELAY

(QEROFLEX

TSIM2 Simulator User's Manual 15 GAISLER

thread bt i d prints a backtrace of athread.

tsinme thread bt 0x0a010007

%Wpc
#0 0x40044bec _Thread_Di spatch + 0xd8
#1 0x400418f 8 rtens_event _recei ve + 0x74
#2 0x40031eb4 rtens_bsdnet _event_receive + 0x18
#3 0x40032050 soconnsl eep + 0x50
#4 0x40033d48 accept + 0x60
#5 0x4000366¢ rtems_ttcp_main + OxdaO

A backtrace of the current thread (equivalent to normal bt command):

tsinm> thread bt
%pc %sp
#0 0x40006a28 0x4008d7d0 printf + Ox0
#1 0x40001c04 0x4008d838 Test_task + 0x178
#2 0x4005c88c 0x4008d8d0 _Thread_Handl er + Oxfc
#3 0x4005c78c 0x4008d930 _Thread_Eval uate_node + 0x58

3.12.2. GDB thread commands

TSIM needs the symbolic information of the image that is being debugged to be able to check for thread
information. Therefore the symbols needs to be read from the image using the sym command before issuing
the gdb command. When aprogram running in GDB stops TSIM reportswhich thread it isin. The command
info threads can be used in GDB to list all known threads.

Program recei ved signal SIG NT, Interrupt
[Switching to Thread 167837703]
0x40001b5c in consol e_outbyte_polled (port=0, ch=113 'q’) at ../..[..[..[..[..[..[..[../rtems-

4.6.5/c/src/lib/libbsp/sparc/leon3/consol e/ debugputs.c: 38
38 while ((LEON3_Consol e_Uart[LEON3_Cpu_Il ndex+port]->status &anp; LEON _REG UART_STATUS_THE)

(gdb) info threads

8 Thread 167837702 (FTPD Wevnt) 0x4002f760 in _Thread_Dispatch () at [oolooh oo . Irtens-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

7 Thread 167837701 (FTPa Wevnt) 0x4002f760 in _Thread_Dispatch () at [oolo o o . Irtens-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

6 Thread 167837700 (DCtx Wevnt) 0x4002f760 in _Thread_Dispatch () at [oolooh oo . Irtens-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

5 Thread 167837699 (DCrx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../1../1../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

4 Thread 167837698 (ntwk ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../1../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

3 Thread 167837697 (U 1 ready) 0x4002f760 in _Thread_Dispatch () at ../../../..[../../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

2 Thread 151060481 (Int. ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109
* 1 Thread 167837703 (HTPD ready) 0x40001b5c in consol e_outbyte_polled (port=0, ch=113 'q’)

at ../ ... /... 1. 1. 1..]..Irtems-4.6.5/c/src/lib/libbsp/sparc/leon3/consol e/ debugputs.c: 38

Using the thread command a specified thread can be selected:

(gdb) thread 8

[Switching to thread 8 (Thread 167837702)]#0 0x4002f760 in _Thread_Di spatch () at ../../../../
..l..Irtenms-4.6.5/ cpukit/score/src/threaddi spatch. c: 109
109 _Cont ext _Swi tch(&anp; executi ng->Regi sters, &anp; heir->Registers)

Then a backtrace of the selected thread can be printed using the bt command:

(gdb) bt

#0 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-4.6.5/cpukit/score/src/thread-
di spat ch. c: 109
#1 0x40013ee0 in rtens_event_receive (event_i n=33554432, option_set=0, ticks=0
event _out =0x43f ecc14)
at ../../../../leon3/lib/include/rtenms/score/thread.inl:205
#2 0x4002782c in rtens_bsdnet_event_recei ve (event_i n=33554432, option_set=2, ticks=0
event _out =0x43f ecc14)

(QEROFLEX

TSIM2 Simulator User's Manual 16 GAISLER

at ../../../..1../../rtems-4.6.5/cpukit/libnetworking/rtems/rtenms_glue.c: 641
#3 0x40027548 in soconnsl eep (s0o=0x43f0cd70) at ../../../../../../rtems-4.6.5/cpukit/|ibnetwork-
ing/rtenms/rtens_gl ue. c: 465
#4 0x40029118 in accept (s=3, nanme=0x43feccf0, nanel en=0x43feccec) at ../../../../1../1../Irtens-
4.6.5/ cpukit/libnetworking/rtems/rtenms_syscall.c:215
#5 0x40004028 in daenon () at ../../../../..1../rtens-4.6.5/c/src/libnetworking/rtens_servers/
ftpd.c:1925
#6 0x40053388 in _Thread_Handler () at ../../../../../../rtenms-4.6.5/cpukit/scorel/src/threadhan-
dler.c:123
#7 0x40053270 in __res_nkquery (op=0, dnane=0x0, class=0, type=0, data=0x0, datal en=0
new r_i n=0x0, buf=0x0, bufl en=0)

at ../../../../../..]../rtems-4.6.5/ cpukit/libnetworking/libc/res_nkquery.c:199

It is possible to use the frame command to select a stack frame of interest and examine the registers using
the info registers command. Note that the info registers command only can see the following registers for
an inactive task: g0-g7, 10-17, i0-i7, 00-07, pc and psr. The other registers will be displayed as O:

(gdb) frame 5

#5 0x40004028 in daenon () at ../../../../../../rtens-4.6.5/c/src/libnetworking/rtens_servers/
ftpd.c:1925

1925 ss = accept(s, (struct sockaddr *)&addr, &addrlLen);

(gdb) info reg

g0 0x0 0

gl 0x0 0

g2 Oxffffffff -1

g3 0x0 0

g4 0x0 0

g5 0x0 0

g6 0x0 0

g7 0x0 0

00 0x3 3

ol 0x43f eccf0 1140772080
02 0x43f eccec 1140772076
03 0x0 0

04 0xf 34000e4 -213909276
o5 0x4007cc00 1074252800
sp 0x43f ecc88 0x43fecc88
o7 0x40004020 1073758240
10 0x4007ce88 1074253448
11 0x4007ce88 1074253448
12 0x400048f c 1073760508
13 0x43f eccf0 1140772080
14 0x3 3

15 Ox1 1

16 0x0 0

17 0x0 0

i0 0x0 0

il 0x40003f 94 1073758100
i2 0x0 0

i3 0x43f f af c8 1140830152
i4 0x0 0

i5 0x4007cd40 1074253120
fp 0x43f ecd08 0x43f ecd08
i7 0x40053380 1074082688
y 0x0 0

psr 0xf 34000e0 -213909280
wi m 0x0 0

t br 0x0 0

pc 0x40004028 0x40004028 <daenobn+148>
npc 0x4000402c 0x4000402c <daenobn+152>
fsr 0x0 0

csr 0x0 0

It is not supported to set thread specific breakpoints. All breakpoints are global and stops the execution of
all threads. It is not possible to change the value of registers other than those of the current thread.

TSIM2 Simulator User's Manual 17 QE&OFLEX

4. Emulation characteristics
4.1. Common behaviour

4.1.1. Timing

The simulator time is maintained and incremented according the U and FPU instruction timing. The par-
allel execution between the IU and FPU is modelled, as well as stalls due to operand dependencies. In-
struction timing has been modelled after the real devices. Integer instructions have a higher accuracy than
floating-point instructions due to the somewhat unpredictable operand-dependent timing of the ERC32 and
LEON MEIKO FPU. Typical usage patterns have higher accuracy than atypical ones, e.g. having vs. not
having caches enabled on LEON systems. Tracing using the inst or hist command will display the current
simulator time in the left column. This time indicates when the instruction is fetched. Cache misses, wait-
states or data dependencies will delay the following fetch according to the incurred delay.

4.1.2. UARTs

If the baudrate register is written by the application software, the UARTs will operate with correct timing.
If the baudrate is l€eft at the default value, or if the - f ast _uart switch was used, the UARTS operate
at infinite speed. This means that the transmitter holding register aways is empty and a transmitter empty
interrupt is generated directly after each write to the transmitter data register. The receivers can never over-
flow or generate errors.

Note that with correct UART timing, it is possible that the last character of a program is not displayed on
the console. This can happen if the program forces the processor in error mode, thereby terminating the
simulation, before the last character has been shifted out from the transmitter shift register. To avoid this,
an application should poll the UART status register and not force the processor in error mode before the
transmitter shift registers are empty. The real hardware does not exhibit this problem since the UARTS
continue to operate even when the processor is halted.

4.1.3. Floating point unit (FPU)

The simulator maps floating-point operations on the hosts floating point capabilities. This means that ac-
curacy and generation of |EEE exceptions is host dependent and will not always be identical to the actual
ERC32/LEON hardware. The simulator implements (to some extent) data-dependant execution timing as
in the real MEKIO FPU (ERC32/LEON2). For LEON3/4, the - gr f pu switch will enable emulation of the
GRFPU instruction timing.

4.1.4. Delayed write to special registers

The SPARC architecture definesthat awriteto the special registers (Yopsr, Yowim, %tbr, %fsr, %y) may have
up to 3 delay cycles, meaning that up to 3 of theinstructionsfollowing aspecial register write might not ‘ see’
the newly written value due to pipeline effects. While ERC32 and LEON have between 2 and 3 delay cycles,
TSIM hasO. Thisdoes not affect simulation accuracy or timing aslong asthe SPARC ABI recommendations
are followed that each special register write must always be followed by three NOP. If the three NOP are
left out, the software might fail on real hardware while still executing ‘ correctly’ on the simulator.

4.1.5. |dle-loop optimisation

To minimise power consumption, LEON and ERC32 applicationswill typically place the processor in pow-
er-down mode when the idle task is scheduled in the operation system. In power-down mode, TSIM incre-
ments the event queue without executing any instructions, thereby significantly improving simulation per-
formance. However, some (poorly written) code might use a busy loop (BA 0) instead of triggering pow-
er-down mode. The - bopt switch will enable a detection mechanism which will identify such behaviour
and optimise the simulation as if the power-down mode was entered.

4.1.6. Custom instruction emulation

TSIM/LEON alows the emulation of custom (non-SPARC) instructions. A handler for non-standard in-
struction can be installed using thetsim_ext_ins() callback function (see Section 6.2). The function handler

(QEROFLEX

TSIM2 Simulator User's Manual 18 GAISLER

is caled each time an instruction is encountered that would cause an unimplemented instruction trap. The
handler is passed the opcode and all processor registersin a pointer, allowing it to decode and emulate a
custom instruction, and update the processor state.

The definition for the custom instruction handler is:

int nmyhandl er (struct ins_interface *r);

The pointer *r is a structure containing the current instruction opcode and processor state:

struct ins_interface {

ui nt 32 psr; /* Processor status registers */
ui nt 32 tbr; /* Trap base register */

ui nt 32 wi m /* W ndow neks register */

ui nt 32 g[8]; /* dobal registers */

ui nt 32 r[128]; /* Wndowed register file */

ui nt 32 y; /* Y register */

ui nt 32 pc; /* Program counter *

ui nt 32 npc; /* Next program counter */

ui nt 32 inst; /* Current instruction */

ui nt 32 icnt; /* dock cycles in curr inst */
ui nt 32 asrl7;

ui nt 32 asr18;

I

SPARC uses an overlapping windowed register file, and accessing registers must be done using the current
window pointer (%opsr[4:0]). To access registers %r8 - %r31 in the current window, use:

CWp = r->psr & 7,
regval = r->r[((cwp << 4) + RS1) % (nwi ndows * 16)];

Note that global registers (%r0 - %r7) should always be accessed by r - >g[RS1] .

The return value of the custom handler indicates which trap the emulated instruction has generated, or O
if no trap was caused. If the handler could not decode the instruction, 2 should be returned to cause an
unimplemented instruction trap.

The number of clocks consumed by the instruction should be returned in r->icnt; Thisvalueis by default 1,
which corresponds to afully pipelined instruction without data interlock. The handler should not increment
the %pc or %npc registers, asthisis done by TSIM.

4.2. ERC32 specific emulation

4.2.1. Processor emulation

TSIM/ERC32 emul ates the behaviour of the TSC695 processor from Atmel by default. The parallel execu-
tion between the IU and FPU ismodelled, aswell as stallsdueto operand dependencies (1U & FPU). Starting
TSIM with the-t sc691 will enable TSC691 emulation (3-chip ERC32).

4.2.2. MEC emulation
The following table outlines the implemented MEC registers:

Table 4.1. Implemented MEC registers

Register Address Status

MEC control register 0x01f80000 implemented
Software reset register 0x01f80004 implemented
Power-down register 0x01f80008 implemented
Memory configuration register 0x01f80010 partly implemented
IO configuration register 0x01f80014 implemented
Waitstate configuration register 0x01f80018 implemented
Access protection base register 1 0x01f80020 implemented

(QEROFLEX

TSIM2 Simulator User's Manual 19 GAISLER

Register Address Status

Access protection end register 1 0x01f80024 implemented
Access protection base register 2 0x01f80028 implemented
Access protection end register 2 0x01f8002c implemented
Interrupt shape register 0x01f80044 implemented
Interrupt pending register 0x01f80048 implemented
Interrupt mask register 0x01f8004c implemented
Interrupt clear register 0x01f80050 implemented
Interrupt force register 0x01f80054 implemented
Watchdog acknowledge register 0x01f80060 implemented
Watchdog trap door register 0x01f80064 implemented

RTC counter register 0x01f80080 implemented

RTC counter program register 0x01f80080 implemented

RTC scaler register 0x01f80084 implemented

RTC scaler program register 0x01f80084 implemented

GPT counter register 0x01f80088 implemented

GPT counter program register 0x01f80088 implemented

GPT scaler register 0x01f8008c implemented

GPT scaler program register 0x01f8008c implemented
Timer control register 0x01f80098 implemented
System fault status register 0x01f800A0 implemented

First failing address register 0x01f800A4 implemented

GPI configuration register 0x01f800A8 1/O module callback
GPI data register 0x01f800AC 1/O module callback
Error and reset status register 0x01f800B0O implemented

Test control register 0x01f800D0 implemented
UART A RX/TX register 0x01f800EO0 implemented
UART B RX/TX register 0x01f800E4 implemented
UART status register 0x01f800E8 implemented

The MEC registers can be displayed with the mec command, or using mem (‘ mem 0x1f80000 256'). The
registers can also be written using wmem (e.g. ‘wmem 0x1f80000 0x1234’). When written, care has to be
taken not to write an unimplemented register bit with *1’, or aMEC parity error will occur.

4.2.3. Interrupt controller

Internal interrupts are generated as defined in the MEC specification. All 15 interrupts can be tested viathe
interrupt force register. External interrupts can be generated through |oadable modules.

4.2.4. Watchdog

The watchdog timer operate as defined in the MEC specification. The frequency of the watchdog clock can
be specified using the - wdf r eq switch. The frequency is specified in MHz.

4.2.5. Power-down mode

The power-down register (0x01f800008) is implemented as in the specification. A Ctrl-C in the smulator
window will exit the power-down mode. In power-down mode, the simulator skipstime until the next event
in the event queue, thereby significantly increasing the simulation speed.

(QEROFLEX

TSIM2 Simulator User's Manual 20 GAISLER

4.2.6. Memory emulation

The amount of simulated memory is configured through the - r amand - r omswitches. The RAM size can
be between 256 KiB and 32 MiB, the ROM size between 128 KiB and 4 MiB. Access to unimplemented
MEC registers or non-existing memory will result in amemory exception trap.

The memory configuration register is used to decode the simulated memory. Thefields RSIZ and PSIZ are
used to set RAM and ROM size, the remaining fields are not used.

NOTE: After reset, the MEC is set to decode 128 KiB of ROM and 256 KiB of RAM. The memory config-
uration register has to be updated to reflect the available memory. The waitstate configuration register is
used to generate waitstates. This register must also be updated with the correct configuration after reset.

4.2.7. EDAC operation

The EDAC operation of ERC32 is implemented on the simulated RAM area (0x2000000 - Ox2FFFFFF).
The ERC32 Test Control Register can be used to enable the EDAC test mode and insert EDAC errors to
test the operation of the EDAC. The edac command can be used to monitor the number of errors in the
memory, to insert new errors, or clear al errors. To see the current memory status, use the edac command
without parameters:

tsi n> edac

RAM error count : 2
0x20000000 : MERR
0x20000040 : CERR

TSIM keeps track of the number of errors currently present, and reports the total error count, the address of
each error, and its type. The errors can either be correctable (CERR) or non-correctable (MERR). To insert
an error using the edac command, do ‘edac cerr addr’ or‘edac nerr addr’:

tsin> edac cerr 0x2000000
correctabl e error at 0x02000000
tsi n> edac

RAM error count : 1

0x20000000 : CERR

Toremove all injected errors, do edac clear. When accessing alocation with an EDAC error, the behaviour
of TSIM isidentical to the real hardware. A correctable error will trigger interrupt 1, while un-correctable
errorswill cause amemory exception. The operation of the FSFR and FAR registers are fully implemented.

NOTE: The EDAC operation affect smulator performance when there areinserted errorsin the memory. To
obtain maximum simulation performance, any diagnostic software should remove all inserted errors after
having performed an EDAC test.

4.2.8. Extended RAM and 1I/O areas

TSIM alowsemulation of user defined I/O devicesthrough |oadable modules. EDA C emul ation of extended
RAM areasis not supported.

4.2.9. SYSAV signal

TSIM emulates changesin the SY SAV output by calling the conmmand() callback in the /O module with
either “sysav 0" or “sysav 1" on each changes of SYSAV.

4.2.10. EXTINTACK signal

TSIM emulates assertion of the EXTINTACK output by callingtheconmmand() callback inthel/O module
with “extintack” on each assertion. Note that EXTINTACK is only asserted for one external interrupt as
programmed in the MEC interrupt shape register.

4.2.11. IWDE signal

The TSC695E processor input signal can be controlled by the - i wde switch at start-up. If the switch is
given, the IWDE signal will be high, and the internal watchdog enabled. If -iwde is not given, IWDE will

(QEROFLEX

TSIM2 Simulator User's Manual 21 GAISLER

be low and the internal watchdog will be disabled. Note that the simulator must started in TSC695E-mode
using the - t sc695e switch, for this option to take effect.

4.3. LEON2 specific emulation
4.3.1. Processor

The LEON2 version of TSIM emulates the behavior of the LEON2 VHDL model. The (optional) MMU can
be emulated using the - mmu switch.

4.3.2. Cache memories

TSIM/LEONZ can emulate any permissible cache configurationusingthe- i csi ze,-i | si ze,- dcsi ze
and- dl si ze options. Allowed sizesare 1 - 64 KiB with 16 - 32 bytes/line. The characteristics of the LEON
multi-set caches can be emulated using the- i sets,-dsets,-irepl,-drel p,-il ock and-dl ock

options. Diagnostic cache reads/writes are implemented. The simulator commands icache and dcache can
be used to display cache contents. Starting TSIM with - at 697e will configure that caches according to
the Atmel AT697E device.

4.3.3. LEON peripherals registers

The LEON peripheral sregisters can be displayed with theleon command, or using mem (* mem 0x80000000
256’). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234).

4.3.4. Interrupt controller
External interrupts are not implemented, so the I/O port interrupt register has no function. Internal interrupts
are generated as defined in the LEON specification. All 15 interrupts can also be generated from the user
defined 1/O module using theset _i r q() callback.

4.3.5. Power-down mode
The power-down register 0x80000018) is implemented as in the specification. A Ctrl-C in the simulator
window will exit the power-down mode. In power-down mode, the simulator skipstime until the next event
in the event queue, thereby significantly increasing the simulation speed.

4.3.6. Memory emulation

The memory configuration registers 1/2 are used to decode the simulated memory. The memory configura-
tion registers has to be programmed by software to reflect the available memory, and the number and size
of the memory banks. The waitstates fields must also be programmed with the correct configuration after
reset. Both SRAM and functionally modelled SDRAM (with SRAM timing) can be emulated.

Using the - banks option, it is possible to set over how many RAM banks the external SRAM is divided
in. Note that software compiled with BCC/RCC, and not run through mkprom must not use this option. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for
both mkprom and TSIM.
The memory EDAC of LEON2-FT is not implemented.

4.3.7. SPARC V8 MUL/DIVIMAC instructions
TSIM/LEON optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly em-
ulate LEON systems which do not implement these instructions, use the - nonac to disable the MAC in-
struction and/or - nov 8 to disable multiply and divide instructions.

4.3.8. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

TSIM2 Simulator User's Manual 22 QE&OFLEX

4.4. LEONS specific emulation
4.4.1. General

The LEONS3 version of TSIM emulates the behavior of the LEON3MP template VHDL model distribut-
ed in the GRLIB-1.0 IP library. The system includes the following modules. LEON3 processor, APB
bridge, IRQMP interrupt controller, LEON2 memory controller, GPTIMER timer unit with two 32-bit
timers, two APBUART uarts. The AHB/APB plug& play information is provided at address OxFFFFFO00 -
OxFFFFFFFF (AHB) and 0x800FF000 - 0x800FFFFF (APB).

4.4.2. Processor
Theinstruction timing of the emulated L EON3 processor ismodelled after LEON3 VHDL model in GRLIB
IP library. The processor can be configured with 2 - 32 register windows using the - nwi n switch. The
MMU can be emulated using the - nmu switch. Local scratch pad RAM can be added with the - i | ram
and - dl r amswitches.

4.4.3. Cache memories

The evaluation version of TSIM/LEON3 implements 2*4 KiB caches, with 16 bytes per line. The commer-

cial TSIM version can emulate any permissible cache configuration using the- i csi ze,-i | si ze, - dc-
si ze and- dl si ze options. Allowed sizesare 1 - 256 KiB with 16 - 32 bytes/line. The characteristics of
the LEON multi-way caches can be emulated using the-i set s, -dsets,-irepl,-drelp,-ilock

and - dl ock options. Diagnostic cache reads/writes are implemented. The simulator commandsicache and
dcache can be used to display cache contents.

4.4.4. Power-down mode

The LEON3 power-down function isimplemented asin the specification. A Ctrl-C in the simulator window
will exit the power-down mode. In power-down mode, the simulator skips time until the next event in the
event queue, thereby significantly increasing the simulation speed.

4.4.5. LEON3 peripherals registers

The LEONS peripherals registers can be displayed with the leon command, or using mem (‘mem
0x80000000 256'). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234’).

4.4.6. Interrupt controller

The IRQMP interrupt controller is fully emulated as described in the GRLIB IP Manual. The IRQMP reg-
isters are mapped at address 0x80000200. All 15 interrupts can aso be generated from the user-defined 1/
O moduleusingtheset _i rq() callback.

4.4.7. Memory emulation

The LEON2 memory controller is emulated in the LEON3 version of TSIM. The memory configuration
registers 1/2 are used to decode the simulated memory. The memory configuration registers has to be pro-
grammed by software to reflect the available memory, and the number and size of the memory banks. The
walitstates fields must also be programmed with the correct configuration after reset. Both SRAM and func-
tionally modelled SDRAM (with SRAM timing) can be emulated.

Using the - banks option, it is possible to set over how many RAM banks the external SRAM is divided
in. Note that software compiled with BCC/RCC, and not run through mkprom must not use this option. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for
both mkprom and TSIM.

The memory EDAC of LEON3-FT is not implemented.

Options regarding memory characteristics are not available in the evaluation version of TSIM/LEON3.

(QEROFLEX

TSIM2 Simulator User's Manual 23 GAISLER

4.4.8. CASA instruction

The SPARCV9*“casa’ command isimplemented if the- cas switchisgiven. The“casa’ instructionisused
in VXWORKS SMP multiprocessing to synchronize using alock free protocol.

4.4.9. SPARC V8 MUL/DIV/IMAC instructions

TSIM/LEON3 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly em-
ulate LEON systems which do not implement these instructions, use the - nonac to disable the MAC in-
struction and/or - nov 8 to disable multiply and divide instructions.

4.4.10. DSU and hardware breakpoints
The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.
4.4.11. AHB status registers

Whenusing - ahbst at us or achip optionfor achip that has AHB statusregisters, AHB statusregistersare
enabled. As TSIM/LEON3 does not emulate FT, the CE bit will never be set. Furthermore, the HMASTER
field is set to 0 when the CPU caused the error and 1 when any other master caused the error.

4.5. LEON4 specific emulation
4.5.1. General

The LEON4 version of TSIM emulates the behavior of the LEON4MP template VHDL model distributed
inthe GRLIB-1.0.x IPlibrary. The system includes the following modules. LEON4 processor, APB bridge,
IRQMP interrupt controller, LEON2 memory controller, L2 cache, GPTIMER timer unit with two 32-bit
timers, two APBUART uarts. The AHB/APB plug& play information is provided at address OxFFFFF000 -
OxFFFFFFFF (AHB) and 0x800FF000 - 0x800FFFFF (APB).

45.2. Processor

Theinstruction timing of the emulated L EON4 processor ismodelled after LEON4 VHDL model in GRLIB
IP library. The processor can be configured with 2 - 32 register windows using the - nwi n switch. The
MMU can be emulated using the - mmu switch. Local scratch pad RAM can be added with the - i | ram
and - dl r amswitches.

45.3. L1 Cache memories

TSIM/LEONA4 can emulate any permissible cache configuration usingthe- i csi ze,-i | si ze,- dcsi ze
and - dI si ze options. Allowed sizes are 1 - 256 KiB with 16 - 32 bytes/line. The characteristics of the
LEON multi-set caches can be emulated using the - i sets, -dsets,-irepl,-drelp,-ilock and
- dl ock options. Diagnostic cache reads/writes are implemented. The simulator commands icache and
dcache can be used to display cache contents.

45.4. L2 Cache memory

The LEON4 L2 cacheisemul ated, and placed between the memory controller and AHB bus. Both the PROM
and SRAM/SDRAM areas are cached in the L2. The size of the L2 cache is default 64 KiB, but can be
configured to any (binary aligned) size using the - | 2wsi ze switch at start-up. Setting the size to 0 will
disable the L2 cache. The L2 cache isimplemented with one way and 32 bytes/line. The contents of the L2
cache can be displayed with the [2cache command.

4.5.5. Power-down mode
The LEON4 power-down function isimplemented asin the specification. A Ctrl-C in the simulator window

will exit the power-down mode. In power-down mode, the simulator skips time until the next event in the
event queue, thereby significantly increasing the simulation speed.

TSIM2 Simulator User's Manual 24 QE&OFLEX

4.5.6. LEON4 peripherals registers

The LEON4 peripherals registers can be displayed with the leon command, or using mem (‘mem
0x80000000 256'). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234’).

4.5.7. Interrupt controller

The IRQMP interrupt controller is fully emulated as described in the GRLIB IP Manual. The IRQMP reg-
isters are mapped at address 0x80000200. All 15 interrupts can aso be generated from the user-defined 1/
O moduleusingtheset i rq() callback.

4.5.8. Memory emulation

The LEON2 memory controller is emulated in the LEON4 version of TSIM. The memory configuration
registers 1/2 are used to decode the simulated memory. The memory configuration registers has to be pro-
grammed by software to reflect the available memory, and the number and size of the memory banks. The
waitstates fields must also be programmed with the correct configuration after reset. Both SRAM and func-
tionally modelled SDRAM (with SRAM timing) can be emulated.

Using the - banks option, it is possible to set over how many RAM banks the external SRAM is divided
in. Note that software compiled with BCC/RCC, and not run through mkprom must not use this option. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for
both mkprom and TSIM.

The memory EDAC of LEON4-FT is not implemented.
4.5.9. CASA instruction

The SPARCV9 “casa’ command isimplemented if the- cas switchisgiven. The“casa’ instruction isused
in VXWORKS SMP multiprocessing to synchronize using alock free protocol.

4.5.10. SPARC V8 MUL/DIV/IMAC instructions

TSIM/LEON4 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly em-
ulate LEON systems which do not implement these instructions, use the - nomac to disable the MAC in-
struction and/or - nov 8 to disable multiply and divide instructions.

4.5.11. GRFPU emulation
By default, TSIM-LEON4 emulatesthe GRFPU-Lite FPU. If the simulator isstarted with - gr f pu, thefully
pipelined GRFPU isemulated. Due to the complexity of the GRFPU, theinstruction timing is approximated
and might show some discrepancies compared to the real hardware.
4.5.12. DSU and hardware breakpoints
The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.
4.,5.13. AHB status registers

When using - ahbst at us, AHB status registers are enabled. As TSIM/LEON4 does not emulate FT, the
CE bit will never be set. Furthermore, the HMASTER field is set to 0 when the CPU caused the error and
1 when any other master caused the error.

TSIM2 Simulator User's Manual 25 QE&OFLEX

5. Loadable modules

5.1. TSIM I/O emulation interface

User-defined 1/0 devices can be loaded into the simulator through the use of 1oadable modules. Asthe real
processor, the simulator primarily interacts with the emulated device through read and write requests, while
the emulated device can optionally generate interrupts and DMA requests. Thisisimplemented through the
modul e interface described below. The interface is made up of two parts; one that is exported by TSIM and
defines TSIM functions and data structures that can be used by the 1/O device; and one that is exported by
the 1/O device and allows TSIM to access the 1/0 device. Address decoding of the I/O devices is straight-
forward: All access that do not map on the internally emulated memory and control registers are forwarded
to the I/O module.

TSIM exports two structures: simif and ioif. The simif structure defines functions and data structures be-
longing to the simulator core, while ioif defines functions provided by system (ERC32/LEON) emulation.
At startup, TSIM searchesfor ‘i0.s0" inthe current directory, but the location of the module can be specified
using the - i omswitch. Note that the module must be compiled to be position-independent, i.e. with the -
f Pl Cswitch (gcc). Thewin32 version of TSIM loadsio.dll instead of i0.s0. See theiomod directory in the
TSIM distribution for an exampleio.c and how to build the .so and .dll modules. The enviromental variable
TSIM_MODULE_PATH canbesettoa‘:’ separated (*;" in WIN32) list of search paths.

5.1.1. simif structure

The simif structure is defined in sim.h:

struct simoptions {
int phys_ram
int phys_sdram
int phys_rom
doubl e freq;
doubl e wdfreq;

s

struct siminterface {
struct simoptions *options; /* tsimcomrand-|ine options */
uint64 *sintine; /* current sinmulator time */
void (*event)(void (*cfunc)(), uint32 arg, uint64 offset);
void (*stop_event)(void (*cfunc)());

int *irl; /* interrup request |evel */
void (*sys_reset)(); /* reset processor */

void (*simstop)(); /* stop simulation */

char *args; /* concaterated argv */

void (*stop_event_arg)(void (*cfunc)(),int arg,int op);

/* Restorable events */

unsi gned short (*reg_revent)(void (*cfunc) (unsigned long arg));

unsi gned short (*reg_revent_prearg)(void (*cfunc) (unsigned |long arg),
unsi gned | ong arg);

int (*revent)(unsigned short index, unsigned long arg, uint64 offset);

int (*revent_prearg)(unsigned short index, uint64 offset);

void (*stop_revent) (unsigned short index);

}:

siruct siminterface simf; /* exported sinulator functions */
The elements in the structure has the following meaning:

struct simoptions *options;
Contains some tsim startup options. options.freq defines the clock frequency of the emulated processor
and can be used to correlate the simulator time to the real time.

uint64 *sintine;
Contains the current simulator time. Time is counted in clock cycles since start of simulation. To cal-
culate the elapsed real time, divide simtime with options.freg.

void (*event)(void (*cfunc)(), int arg, uint64 offset);
TSIM maintains an event queue to emulate time-dependant functions. The event () function inserts
an event in the event queue. An event consists of a function to be called when the event expires, an

TSIM2 Simulator User's Manual 26 QE&OFLEX

argument with which the function is called, and an offset (relative the current time) defining when the
event should expire.

NOTE: Theevent () function may NOT be called from asignal handler installed by the 1/O module,
but only from event callbacks or at start of simulation. The event queue can hold a maximum of 2048
events.

NOTE: For save and restore support, restorable events should be used instead.

void (*stop_event)(void (*cfunc)());
st op_event () will remove al events from the event queue which has the calling function equal to

cfunc().

NOTE: The st op_event () function may NOT be called from a signal handler installed by the I/
O module.

int *irl;
Current 1U interrupt level. Should not be used by 1/O functions unless they explicitly monitor theses
lines.

void (*sys reset)();
Performs a system reset. Should only be used if the I/O device is capable of driving the reset input.

void (*simstop)();
Stops current simulation. Can be used for debugging purposes if manual intervention is needed after
acertain event.

char *args;
Arguments supplied when starting tsim. The arguments are concatenated as a single string.

void (*stop_event _arg)(void (*cfunc)(),int arg,int op);
Similar to st op_event () but differentiates between 2 events with same cf unc but with different
ar g given when inserted into the event queue viaevent () . Used when simulating multiple instances
of an entity. Parameter op should be 1 to enable the ar g check.

unsi gned short (*reg_revent)(void (*cfunc) (unsigned long arg));
Registers a restorable event that will use cf unc as callback. The returned index should be used
when calling r event (). The event argument is supplied when calling r event (). The cal to
reg_revent () should be done once at I/0 or AHB module initialization.

unsi gned short (*reg revent prearg)(void (*cfunc) (unsigned long arg),
unsi gned |l ong arg);
Registers a restorable event that will use cf unc as callback and ar g as argument. This can be used
to register an argument that is a pointer to a data structure. The returned index should be used when
calingrevent _prearg().Thecaltoreg revent prearg() should be done once at I/O or
AHB module initialization.

int (*revent)(unsigned short index, unsigned |ong arg, uint64 offset);
This inserts an event registered by r eg_r event () into the event queue with the registered cf unc
for thegiveni ndex. Multiple eventswith the samei ndex can be in the event queue at the sametime.
Thear g and of f set arguments are the same asfor theevent () function.

NOTE: Seethe description of event () for limitations on number of events and from which contexts
events can be added.

int (*revent _prearg)(unsigned short index, uint64 offset);
Thisinsertsan event registered by r eg_r event _pr ear g() into the event queue with the registered
cfunc andar g for thegiveni ndex. Multiple eventswith the samei ndex can bein the event queue
at the sametime. The of f set argument isthe same asfor theevent () function.

(QEROFLEX

TSIM2 Simulator User's Manual 27 GAISLER

NOTE: Seethe description of event () for limitations on number of events and from which contexts
events can be added.

void (*stop_revent) (unsigned short index);
This removes al events from the event queue that has been entered by revent () or
revent prearg() usingthegiveni ndex.

NOTE: The st op_revent () function may not be called from a signal handler installed by the 1/
O module.

5.1.2. ioif structure
ioif is defined in sim.h:

structio_interface {
void (*set_irqg)(int irqg, int level);
int (*dnma_read)(uint32 addr, uint32 *data, int num;
int (*dnme_wite)(uint32 addr, uint32 *data, int num;
int (*dma_write_sub)(uint32 addr, uint32 *data, int sz);
¥

e;<tern struct io_interface ioif; /* exported processor interface */
The elements of the structure have the following meaning:

void (*set _irq)(int irqg, int level);
ERC32 use: drive the external MEC interrupt signal. Valid interrupts are 0 - 5 (corresponding to MEC
externa interrupt O - 4, and EWDINT) and valid levels are 0 or 1. Note that the MEC interrupt shape
register controls how and when processor interrupts are actually generated. When - nouart has been
used, MEC interrupts 4, 5 and 7 can be generated by calling set _i rq() withirg 6, 7 and 9 (level
isnot used in this case.

LEON use: set the interrupt pending bit for interrupt irg. Valid values on irq is 1 - 15. Care should
be taken not to set interrupts used by the LEON emulated peripherals. Note that the LEON interrupt
control register controls how and when processor interrupts are actually generated. Note that level is
not used with LEON.

int (*dma_read) (uint32 addr, uint32 *data, int num;

int (*dma_wite)(uint32 addr, uint32 *data, int num;
Performs DMA transactions to/from the emulated processor memory. Only 32-bit word transfers are
allowed, and the address must be word aligned. On buserror, 1 isreturned, otherwise 0. For ERC32, the
DMA transfer usesthe external DMA interface. For LEON, DMA takes place onthe AMBA AHB bus.

int (*dma_wite _sub)(uint32 addr, uint32 *data, int sz);
Performs DMA transacti onsto/from the emul ated processor memory onthe AMBA AHB bus. Available
for LEON only. On bus error, 1 isreturned, otherwise 0. Write sizeisindicated by sz asfollows. 0 =
byte, 1 = half-word, 2 = word, 3 = double-word.

5.1.3. Structure to be provided by I/O device

struct io_subsystem {
void (*io_init)(struct siminterface sif, struct io_interface iif); /* start-up */

void (*io_exit)(); /* called once on exit */
void (*io_reset)(); /* called on processor reset */
void (*io_restart)(); /* called on sinulator restart */

int (*io_read)(unsigned int addr, int *data, int *ws);
int (*fo_wite)(unsigned int addr, int *data, int *ws, int size);
char *(*get_io_ptr)(unsigned int addr, int size);
void (*comand) (char * cnd); /* I/O specific comands */
void (*sigio)();/* called when SIA O occurs */
void (*save)(char *fnane);/* save simulation state */
void (*restore)(char *fnane); /* restore sinulation state */
%

extern struct io_subsystem *iosystem /* inported I/O enulation functions */

The elements of the structure have the following meanings.

TSIM2 Simulator User's Manual 28 QE&OFLEX

void (*io_init)(struct siminterface sif, struct io_interface iif);
Called once on simulator startup. Set to NULL if unused.

void (*io_ exit)();
Called once on simulator exit. Set to NULL if unused.

void (*io_reset)();
Called every time the processor is reset (i.e also startup). Set to NULL if unused.

void (*io_restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

int (*io_read)(unsigned int addr, int *data, int *ws);
Processor read call. The processor always reads one full 32-bit word from addr. The data should be
returned in *data, the number of waitstates should be returned in *ws. If the access would fail (illegal
address etc.), 1 should be returned, on success 0.

int (*io_wite)(unsigned int addr, int *data, int *ws, int size);
Processor write call. The size of the written dataisindicated in size: 0 = byte, 1 = half-word, 2 = word,
3 = doubleword. The address is provided in addr, and is always aigned with respect to the size of the
written data. The number of waitstates should bereturned in *ws. If the accesswould fail (illegal address
etc.), 1 should be returned, on success 0.

char * (*get_io_ptr)(unsigned int addr, int size);
TSIM can access emulated memory in the 1/0O device in two ways:. either through the i o_r ead/
i o_wri te functionsor directly through amemory pointer. get _i o_pt r () iscaled with the target
address and transfer size (in bytes), and should return a character pointer to the emulated memory array
if the address and size is within the range of the emulated memory. If outside the range, -1 should be
returned. Set to NULL if not used.

int (*command) (char * cnd);

The 1/O module can optionally receive command-line commands. A command isfirst sent to the AHB
and /0 modules, and if not recognised, the to TSIM. conmand() is caled with the full command
string in *cmd. Should return 1 if the command is recognized, otherwise 0. TSIM/ERC32 also calsthis
callback when the SY SAV bit in the ERSR register changes. The commands “sysav 0" and “sysav 1"
are then issued. When TSIM commands are issued through the gdb ‘ monitor’ command, areturn value
of 0 or 1 will result in an ‘OK’ response to the gdb command. A return value > 1 will send the value
itself as the gdb response. A return value %lt; 1 will truncate the Isb 8 bits and send them back as a
gdb error response: ‘Enn’.

d (*sigio)();
Not used as of tsim-1.2, kept for compatibility reasons.

VO

void (*save)(char *fname);

Thesave() function iscalled when save command isissued in the smulator. The I/O module should
save any required state which is needed to completely restore the state at a later stage. *fname points
to the base file name which isused by TSIM. TSIM savesitsinternal state to fname.tss. It is suggested
that the I/O module save its state to fname.ios. Note that any events placed in the event queue by the

[/O module will be saved (and restored) by TSIM.

void (*restore)(char *fnane);
Ther est or e() functionis called when restore command is issued in the ssmulator. The I/O module
should restore any required state to resume operation from a saved check-point. * f nane pointsto the

base file name which is used by TSIM. TSIM restoresitsinternal state from fname.tss.
5.1.4. Cygwin specific io_init()

Due to problems of resolving cross-referenced symbols in the module loading when using Cygwin, the
i 0_init() routineinthel/Omodulemustinitialisealocal copy of simif andioif. Thisisdoneby providing
thefollowingi o_i ni t () routine

(QEROFLEX

TSIM2 Simulator User's Manual 29 GAISLER

5.2.

static void io_init(struct siminterface sif, struct io_interface iif)

{
#ifdef __ CYGWN N32__
/* Do not renove, needed when conpiling on Cygwin! */
simf =sif;
ioif =1iif;
#endi f
/* additional init code goes here */

}s
The same method is aso used in the AHB and FPU/CP modules.

LEON AHB emulation interface

In addition to the above described I/O modules, TSIM aso allows emulation of the LEON2/3/4 processor
core with a completely user-defined memory and 1/O architecture. Thisisin other words not applicable to
ERC32. By loading an AHB module (ahb.so), the internal memory emulation is disabled. The emulated
processor core communicates with the AHB module using an interface similar to the AHB master interface
inthereal LEON VHDL model. The AHB modul e can then emul ate the complete AHB bus and all attached
units.

The AHB moduleinterfaceis made up of two parts; onethat isexported by TSIM and defines TSIM functions
and data structures that can be used by the AHB module; and one that is exported by the AHB module and
allows TSIM to access the emulated AHB devices.

At start-up, TSIM searches for ‘ahb.so’ in the current directory, but the location of the module can be spec-
ified using the - ahbmswitch. Note that the module must be compiled to be position-independent, i.e. with
the - f PI C switch (gcc). The win32 version of TSIM loads ahb.dll instead of ahb.so. See the iomod direc-
tory in the TSIM distribution for an example ahb.c and how to build the .so /.dll modules. The enviromental
variable TSIM_MODULE _PATH canbesettoa‘:’ separated (*;' in WIN32) list of search paths.

5.2.1. procif structure

TSIM exports one structure for AHB emulation: procif. The procif structure defines afew functions giving
access to the processor emulation and cache behaviour. The procif structure is defined in tsim.h;

struct proc_interface {

void (*set_irl)(int level); /* generate external interrupt */

voi d (*cache_snoop) (ui nt 32 addr);

void (*cctrl)(uint32 *data, uint32 read);

voi d (*power_down)();

void (*set_irqg_level)(int level, int set);

void (*set_irqg)(uint32 irg, uint32 level); /* generate external interrupt */
h

extern struct proc_interface procif;
The elements in the structure have the following meaning:

void (*set_irl)(int level);
Set the current interrupt level (iui.irl in VHDL model). Allowed values are O - 15, with O meaning no
pending interrupt. Once the interrupt level is set, it will remain until it is changed by a new call to
set _irl () .Themodulesinterrupt callback routine should typically reset the interrupt level to avoid
new interrupts.

voi d (*cache_snoop) (uint32 addr);

Thecache_snoop() function can be used to invalidate data cache lines (regardless of whether data
cache snooping is enabled or not). The tags to the given address will be checked, and if a match is
detected the corresponding cache lines will be flushed (i.e. the tag will be cleared). If an MMU is
present and is enabled the argument should be avirtual address. See a so the snoop functioninst r uct

ahb_interface.

void (*cctrl)(uint32 *data, uint32 read);
Read and write the cache control register (CCR). The CCR is attached to the APB bus in the LEON2

VHDL model, and this function can be called by the AHB module to read and write the register. If read

(QEROFLEX

TSIM2 Simulator User's Manual 30 GAISLER

VO

VO

VO

=1,the CCRvalueisreturnedin* dat a, elsethevaueof * dat a iswrittentothe CCR. Thecct r | ()
function is only needed for LEON2 emulation, since LEON3/4 accesses the cache controller through
a separate ASI load/store instruction.

d (*power_down) ();
The LEON processor enters power down-mode when called.

d (*set_irqg_level)(int level, int set);

Cdlback set _i rqg_I| evel canbeusedto emulate level triggered interrupts. Parameter set should
be 1 to activate the interrupt level specified in parameter | evel or O to reset it. The interrupt level
will remain active after it is set until it isreset again. Multiple calls can be made with different | evel

parameters in which case the highest level is used.

d (*set_irq)(uint32 irq, uint32 level);

Set the interrupt pending bit for interrupt irg. Valid valuesoni r q is 1 - 15. Care should be taken not
to set interrupts used by the LEON emulated peripherals. Note that the LEON interrupt control register
controls how and when processor interrupts are actually generated.

5.2.2. Structure to be provided by AHB module

tsim.h defines the structure to be provided by the emulated AHB module:

struct ahb_access {

ui nt 32 addr ess;

ui nt 32 *dat a;

ui nt 32 ws;

ui nt 32 rnum

ui nt 32 wsi ze;

uint32 cache; /* No |onger used */
b

struct pp_anba {
int is_apb;
unsi gned int vendor, device, version, irgq;
struct {
unsi gned int addr, p, c, mask, type;
} bars[4];
b

struct ahb_subsystem {
void (*init)(struct proc_interface procif);/* called once on start-up */

void (*exit)(); /* called once on exit */
void (*reset)(); /* called on processor reset */
void (*restart)(); /* called on simulator restart */

int (*read)(struct ahb_access *access);
int (*wite)(struct ahb_access *access);
char *(*get_io_ptr)(unsigned int addr, int size);
int (*command) (char * cnmd); /* 1/0 specific commands */
int (*sigio)(); /* called when SIA O occurs */
void (*save)(char * fnane); /* save state */
void (*restore)(char * fname); /* restore state */
int (*intack)(int level); /* interrupt acknow edge */
int (*plugandpl ay)(struct pp_anba **); /* LEON3/4: get plug & play information */
void (*intpend)(unsigned int pend); /* LEON3/4 only: interrupt pending change */
int memnit; /* tell tsimweather to initialize mem*/
struct siminterface *simf; /* initialized by tsim*/
unsi gned char *(*get_nemptr_ws)(); /* initialized if meminit was set */
void (*snoop) (unsigned int addr); /* initialized with cache snoop routine */
struct io_interface *io; /* initialized by tsim?*/
void (*dprint)(char *p); /* initialized by tsim prints out a debug string */
struct proc_interface *proc; /* initialized by tsim access to proc_interface */
int (*cacheable)(uint32 addr, uint32 size); /* Cacheability of area */
int (*Iprintf)(const char *format, ...); /* initialized by tsim*/
int (*vliprintf)(const char *format, va_list ap); /* initialized by tsim=*/
I

extern struct ahb_subsystem *ahbsystem /* inported AHB enul ation functions */

The elements of the structure have the following meanings:

void (*init)(struct proc_interface procif);

Called once on simulator startup. Set to NULL if unused.

(QEROFLEX

TSIM2 Simulator User's Manual 31 GAISLER

void (*exit)();
Called once on simulator exit. Set to NULL if unused.

void (*reset)();
Called every time the processor is reset (i.e. also startup). Set to NULL if unused.

void (*restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

void int (*read)(struct ahb_access *ahbacc);

Processor AHB read. The processor aways reads one or more 32-bit words from the AHB bus. The
following fields of ahbacc is used. The ahbacc.addr field contains the read address of the first word
to read. The ahbacc.data field pointsto abuffer that the module can fill in. The module can also change
the pointer to point to adifferent buffer. The ahbacc.ws field should be set by the modul e to the number
of cyclesfor the complete access. The ahbacc.rnum field contains the number of words to beread. The
function should return O for a successful access, 1 for failed access and -1 for an area not handled by
the module. The ahbacc.wsizefield is not used during read cycles. The ahbacc.cache field is no longer
inuse(usestruct ahb_subsyst em cacheabl e instead).

int (*wite)(struct ahb_access *ahbacc);

Processor AHB write. The processor can write 1, 2, 4 or 8 bytes per access. The following fields of
ahbacc isused. The ahbacc.addr field contains the address of the write. The ahbacc.data field points
to the data to write; either one word for byte, half word or word writes or two words for double-word
writes. The ahbacc.wsize field defines write size as follows: 0 = byte, 1 = half-word, 2 = word, 3 =
double-word. The function should return O for a successful access, 1 for failed accessand -1 for an area
not handled by the module. The ahbacc.rnum field is not used during write cycles. The ahbacc.cache
fieldisnolongerinuse (usest ruct ahb_subsyst em cacheabl e instead).

char * (*get _io_ptr)(unsigned int addr, int size);
During file load operations and displaying of memory contents, TSIM will access emulated memory
through amemory pointer.get _i o_pt r () iscaledwiththetarget addressand transfer size (in bytes),
and should return a character pointer to the emulated memory array if the address and size iswithin the
range of the emulated memory. If outside the range, -1 should be returned. Set to NULL if not used.

int (*command) (char * cnd);
The AHB module can optionally receive command-line commands. A command isfirst sent tothe AHB
and I/0 modules, and if not recognised, then to TSIM. conmand() is called with the full command
string in* cnd. Should return 1 if the command isrecognized, otherwise 0. When TSIM commands are
issued through the gdb ‘monitor’ command, areturn value of 0 or 1 will result in an *OK’ response to
the gdb command. A return value > 1 will send the value itself as the gdb response. A return value< 1
will truncate the Isb 8 bits and send them back as a gdb error response: ‘Enn’.

void (*save)(char *fname);

Thesave() functioniscalled when save command isissuedin thesimulator. The AHB module should
save any required state which is needed to completely restore the state at alater stage. * f name points
to the base file name which is used by TSIM. TSIM saveitsinterna state to fname.tss. It is suggested
that the AHB module saveits state to fname.ahs. Note that any events placed in the event queue by the

AHB module will be saved (and restored) by TSIM.

void (*restore)(char * fnane);
Ther est or e() functioniscalled when restore command isissuedin the simulator. The AHB module
should restore any required state to resume operation from a saved check-point. *fname points to the

base file name which isused by TSIM. TSIM restoresitsinternal state from fname.tss.

int (*intack)(int level);
i nt ack() iscalled whenthe processor takesan interrupt trap (tt = 0x11 - 0x1f). Thelevel of thetaken
interrupt is passed in level. This callback can be used to implement interrupt controllers. i nt ack()
should return 1 if the interrupt acknowledgement was handled by the AHB module, otherwise 0. If Ois
returned, the default LEON interrupt controller will receive the intack instead.

(QEROFLEX

TSIM2 Simulator User's Manual 32 GAISLER

i nt (*plugandpl ay) (struct pp_anba **p);
Leon3/4 only: The pl ugandpl ay() functioniscalled at startup. opt i opl ugandpl ay() should
return in p astatic pointer to an array with elementsof typest r uct pp_anba and return the number
of entries in the array. The callback pl ugandpl ay() is used to add entries in the AHB and APB
configuration space. Each st ruct pp_anba entry specifies an entry: If is_apb is set to 1 the entry
will appear inthe APB configuration space and only member bars[0] will be used. If is_apbis0thenthe
entry will appear inthe AHB slave configuration space and bars[0-3] will beused. If is_apbis2thenthe
entry will appear in the AHB master configuration space and barg[0-3] will be used. The members of
the struct resemble the fields in a configuration space entries. The entry is mapped to the first free dot.

voi d (*intpend)(unsigned int pend);
Leon3/4 only: Thei nt pend() function is called when the set of pending interrupts changes. The

pend argument is a bitmask with the bits of pending interrupts set to 1.

int memnit;
If al loaded AHB modules sets meminit to 1, TSIM will initialize and emulate initialize and emulate
SRAM/SDRAM/PROM memory. Thus, the AHB module should initialize memi ni t with 1if TSIM
(or another AHB module) should handle memory simulation. Calls to read and write should return -1
(undecoded area) for the memory regions in which case TSIM (or possibly some other AHB module)
will handle them. If memi ni t is set to O the AHB module itself should emulate the memory address
regions.

struct siminterface *simf;
Entry si m f isinitialized by tsim with the global st ruct si m_i nt er f ace structure.

unsi gned char *(*get_nemptr_ws) (unsigned int addr, int size, int *was,

int *rws)
If mem nit wassetto1tsim will initialize get _nmem pt r _ws with a callback that can be used to
guery a pointer to the host memory emulating the LEON’s memory, along with waitstate information.
Note that the host memory pointer returned is in the hosts byte order (normally little endian on a PC).
The si ze parameter should be the length of the access (1 for byte, 2 for short, 4 for word and 8 for
double word access). Thewws and r ws parameters will return the cal cul ated write and read waitstates
for apossible access. Seealso snoop below for responsibilitieswhen DMA writes are done viapointers
from this function.

void (*snoop) (unsigned int addr)

The callback snoop isinitialized by tsim. If data cache snooping is enabled (and functioning, i.e. not
ut699) it flushes (i.e. invalidates) datacachelines corresponding to physical addressaddr (on LEON3/4
even when MMU isenabled). If the AHB moduleisdoing DMA writesdirectly to memory pointers, itis

the responsibility of the AHB moduleto call thisfor al changed words for snooping to work correctly.

struct io_interface *io;
Initialized with the I/O interface structure pointer.

void (*dprint)(char *);
Initialized by tsim with a callback pointer to the debug output function. Output ends up in log, when
logging is enabled and gets forwarded to gdb when running TSIM viagdb. Seel pri ntf and vl -
print f for the formatted couterparts.

struct proc_interface *proc;
Initialized with the procif structure pointer.

i nt (*cacheabl e) (uint32 addr, uint32 size)
The cacheabl e callback is initialized by the module to NULL or a function returning cacheabil-
ity for a memory area. The function should return 1 if the range [addr,addr+size) is cacheable, O
if it is uncacheable or -1 if the memory area it is not handled by the module. If al modules re-
turn -1 and/or lack the cacheabl e callback, the area will be considered cacheable for memory ar-
eas [0x00000000,0x20000000) and [0x40000000-0x80000000) and non-cacheable for all other areas.
NOTE: For any (correspondingly aligned) area as large as the largest data cache or instruction cache

(QEROFLEX

TSIM2 Simulator User's Manual 33 GAISLER
line size in the system, the cacheabl e callback may not return different results for different words
inthe area
int (*Iprintf)(const char *format, ...)

Initialized by TSIM with afunction for formatted loggable debug output. The function interface works
like for printf.

int (*vlprintf)(const char *format, va_list ap)
Initialized by TSIM with afunction for formatted loggable debug output. The function interface works
like for vprintf.

5.2.3. Big versus little endianess

SPARC conformsto the big endian byte ordering. This means that the most significant byte of a (half) word
has lowest address. To execute efficiently on little-endian hosts (such as Intel x86 PCs), emulated memory
is organised on word basis with the bytes within aword arranged according the endianess of the host. Read
cycles can then be performed without any conversion since SPARC always reads a full 32-bit word. During
byte and half word writes, care must be taken to insert the written data properly into the emulated memory.
On abyte-writeto address 0, the written byte should beinserted at address 3, since thisisthe most significant
byte according to little endian. Similarly, on a half-word write to bytes 0/1, bytes 2/3 should be written. For
a complete example, see the prom emulation function inio.c.

5.3. TSIM/LEON co-processor emulation
5.3.1. FPU/CP interface

The professional version of TSIM/LEON can emulate a user-defined floating-point unit (FPU) and co-pro-
cessor (CP). The FPU and CP areincluded into the simulator using loadable modules. To accessthe module,
use the structure ‘cp_interface’ defined in io.h. The structure contains a number of functions and variables
that must be provided by the emulated FPU/CP;

/* structure of function to be provided by an external co-processor */
struct cp_interface {

void (*cp_init)(); /* called once on start-up */
void (*cp_exit)(); /* called once on exit */

void (*cp_reset)(); /* cal |l edon processor reset */
void (*cp_restart)(); /* called on sinulator restart */

uint32 (*cp_reg)(int reg, uint32 data, int read);
int (*cp_load)(int reg, uint32 data, int *hold);
int (*cp_store)(int reg, uint32 *data, int *hold);
int (*cp_exec)(uint32 pc, uint32 inst, int *hold);

int (*cp_cc)(int *cc, int *hold); /* get condition codes */
int *cp_status; /* unit status */
void (*cp_print)(); /* print registers */
int (*command)(char * cnd); /* CP specific commands */
int set_fsr(uint32 fsr); /* initialized by tsim*/
b
extern struct cp_interface *cp; /* inported co-processor emnulation functions */

5.3.2. Structure elements

void (*cp_init)(struct siminterface sif, struct io_interface iif);
Called once on simulator startup. Set to NULL if not used.

void (*cp_exit)();
Called once on simulator exit. Set to NULL if not used.

void (*cp_reset)();
Called every time the processor is reset. Set to NULL if not used.

void (*cp_restart)();
Called every time the simulator isrestarted. Set to NULL if not used.

uint32 (*cp_reg)(int reg, uint32 data, int read);
Used by the simulator to perform diagnostics read and write to the FPU/CP registers. Calling
cp_reg() should not have any side-effects on the FPU/CP status. r eg indicates which register to

(QEROFLEX

GAISLER

TSIM2 Simulator User's Manual 34

access. 0-31 indicates %f0-%f31/%c0- %31, 34 indicates %fsr/%csr. r ead indicates read or write ac-
cess. read==0 indicates write access, read!=0 indicates read access. Written datais passed in dat a, the
return value contains the read value on read accesses.
int (*cp_exec)(uint32 pc, uint32 inst, int *hold);
Execute FPU/CP instruction. The %pc is passed in pc and the instruction opcode in i nst . If data
dependency is emulated, the number of stall cycles should bereturnin* hol d. The return value should
be zero if no trap occurred or the trap number if atrap did occur (0x8 for the FPU, 0x28 for CP). A trap
can occur if the FPU/CPisin exception_pending mode when a new FPU/CP instruction is executed.
int (*cp_cc)(int *cc, int *hold); /* get condition codes */
Read condition codes. Used by FBCC/CBCC instructions. The condition codes (0 - 3) should bereturned
in *cc. If data dependency is emulated, the number of stall cycles should be return in * hol d. The
return value should be zero if no trap occurred or the trap number if atrap did occur (0x8 for the FPU,
0x28 for CP). A trap can occur if the FPU/CP is in exception_pending mode when a FBCC/CBCC
instruction is executed.
int *cp_status;/* unit status */
Should contain the FPU/CP execution status. 0 = execute mode, 1 = exception pending, 2 =
exception_mode.

void (*cp_print)();/* print registers */
Should print the FPU/CP registers to stdio.

int (*command) (char * cnd); /* CP specific commands */

User defined FPU/CP control commands. NOT YET IMPLEMENTED.

int (*set_fsr)(char * cnd); /* initialized by tsim?*/

This callback isinitialized by tsim and can be called to set the FPU status register.

5.3.3. Attaching the FPU and CP

At startup the simulator tries to load two dynamic link libraries containing an external FPU or CP. The
simulator looksfor thefilefp.so and cp.so inthe current directory and in the search path defined by Idconfig.
Thelocation of the modules can also be defined using - cpmand - f pmswitches. The enviromental variable
TSIM_MODULE_PATH can be setto a‘:’ separated (‘;’ in WIN32) list of search paths. Each library is
searched for a pointer ‘cp’ that points to a cp_interface structure describing the co-processor. Below is an
example from fp.c:

struct cp_interface test_fpu = {

cp_init, /* cp_init */
NULL, /* cp_exit */
cp_init, /* cp_reset */
cp_init, /* cp_restart */
cp_reg, I* cp_reg */
cp_| oad, /* cp_load */
cp_store, /* cp_store */

f prei ko, /* cp_exec */
cp_cc, /* cp_cc */

&f pregs. fpstate, /* cp_status */
cp_print, /* cp_print */
NULL /* cp_conmand */

}:

s"rruct cp_interface *cp = & est_fpu; /* Attach pointer!! */
5.3.4. Big versus little endianess

SPARC is conforms to the big-endian byte ordering. This means that the most significant byte of a (half)
word has lowest address. To execute efficiently on little-endian hosts (such as Intel x86 PCs), emulated
register-file is organised on word basis with the bytes within aword arranged according the endianess of the
host. Double words are also in host order, and the read/write register functions must therefore invert the Isb
of the register address when performing word access on little-endian hosts. See the file fp.c for examples
(cp_l oad(),cp_store()).

(QEROFLEX

TSIM2 Simulator User's Manual 35 GAISLER

5.3.5. Additional TSIM commands

fl oat
Shows the registers of the FPU

cp
Shows the registers of the co-processor.

5.3.6. Example FPU

Thefile fp.c contains a complete SPARC FPU using the co-processor interface. It can be used as atemplate
for implementation of other co-processors. Note that data-dependency checking for correct timing is not
implemented in this version (it is however implemented in the built-in version of TSIM).

(QEROFLEX

TSIM2 Simulator User's Manual 36 GAISLER

6. TSIM library (TLIB)

6.1.

6.2.

Introduction

The professional version of TSIM is also available as a library, allowing the simulator to be integrated in
alarger simulation frame-work. The various TSIM commands and options are accessible through asimple
function interface. 1/0 functions can be added, and use a similar interface to the loadable 1/0 modules de-
scribed earlier.

Function interface
The following functions are provided to access TSIM features:

int tsiminit (char *option);/* initialise tsimwith optional parans. */
Initialize TSIM - must be called before any other TSIM function (except t si m set _di ag())
are used. The options string can contain any valid TSIM startup option (as used for the standalone
simulator), with the exception that no filenames for files to be loaded into memory may be given.
tsiminit() mayonly becalled once, usethe TSIM reset command to reset the simulator without
exiting.t si m_i ni t () will return 1 on success or 0 on failure.

int tsimend (char *cnd);/* execute tsimcomand */
Execute TSIM command. Any valid TSIM command-line command may begiven. Thefollowing return
values are defined:

SIGINT Simulation stopped due to interrupt

SIGHUP Simulation stopped normally

SIGTRAP Simulation stopped due to breakpoint hit
SIGSEGV Simulation stopped due to processor in error mode
SIGTERM Simulation stopped due to program termination

dtsimexit (int val);
Should be called to cleanup TSIM internal state before main program exits.

VO

d tsimaget_regs (unsigned int *regs);
Get SPARC registers. r egs isapointer to an array of integers, seetsim.h for how the various registers
are indexed.

VO

void tsimset_regs (unsigned int *regs);
Set SPARC registers. * r egs isapointer to an array of integers, seetsim.h for how the variousregisters
are indexed.

d tsimdisas(unsigned int addr, int nunj;
Disassemble memory. addr indicates which address to disassemble, numindicates how many instruc-
tions.

VO

void tsimset_diag (void (*cfunc)(char *));
Set console output function. By default, TSIM writes all diagnostics and console messages on stdout.
tsimset_diag() canbeused to direct al output to a user defined routine. The user function is
called with asingle string parameter containing the message to be written.

void tsimset_call back (void (*cfunc)(void));
Set the debug callback function. Callingt si m set _cal | back() with afunction pointer will cause
TSIM to call the callback function just before each executed instruction, when the history is enabled.
At this point the instruction to be executed can be seen as the last entry in the history. History can be
enabled withthet si m cnd() function.

(QEROFLEX

TSIM2 Simulator User's Manual 37 GAISLER

voi d tsimgdb (unsigned char (*inchar)(), void (*outchar) (unsigned char
c));
Controls the smulator using the gdb ‘ extended-remote’ protocol. Thei nchar parameter is a pointer
to afunction that when called, returns next character from the gdb link. The out char parameter isa
pointer to afunction that sends one character to the gdb link.

void tsimread(unsigned int addr, unsigned int *data);

Performs aread from addr , returning the valuein * dat a. Only for diagnostic use.

void tsimwite(unsigned int addr, unsigned int data);
Performs awrite to addr , with value dat a. Only for diagnostic use.

void tsimstop_event(void (*cfunc)(), int arg, int op);
tsi m stop_event () canremove certain event depending on the setting of ar g and op. If op =0,
all instance of the callback function cf unc will be removed. If op = 1, events with the argument = arg

will beremoved. If op =2, only thefirst (earliest) of the eventswith the argument = arg will be removed.
NOTE: Thestop_event() function may NOT be called from asignal handler installed by the |/O module.

void tsiminc_tine(uint64);
tsiminc_tinme() willincrement the simulator time without executing any instructions. The event
gueue is evaluated during the advancement of time and the event callbacks are properly called. Can not
be called from event handlers.

int tsimtrap(int (*trap)(int tt), void (*rett)());

tsimtrap() isused toinstal callback functions that are called every time the processor takes a
trap or returnsfrom atrap (RETT instruction). Thet r ap() functionis called with oneargument (t t)
that contains the SPARC trap number. If t si m t rap() returns with O, execution will continue. A
non-zero return value will stop simulation with the program counter pointing to the instruction that will
causethetrap. Ther et t () function iscalled when the program counter pointsto the RETT instruction
but before the instruction is executed. The callbacks are removed by calingt si m trap() witha
NULL arguments.

int tsimcov_get(int start, int end, char *ptr);
tsi m cov_get () will return the coverage data for the address range >= st art and <end. The
coverage data will be written to a char array pointed to by * pt r, starting at ptr[0]. One character per
32-bit word in the addressrange will bewritten. The user must assure that the char array islarge enough
to hold the coverage data.

int tsimcov_set(int start, int end, char val);
tsi m cov_set () will fill the coverage datain the address range limited by st art and end (see
above for definition) with the value of val .

int tsimext_ins (int (*func) (struct ins_interface *r));
tsi m ext _i ns() instalsahandler for custom instructions. func is a pointer to an instruction emu-
lation function as described in Section 4.1.6. Calling t si m ext _i ns() with a NULL pointer will
remove the handler.

int tsimlastbp (int *addr)
When simulation stopped due to breakpoint or watchpoint hit (SIGTRAP), this function will return the
address of the break/watchpoint in * addr . The function return value indicates the bresk cause; 0 =
breakpoint, 1 = watchpoint.

6.3. AHB modules

6.4.

AHB modules can be loaded by adding the “- ahbm <nane>" switchtothet si m_i ni t () stringwhen
starting. See Section 5.2 for further information.

I/O interface

TheTSIM library usesthe same 1/O interface as the standalone simulator. Instead of loading ashared library
containing the 1/0 module, the I/0 module is linked with the main program. The 1/O functions (and the

(QEROFLEX

TSIM2 Simulator User's Manual 38 GAISLER

6.5.

6.6.

6.7.

main program) has the same access to the exported simulator interface (ssmif and ioif) as described in the
loadable module interface. The TSIM library imports the 1/0O structure pointer, iosystem, which must be
defined in the main program.

An example 1/O module is provided in tlib/<platform>/io.c , which shows how to add a prom.

A second example I/O moduleis provided in smple_io.c Thismodule provides asimpler interface to attach
I/O functions. The following interface is provided:

void tsimset _ioread (void (*cfunc)(int address, int *data, int *ws));
This function is used to pass a pointer to a user function which is to be called by TSIM when an I/O
read access is made. The user function is called with the address of the access, a pointer to where the
read data should be returned, and a pointer to a waitstate variable that should be set to the number of
walitstates that the access took.

void tsimset iowite (void (*cfunc)(int address, int *data, int *ws,
int size));
This function is used to pass a pointer to a user function which is to be called by TSIM when an I/O
write accessis made. The user function is called with the address of the access, a pointer to the datato
be written, a pointer to awaitstate variable that should be set to the number of waitstates that the access
took, and the size of the access (0=byte, 1=half-word, 2=word, 3=double-word).

UART handling

By default, the library is using the same UART handling as the standalone simulator. This means that the
UARTS can be connected to the console, or any Unix device (pseudo-ttys, pipes, fifos). If the UARTs are
to be handled by the user’s I/O emulation routines, >t si m_i ni t () should be called with ‘- nouart’,
which will disable all internal UART emulation. Any access to the UART register by an application will
then be routed to the I/O moduler ead/ wr i t e functions.

Linking a TLIB application

Three sample application are provided, one that uses the simplified 1/0 interface (appl.c), and two that uses
the standard loadable module interface (app2 and app3). They are built by doing a ‘make al’ in the tlib
directory. The win32 version of TSIM provides the library asaDLL, for al other platform a static library
is provided (.8). Support for dynamic libraries on Linux or Solarisis not available.

Limitations

On Windows/Cygwin hosts TSIM is not capable of reading UART A/B from the console, only writing is
possible. If reading of UART A/B is necessary, the simulator should be started with -nouart, and emulation
of the UART s should be handled by the I/0 module.

TSIM2 Simulator User's Manual

(QEROFLEX

39 GAISLER

7. Aeroflex UT699/UT699e AHB module

7.1

7.2

Overview

This chapter describes the UT699 loadable AHB module for the TSIM2 simulator. The AHB module pro-
vides simulation models for the Ethernet, SpaceWire, PCI, GPIO and CAN cores in the UT699 processor.
For more information about this chip see the Aeroflex UT699 user manual.

The interfaces are modelled at packet/transaction/message level and provides an easy way to connect the

simulated UT699 to alarger simulation framework.

The following files are delivered with the UT699 TSIM module:

Table 7.1. Files delivered with the UT699 TSM module

File

Description

ut699/linux/ut699.s0

UT699 AHB module for Linux

ut699/1inux/ut699e.so

UT699e AHB module for Linux

ut699/win32/ut699.dll UT699 AHB module for Windows
ut699/win32/ut699e.dl| UT699e AHB module for Windows
out699/examples/input Theinput directory containstwo examplesof PCl us-

er modules

ut699/exampl es/input/README.txt

Description of the user module examples

ut699/examples/input/pci.c

PCI user modul e exampl e that makes UT699 PCI ini-
tiator accesses

ut699/examples/input/pci_target.c

PCI user modul e exampl e that makes UT699 PCI tar-
get accesses

ut699/exampl es/input/gpio.c

GPIO user module example

ut699/exampl es/input/ut699inputprovider.h

Interface between the UT699 modul e and the user de-
fined PCI module

ut699/examples/input/pci_input.h

UT699 PCI input provider definitions

ut699/exampl es/input/input.h Generic input provider definitions

ut699/exampl es/input/tsim.h TSIM interface definitions

ut699/exampl es/input/end.h Defines the endian of the local machine
ut699/exampl es/test Thetest directory contains tests that can be executed

inTSIM

ut699/exampl es/test/README.txt

Description of the tests

ut699/exampl es/test/M akefile

Makefile for building the tests

ut699/exampl es/test/cansend.c CAN transmission test
ut699/exampl es/test/canrec.c CAN reception test
ut699/exampl es/test/pci.c PCI interface test
ut699/exampl es/test/pcitest.h Header file for PCI test

Loading the module

The module isloaded using the TSIM2 option - ahbm All core specific options described in the following
sections need to be surrounded by the options - desi gni nput and - desi gni nput end, e.g:

On Linux:

tsimleon3 -ut699 -ahbm ./ ut699/1i nux/ut699.so
-desi gni nput ./ut 699/ exanpl es/input/pci.so -designinputend

(QEROFLEX

TSIM2 Simulator User's Manual 40 GAISLER

7.3.

7.4.

7.5.

On Windows:

tsimleon3 -ut699 -ahbm ut 699/ wi n32/ ut 699.dl |
- desi gni nput ./ ut 699/ exanpl es/input/pci.dll -designinputend

The option - ut 699 needs to be given to TSIM to enable the UT699 processor configuration. Note that
when - ut 699 is given, snooping will be set as non-functional.

UT699e

To enable the UT699e version of the UT699 replace ut 699. [so| dl I] withut 699e. [so| dl] and
option - ut 699 with - ut 699e. This:

* Enables snooping opposed to the non-functional snooping of the - ut 699

* Sets UT699e build-id

» Changes MMU status/ctrl registers layout

» Contains GRSPW2 coresinstead of GRSPW cores (the TSIM command, flag and packet interface isthe
same however)

Debugging

To enable printout of debug information the - ut 699 _dbgon f | ag switch can be used. Alternatively one
canissuetheut699_dbgon f | ag command on the TSIM2 command line. The debug flagsthat are available
are described for each core in the following sections and can be listed by ut699_dbgon help.

10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available
in the UT699. For core details and register specification please see the UT699 manual.

The following features are supported:

 Direct Memory Access
e Interrupts

7.5.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

7.5.2. Commands

Ethernet core TSM commands

greth_connect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

greth_status
Print Ethernet register status

7.5.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
ut699 dbgon command to enable different levels of debug information.

Table 7.2. Ethernet debug flags

Flag Trace

GAISLER_GRETH_ACC GRETH accesses

TSIM2 Simulator User's Manual

41

(QEROFLEX

GAISLER

Flag

Trace

GAISLER_GRETH_L1

GRETH accesses verbose

GAISLER_GRETH_TX

GRETH transmissions

GAISLER GRETH_RX

GRETH reception

GAISLER_GRETH_RXPACKET

GRETH received packets

GAISLER_GRETH_RXCTRL

GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL

GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL

GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET

GRETH transmitted packets

GAISLER_GRETH_IRQ

GRETH interrupts

7.5.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet
server should open a TCP socket which the module can connect to. The Ethernet core is connected to a
packet server using the - gr et hconnect start-up parameter or using the greth_connect command.

An exampleimplementation of a packet server, named gr et h_conf i g, isincluded in TSIM distribution.
It uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core
to aphysical Ethernet LAN. This makes it easy to connect the simulated GRETH core to rea hardware. It
can provide a throughput in the order of magnitude of 500 to 1000 KiB/sec. See its distributed README

for usage instructions.

7.5.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with aone word length
field indicating the length of the packet to come (including its header).

31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 0
Ox4 RES IPID=1 TYPE=0 RES
31:16 RES, reserved for future use
15:8 IPID, IP core ID, must equal 1 for Ethernet
7.5 TYPE, packet type, O for data packets
4.0 RES, reserved for future use
Payload
0x8 - Ethernet frame

Figure 7.1. Ethernet data packet

7.6. SpaceWire interface with RMAP support

The UT699 AHB modul e contains 4 GRSPW coreswhich modelsthe GRSPW cores availablein the UT699.
For core details and register specification please see the UT699 manual.

The following features are supported:

TSIM2 Simulator User's Manual 42 QE&OFLEX

» Transmission and reception of SpaceWire packets
* Interrupts
* RMAP
* Modifying thelink state
7.6.1. Start up options
FoaceWire core start up options

- gr spwxconnect host: port
Connect GRPSW core X to packet server at specified server and port.

- grspwxserver port
Open a packet server for core X on specified port.

- gr spw_nor map
Disable the RMAP handler. RMAP packets will be stored to the DMA channel.

- gr spw_r map
Enable the RMAP handler. All RMAP packages will be simulated in hardware. Includes support for
RMAP CRC. (Default)

- gr spw_r mapcrc
Enable support for RMAP CRC. Performs RMAP CRC checks and calculationsin hardware.

-grspw_rxfreq freq
Set the RX fregquency which is used to calculate receive performance.

-grspw_txfreq freq
Set the TX frequency which is used to calculate transmission performance.

X in the above options has the range 1-4.
7.6.2. Commands
FoaceWire core TS M commands

grspwX_connect host:port
Connect GRSPW core X to packet server at specified server and TCP port.

grspwX_server port
Open a packet server for core X on specified TCP port.

grspw_status
Print status for all GRSPW cores.

X in the above commands has the range 1-4.
7.6.3. Debug flags

The following debug flags are available for the SpaceWire interfaces. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 7.3. SpaceWire debug flags

Flag Trace
GAISLER_GRSPW_ACC GRSPW accesses

TSIM2 Simulator User's Manual 43 QEE{OFLEX

Flag Trace
GAISLER_GRSPW_RXPACKET GRSPW received packets
GAISLER_GRSPW_RXCTRL GRSPW rx protocol
GAISLER_GRSPW_TXPACKET GRSPW transmitted packets
GAISLER_GRSPW_TXCTRL GRSPW tx protocol

7.6.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either - gr sp-
wXser ver or - gr spwXconnect . TCP sockets are used for establishing the connections. When acting
as aserver the core can only accept a single connection.

For moreflexibility, such as custom routing, an external packet server can beimplemented using the protocol
specified in the following sections. Each core should then be connected to that server.

7.6.5. SpaceWire packet server protocol

Theprotocol used to communicate with the packet server is described below. Three different types of packets
are defined according to the table below.

Table 7.4. Packet types

Type Value
Data 0
Time code 1
Modify link state 2

Note that all packets are prepended by a one word length field which specified the length of the coming
packet including the header.

Data packet format:
31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 1 0
0x4 RES IPID=0 ‘ TYPE=0 RES EEP
31:16 RES, reserved for future use
15:8 IPID, IP coreID, must equal O for SpaceWire
7.5 TYPE, packet type, O for data packets
4.1 RES, reserved for future use, must be set to 0
0 EEP, Error End of Packet. Set when the packet is truncated and terminated by an EEP.
Payload
‘ 0x8 - ‘ SpaceWire packet

Figure 7.2. SpaceWire data packet

TSIM2 Simulator User's Manual 44 QEE«OFLEX

Time code packet format:

31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 0
0x4 RES IPID=0 TYPE=1 RES
31:16 RES, reserved for future use, must be set to O
15:8 IPID, IP core ID, must equal O for SpaceWire
75 TYPE, packet type, 1 for time code packets
4:0 RES, reserved for future use, must be set to O
Payload
31 8 7 6 5 0
0x8 RES CT CN
31:8 RES, reserved for future use, must be set to 0
7:6 CT, time control flags
5.0 CN, value of time counter

Figure 7.3. SpaceWire time code packet

Link state packet format:

31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 3 2 0
0x4 RES IPID=0 ‘ TYPE=2 RES LS
31:16 RES, reserved for future use, must be set to 0
15:8 IPID, IP core 1D, must equal O for SpaceWire
7.5 TY PE, packet type, 2 for link state packets
4:3 RES, reserved for future use, must be set to 0
2:0 LS, Link State: 0 Error reset
1 Error wait
2 Ready
3 Started
4 Connecting
5 Run

Figure 7.4. SpaceWire link state packet

TSIM2 Simulator User's Manual 45 QEE{OFLEX

7.7. PCl initiator/target and GPIO interface

The UT699 AHB module models the GPIO and PCI core availablein the UT699 ASIC. For core details and
register specification please see the UT699 manual.

The GPIO/PCI emulation isimplemented by atwo stage model:

1. The TSIM AHB module ut699.dll implements the GPIO and PCI core itself
2. A user supplied dynamic library models the devices on the PCI bus and the GPIO pins.

LOAD: —ahbm ut699.dll LOAD: —designinput pci.dll —designinputend

|
|

§ User supplied
TSIM . . ut699.d1l | U% - pei.dll

3

e.

I

=

S

=L

%—> PCIBUS

To load a user supplied dynamic library use the following command line switch:
- desi gni nput <pci exanpl e> <swi t ches> - desi gni nput end

Thiswill load a user supplied dynamic library “pciexample’. In addition the switches between - desi gn-
i nput and - desi gni nput end are local switches only propagated to the user dynamic library “pciex-
ample”.

7.7.1. Commands
PCl Commands

pci_status
Print status for the PCI core

7.7.2. Debug flags

Thefollowing debug flags are available for the PCI interface. Use them in conjunction with the ut699 _dbgon
command to enable different levels of debug information.

Table 7.5. PCI interface debug flags

Flag Trace

GAISLER _GRPCI_ACC AHB accesses to/from PCI core
GAISLER_GRPCI_REGACC GRPCI APB register accesses
GAISLER_GRPCI_DMA_REGACC PCIDMA APB register accesses
GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus
GAISLER_GRPCI_TARGET_ACC GRPCI target accesses
GAISLER_GRPCI_INIT Print summary on startup

7.7.3. User supplied dynamic library

The user supplied dynamic library should expose a public symbol ut 699i nput syst emof typest r uct
ut 699 _subsystem *.Thestruct ut 699 subsyst emisdefined as:

TSIM2 Simulator User's Manual 46 QE&OFLEX

struct ut699_subsystem {
void (*ut699_inp_setup) (int id, struct ut699_inp_layout *I,
char **argv, int argc);
void (*ut699_inp_restart) (int id, struct ut699_inp_layout *I);
struct siminterface *sinmf;

I

Atinitializationthe callback ut 699_i np_set up will be called once, supplied with apointer to astructure
of typestruct ut699 inp_I| ayout.

struct ut699_inp_l ayout {
struct grpci_input grpci;
struct gpi o_i nput gpio;
}

The callback ut699_inp_restart will be called every time the simulator restarts and the PCI user module can
accesstheglobal TSIM struct si m i nt er f ace structurethrough thesi ni f member. See Chapter 5
for more details.

The user supplied dynamic library should claim the ut 699 i np_| ayout. grpci member of the
structure by using the | NPUT_CLAI M | - >grpci) macro (see the example below). A struct
gr pci _i nput consists of callbacks that model the PCI bus (see Section 7.7.4).

A typical user supplied dynamic library would look like this:

#include "tsimh"

#i ncl ude "i nput provider.h"

int pci_acc(struct grpci_input *ctrl, int cmd, unsigned int addr, unsigned int wsize,
unsigned int *data, unsigned int *abort, unsigned int *ws) {

BUS access inplenmentation ...

}

static void ut699_inp_setup (int id, struct ut699_inp_layout *I, char **argv, int argc)
printf("Entered PCl setup\n");
if (1 NPUT_I SCLAI MED(I ->grpci)) {

printf("nmodul e user for PCl already allocated \n");
return;

}

for(i =0; i &t; argc; i++) {
do argument processing ...

}

| ->grpci.acc = pci_acc;

do nodul e setup ...

printf("ut699 inp_setup: Caimng %\n", |->grpci._b.nane);
I NPUT_CLAI M| - >grpci);
return;

}

static struct ut699_subsystem ut699 pci = {
ut 699_inp_setup, 0,0
s

struct ut699_subsystem *ut 699i nput system = &anp; ut 699_pci ;

A typical Makefile that would create a user supplied dynamic library pci.(dll|so) from pci.c would look like

this:
MDLL_FIX = $(if $(strip $(shell uname | grep M NGAB2)),dl I, so)
MLIB = $(if $(strip $(shell unane | grep M NGMAB2)),-1ws2_32 -luser32 -1kernel 32 -
I'wi nmm)

al | : pci . $(M.DLL_FI X)

pci . $(MDLL_FIX) : pci.o
$(CC) -shared -g pci.o -0 pci.$(MDLL_FIX) $(M.LIB)

pci . o: pci.c \
i nput provi der. h

(QEROFLEX

TSIM2 Simulator User's Manual 47 GAISLER

$(CC) -fPIC-c -g -Q0 pci.c -0 pci.o
cl ean:
-rm-f *.0 *.so

7.7.4. PCl bus model API

Thestructure st ruct grpci _i nput modelsthe PCI bus. It is defined as:

/* ut699 pci input provider */

struct grpci_input {
struct input_inp _b;

int (*acc)(struct grpci_input *ctrl, int cnmd, unsigned int addr,
unsigned int *data, unsigned int *abort, unsigned int *ws);

int (*target_acc)(struct grpci_input *ctrl, int cnmd, unsigned int addr,
unsi gned int *data, unsigned int *mexc);
1
The acc callback should be set by the PCI user module at startup. It iscalled by the UT699 module whenever
it reads/writes as a PCl bus master.

Table 7.6. acc callback parameters

Parameter Description

cmd Command to execute, see Section 7.7.1 details

addr PCI address

data Data buffer, fill for read commands, read for write commands

wsize 0: 8-bit access 1: 16-bit access, 2: 32-hit access, 3: 64-bit access. 64 bit
isonly used to model STD instructions to the GRPCI AHB save

ws Number of PCI clocksit shall to complete the transaction

abort Set to 1 to generate target abort, 0 otherwise

Thereturn value of acc determinesif the transaction terminates successfully (1) or with master abort (0).

The callback target_acc isinstalled by the UT699 AHB module. The PCI user dynamic library can cal this
function to initiate an access to the UT699 PCI target.

Table 7.7. target_acc parameters

Parameter Description

cmd

Command to execute, see Section 7.7.1 for details. I/O cycles are not
supported by the UT699 target.

addr PCI address

data Data buffer, returned data for read commands, supply data for write
commands

wsize 0: 8-bit access 1: 16-hit access, 2: 32-bit access

mexc 0if accessis successful, 1 in case of target abort

If the address matched MEMBARO, MEMBAR1 or CONFIG target_acc will return 1 otherwise 0.

7.7.5. GPIO model API

The structure st ruct gpi o_i nput modelsthe GPIO pins. It is defined as:

/* GPIOinput provider */
struct gpio_input {
struct input_inp _b;
int (*gpioout)(struct gpio_input *ctrl, unsigned int out);

TSIM2 Simulator User's Manual 48

(QEROFLEX

GAISLER

int (*gpioin) (struct gpio_input *ctrl, unsigned int in);

I

The gpi oout callback should be set by the user module at startup. The gpi oi n callback is set by the
U699 AHB module. The gpi oout callback is caled by the UT699 module whenever a GPIO output pin
changes. The gpi oi n callback is called by the user module when the input pins should change. Typicaly
the user module would register an event handler at a certain time offset and call gpi oi n from within the

event handler.

Table 7.8. gpioout callback parameters

Parameter

Description

out

The values of the output pins

Table 7.9. gpioin callback parameters

Parameter

Description

in

Theinput pin values

Thereturn value of gpi oi n/ gpi oout isignored.

7.8. CAN interface

The UT699 AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the
UT699. For core details and register specification please see the UT699 manual .

7.8.1. Start up options
CAN core start up options

-can_ocX_connect host: port

Connect CAN_OC core X to packet server to specified server and TCP port.

-can_ocX_server port

Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX_ ack [0] 1]

Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This

option must be put after - can_ocX _connect.
X in the above optionsisin the range 1-2.
7.8.2. Commands
CAN core TSM commands

can_ocX_connect host:port

Connect CAN_OC core X to packet server to specified server and TCP port.

can_ocX_server port

Open a packet server for CAN_OC core X on specified TCP port.

can_ocX_ack <0|1>

Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This
command should only be issued after a connection has been established.

can_ocX_status

Prints out status information for the CAN_OC core.

X in the above commandsisin the range 1-2.

TSIM2 Simulator User's Manual 49 QEE{OFLEX

7.8.3. Debug flags

The following debug flags are available for the CAN interfaces. Use them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 7.10. CAN debug flags

Flag Trace

GAISLER_CAN_OC _ACC CAN_OC register accesses
GAISLER_CAN_OC_RXPACKET CAN_OC received messages
GAISLER_CAN_OC TXPACKET CAN_OC transmitted messages
GAISLER_CAN_OC _ACK CAN_OC acknowledgements
GAISLER_CAN_OC_IRQ CAN_OC interrupts

7.8.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX _server or-can_ocX _connect . When acting as a server the core can only accept asingle

connection.
7.8.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets
are defined according to the table below.

Table 7.11. CAN packet types

Type Value
Message 0x00
Error counter OxFD
Acknowledge OXFE
Acknowledge config OxFF

7.8.5.1. CAN message packet format

Used to send and receive CAN messages.

31 0
0x0 LENGTH
31.0 LENGTH, specifiesthe length of the rest of the packet
CAN message
Byte# Description Bits (M SB-L SB)
7 6 [5 a4 3 2 |1 o

Protocol ID =0 Prot ID 7-0

Control FF \ RTR \ \ \ DLC (max 8 bytes)
6-9 ID (32 bit word in network byte|ID 10-0 (bits 31 - 11 ignored for standard frame format)

order) ID 28-0 (bits 31-29 ignored for extended frame format)
10-17 Databytel - DLC Databyten 7-0

Figure 7.5. CAN message packet format
7.8.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

(QEROFLEX

TSIM2 Simulator User's Manual 50 GAISLER
31 0
0x0 LENGTH
31.0 LENGTH, specifiesthe length of the rest of the packet
Error counter packet
Byte# Field Description
4 Packet type Type of packet, OXFD for error counter packets
5 Register 0 - RX error counter, 1 - TX error counter
6 Value Value to write to error counter

Figure 7.6. Error counter packet format

7.8.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface
will wait for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send
acknowledge packets (either NAK or ACK) an acknowledge configuration packet must be sent. Thisisdone
automatically by the CAN interface when can_ocX_ack isissued.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet
Acknowledge packet
Byte# Field Description
4 Packet type Type of packet, OXFE for acknowledge packets
5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 7.7. Acknowledge packet for mat

7.8.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX ack orif thecan_ocX_ack command has been issued.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet
Acknowledge configuration packet

Byte# Field Description

4 Packet type Type of packet, OXFF for acknowledge configuration pack-
ets

5 Ack configuration bit 0 Unused
bit 1 Ack packet enable, 1 - enabled, O - disabled
bit 2 Set ack packet payload, 1 - ACK, 0- NAK

Figure 7.8. Acknowledge configuration packet format

TSIM2 Simulator User's Manual

(QEROFLEX

GAISLER

8. Aeroflex UT700 AHB module

8.1. Overview

The UT700 AHB module is very similar to the UT699 AHB module described in the previous chapter.
The differences between the UT700 and the UT699 models is the added SPI model that is only present in
the UT700 AHB module and that it has GRSPW?2 cores instead of GRSPW cores and that the debug flag

toggling command is ut700_dbgon,

For information on the CAN, Spacewire, PCl and GPIO interfaces of the UT700 module, see the UT699
documentation in Chapter 7. The TSIM command, flag and packet interface is the same for both GRSPW

and GRSPW2.

The following files are delivered with the UT700 TSIM module:

Table 8.1. Files delivered with the UT700 TS M module

File Description

ut700/linux/ut700.s0 UT700 AHB module for Linux
ut700/win32/ut700.dll UT700 AHB module for Windows
ut700/examples/input Theinput directory containstwo examples of PCI

user modules

ut700/exampl es/input/README.txt

Description of the user module examples

ut700/exampl es/input/M akefile

Makefile for building the user modules

ut700/examples/input/pci.c

PCI user module example that makes UT700 PCI
initiator accesses

ut700/examples/input/pci_target.c

PCI user module exampl e that makes UT700 PCI
target accesses

ut700/exampl es/input/ut700inputprovider.h

I nterf ace between the UT700 modul e and the user
defined PCI module

ut700/examples/input/pci_input.h

UT700 PCI input provider definitions

ut700/examples/input/input.h

Generic input provider definitions

ut700/examples/input/tsim.h TSIM interface definitions
ut700/exampl es/input/end.h Defines the endian of the local machine
ut700/exampl es/test The test directory contains tests that can be exe-

cuted in TSIM

ut700/exampl es/test/README..txt

Description of the tests

ut700/exampl es/test/M akefile

Makefile for building the tests

ut700/exampl es/test/cansend.c CAN transmission test
ut700/exampl es/test/canrec.c CAN reception test
ut700/exampl es/test/pci.c PCI interface test
ut700/exampl es/test/pcitest.h Header file for PCI test

8.2. Loading the module

The module isloaded using the TSIM2 option - ahbm All core specific options described in the following
sections need to be surrounded by the options - desi gni nput and - desi gni nput end, e.g:

On Linux:

tsimleon3 -ut700 -ahbm ./ut700/1inux/ut700.so
-desi gni nput ./ut 700/ exanpl es/input/pci.so -designi nputend

(QEROFLEX

TSIM2 Simulator User's Manual 52 GAISLER

8.3.

On Windows:

tsimleon3 -ut700 -ahbm ut 700/ w n32/ut 700. dI |
- desi gni nput ./ut 700/ exanpl es/input/pci.dll -designinputend

The option - ut 700 needs to be given to TSIM to enable the UT700 processor configuration.

SPI bus model API

The UT700 user supplied so/dll differs from that of the UT699 in the addition of the SPI bus model API.
The structure st ruct spi _i nput modelsthe SPI bus. It is defined as:

/* Spi input provider */

struct spi_input {
struct input_inp _b;
int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
uint32 out, uint32 *in);
I

The spishift callback should be set by the SPI user module at startup. It is called by the UT700 module
whenever it shifts aword through the SPI bus.

Table 8.2. spishift callback parameters

Parameter Description

select Slave select bits

bitent Number of hits set in the MODE register, if bitent is-1 then the operationis not a
shift and the call isto indicate a select change, i.e. if the coreis disabled.

out Shift out (tx) data

in Shift in (rx) data

(QEROFLEX

TSIM2 Simulator User's Manual 53 GAISLER

9. Aeroflex Gaisler GR712 AHB module

9.1.

9.2.

9.3.

9.4.

Overview

GR712 AHB module is aloadable AHB module that implements the GR712 peripherals including: GPIO,
GRTIMER with latch, SPI, CAN, GRETH, SPACEWIRE, AHBRAM and extra UARTS.

The following files are delivered with the GR712 TSIM module;

Table 9.1. Files delivered with the GR712 TSM module

File Description

gr712/linux/gr712.so GR712 AHB module for Linux

gr712/win32/gr712.dll GR712 AHB module for Windows

gr712/examples/input The input directory contains two examples of user modules
gr712/examples/input/README.txt Description of the user module examples
gr712/examples/input/Makefile Makefile for building the user modules
gr712/examples/input/spi.c SPI user module example emulating a Intel SPI flash
gr712/examples/input/gpio.c GPIO user module emulating GPIO bit toggle
gr712/examples/input/gr712inputprovider.h |Interface between the GR712 module and the user module

Loading the module

The module isloaded using the TSIM2 option - ahbm All core specific options described in the following
sections need to be surrounded by the options - desi gni nput and - desi gni nput end, e.g:

On Linux:

tsimleon -gr712rc -ahbm./gr712/1inux/gr712.so
-desi gni nput ./ gr712/ exanpl es/i nput/spi.so -designi nputend

On Windows:

tsimleon -gr712rc -ahbm./gr712/w n32/gr712.dl1
-desi gni nput ./gr712/ exanpl es/input/spi.dll -designinputend

The option - gr 712r ¢ needs to be given to TSIM to enable the GR712 processor configuration. The
above line loads the GR712 AHB module ./gr712.so which in turn loads the SPI user module ./spi.so.
The SPI user module ./spi.so communicates with ./gr712.s0 using the user module interface described in
gr712inputprovider.h,, while ./gr712.so communicates with TSIM viathe AHB interface.

Debugging

To enable printout of debug informationthe- gr 712_dbgon f | ag switch can be used. Alternatively one
canissuethegr712_dbgon f | ag command on the TSIM2 command line. The debug flagsthat are available
are described for each core in the following sections and can be listed by gr712_dbgon help.

CAN interface

The GR712 AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the
GR712. For core details and register specification please see the GR712 manual.

9.4.1. Start up options

CAN core start up options

-can_ocX_connect host: port
Connect CAN_OC core X to packet server to specified server and TCP port.

TSIM2 Simulator User's Manual 54 QE&OFLEX

-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX ack [0] 1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This
option must be put after - can_ocX_connect .
X in the above optionsisin the range 0-1.
9.4.2. Commands

CAN core TSM commands

can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

can_ocX_ack <0|1>
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This
command should only be issued after a connection has been established.

can_ocX_status
Prints out status information for the CAN_OC core.

X in the above commands is in the range 0-1.

9.4.3. Debug flags
The following debug flags are available for the CAN interfaces. Use them in conjunction with the
gr712_dbgon command to enable different levels of debug information. To toggle debug output for indi-

vidual cores, use the can_ocX_dbg command, where X isin the range O-1.

Table 9.2. CAN debug flags

Flag Trace
GAISLER_CAN_OC_AcCC CAN_OC register accesses
GAISLER_CAN_OC_RXPACKET CAN_OC received messages
GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages
GAISLER_CAN_OC_ACK CAN_OC acknowledgements
GAISLER_CAN_OC_IRQ CAN_OC interrupts

9.4.4. Packet server
Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX_server or-can_ocX_connect . When acting as a server the core can only accept asingle
connection.

9.4.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets
are defined according to the table below.

Table 9.3. CAN packet types

Type Value

Message 0x00

(QEROFLEX

TSIM2 Simulator User's Manual 55 GAISLER
Type Value
Error counter OxFD
Acknowledge OXFE
Acknowledge config OxFF

9.4.5.1. CAN message packet format

Used to send and receive CAN messages.

31 0
0x0 LENGTH
31.0 LENGTH, specifiesthe length of the rest of the packet

CAN message
Byte# Description Bits (M SB-L SB)
7 6 [5 a4 3 |2 |1 o

Protocol ID =0 Prot ID 7-0

Control FF \ RTR \ \ \ DLC (max 8 bytes)
6-9 ID (32 bit word in network byte|ID 10-0 (bits 31 - 11 ignored for standard frame format)

order) ID 28-0 (hits 31-29 ignored for extended frame format)
10-17 Databytel - DLC Databyten 7-0

Figure 9.1. CAN message packet format
9.4.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte# Field Description

4 Packet type Type of packet, OXFD for error counter packets
5 Register 0 - RX error counter, 1 - TX error counter

6 Value Valueto write to error counter

Figure 9.2. Error counter packet format
9.4.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface
will wait for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send
acknowledge packets (either NAK or ACK) an acknowledge configuration packet must be sent. Thisisdone
automatically by the CAN interface when can_ocX_ack isissued.

(QEROFLEX

TSIM2 Simulator User's Manual 56 GAISLER
31 0
0x0 LENGTH
31.0 LENGTH, specifiesthe length of the rest of the packet
Acknowledge packet
Byte# Field Description
4 Packet type Type of packet, OXFE for acknowledge packets
5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 9.3. Acknowledge packet format
9.4.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack orif the can_ocX_ack command has been issued.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet
Acknowledge configuration packet

Byte# Field Description

4 Packet type Type of packet, OxFF for acknowledge configuration pack-
ets

5 Ack configuration bit 0 Unused
bit 1 Ack packet enable, 1 - enabled, O - disabled
bit 2 Set ack packet payload, 1 - ACK, 0- NAK

Figure 9.4. Acknowledge configuration packet format
9.5. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available
in the GR712. For core details and register specification please see the GR712 manual.

The following features are supported:

 Direct Memory Access
* Interrupts

9.5.1. Start up options
Ethernet core start up options

-grethconnect host[: port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

9.5.2. Commands
Ethernet core T9M commands

greth_connect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

TSIM2 Simulator User's Manual 57 QEE{OFLEX

greth_status
Print Ethernet register status

9.5.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
gr712_dbgon command to enable different levels of debug information.

Table 9.4. Ethernet debug flags

Flag Trace
GAISLER_GRETH_ACC GRETH accesses
GAISLER GRETH_L1
GAISLER_GRETH_TX GRETH transmissions
GAISLER_GRETH_RX GRETH reception
GAISLER_GRETH_RXPACKET GRETH received packets

GRETH accesses verbose

GAISLER_GRETH_RXCTRL

GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL

GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL

GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET GRETH transmitted packets
GAISLER_GRETH_IRQ GRETH interrupts

9.5.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet
server should open a TCP socket which the module can connect to. The Ethernet core is connected to a
packet server using the - gr et hconnect start-up parameter or using the greth_connect command.

An exampleimplementation of a packet server, named gr et h_conf i g, isincluded in TSIM distribution.
It uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core
to aphysical Ethernet LAN. This makes it easy to connect the simulated GRETH core to rea hardware. It
can provide a throughput in the order of magnitude of 500 to 1000 KiB/sec. See its distributed README
for usage instructions.

9.5.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with aone word length
field indicating the length of the packet to come (including its header).

(QEROFLEX

TSIM2 Simulator User's Manual 58 GAISLER
31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 0
0x4 RES IPID=1 TYPE=0 RES
31:16 RES, reserved for future use
15:8 IPID, IP core ID, must equal 1 for Ethernet
75 TYPE, packet type, O for data packets
4.0 RES, reserved for future use
Payload
‘ 0x8 - Ethernet frame

Figure 9.5. Ethernet data packet
9.6. SpaceWire interface with RMAP support

The GR712 AHB module contains 6 GRSPW2 cores which models the GRSPW2 cores available in the
GR712. For core details and register specification please see the GR712 manual.

The following features are supported:
» Transmission and reception of SpaceWire packets
* Interrupts
» Time codes
* RMAP
* Modifying the link state
9.6.1. Start up options
SoaceWire core start up options

- gr spwXconnect host: port
Connect GRPSW core X to packet server at specified server and port.

- gr spwXserver port
Open a packet server for core X on specified port.

- gr spw_nor map
Disable the RMAP handler. RMAP packets will be stored to the DMA channel.

- gr spw_r map
Enable the RMAP handler. All RMAP packages will be simulated in hardware. Includes support for
RMAP CRC. (Default)

- gr spw_r mapcrc
Enable support for RMAP CRC. Performs RMAP CRC checks and calculations in hardware.

-grspw_rxfreq freq
Set the RX fregquency which is used to calculate receive performance.

(QEROFLEX

TSIM2 Simulator User's Manual 59 GAISLER

-grspw_txfreq fregqg
Set the TX frequency which is used to calculate transmission performance.

X in the above options has the range 0-5.
9.6.2. Commands
SoaceWire core TSM commands

grspwX_connect host:port
Connect GRSPW2 core X to packet server at specified server and TCP port.

grspwX_server port
Open a packet server for core X on specified TCP port.

grspw_status
Print status for all GRSPW?2 cores.

X in the above commands has the range 0-5.
9.6.3. Debug flags

The following debug flags are available for the SpaceWire interfaces. Use the them in conjunction with
the gr712_dbgon command to enable different levels of debug information. To toggle debug output for
individual cores, use the grspwX_dbg command, where X isin the range 0-5.

Table 9.5. SpaceWire debug flags

Flag Trace
GAISLER_GRSPW_ACC GRSPW accesses
GAISLER_GRSPW_RXPACKET GRSPW received packets
GAISLER_GRSPW_RXCTRL GRSPW rx protocol
GAISLER_GRSPW_TXPACKET GRSPW transmitted packets
GAISLER_GRSPW_TXCTRL GRSPW tx protocol
GAISLER_GRSPW_RMAP GRSPW RMAP accesses
GAISLER_GRSPW_RMAPPACKET GRSPW RMAP packet dumps
GAISLER_GRSPW_RMAPPACKDE GRSPW RMAP packet decoding
GAISLER_GRSPW_DMAERR GRSPW DMA errors

9.6.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either - gr sp-
wXser ver or - gr spwXconnect . TCP sockets are used for establishing the connections. When acting
as aserver the core can only accept a single connection.

For moreflexibility, such as custom routing, an external packet server can beimplemented using the protocol
specified in the following sections. Each core should then be connected to that server.

9.6.5. SpaceWire packet server protocol

Theprotocol used to communicate with the packet server is described below. Three different types of packets
are defined according to the table below.

Table 9.6. Packet types

Type Value
Data 0
Time code 1

(QEROFLEX

TSIM2 Simulator User's Manual 60 GAISLER
Type Value
Modify link state 2

Note that all packets are prepended by a one word length field which specified the length of the coming
packet including the header.

Data packet format:
31 0
0x0 LENGTH
310 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 1 0
0x4 RES IPID=0 TYPE=0 RES EEP
31:16 RES, reserved for future use
15:8 IPID, IP core ID, must equal O for SpaceWire
75 TYPE, packet type, O for data packets
4:1 RES, reserved for future use, must be setto 0
0 EEP, Error End of Packet. Set when the packet is truncated and terminated by an EEP.
Payload
0x8 - SpaceWire packet
Figure 9.6. SpaceWire data packet
Time code packet format:
31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 0
0x4 RES IPID=0 ‘ TYPE=1 RES
31:16 RES, reserved for future use, must be set to 0
15:8 IPID, IP core ID, must equal O for SpaceWire
75 TYPE, packet type, 1 for time code packets
4.0 RES, reserved for future use, must be set to 0
Payload
31 8 7 6 5 0
0x8 RES CT CN
318 RES, reserved for future use, must be set to 0
7:6 CT, time control flags
5:0 CN, value of time counter

Figure 9.7. SpaceWire time code packet

(QEROFLEX

TSIM2 Simulator User's Manual 61 GAISLER

9.7.

Link state packet format:

31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 3 2 0
0x4 RES IPID=0 TYPE=2 RES LS
31:16 RES, reserved for future use, must be set to 0
15:8 IPID, IP core 1D, must equal O for SpaceWire
75 TY PE, packet type, 2 for link state packets
4:3 RES, reserved for future use, must be set to 0
2.0 LS, Link State: 0 Error reset
1 Error wait
2 Ready
3 Started
4 Connecting
5 Run

Figure 9.8. SpaceWire link state packet

SPI and GPIO user modules

The user supplied dynamic library should expose a public symbol gr 712i nput syst emof typest r uct
gr 712_subsystem *. Thestruct gr712 subsyst emisdefined in gr712inputprovider.h as:

struct gr712_subsystem {
void (*gr712_inp_setup) (int id,
struct gr712_inp_l ayout * I,
char **argv, int argc);
void (*gr712_inp_restart) (int id,
struct gr712_inp_layout * 1);
struct siminterface *simf;

s
The callback gr712_inp_restart will be called every time the simulator restarts. At initialization the callback

or712_inp_setup will be called once, supplied with a pointer to structurest ruct gr 712_i np_| ayout
defined in gr712inputprovider.h (see Section 9.7.1 and Section 9.7.2 for details):

struct gr712_i np_l ayout {
struct gpio_i nput gpio[2];
struct spi_input spi;

I

The user module can access the global TSIM st ruct si m.i nt er f ace structure through the si ni f
member. See Chapter 5 for more details.

The user supplied dynamic library should claim the gr712_inp_layout.gpio or gr712_inp_layout. spi mem-
bers by using the INPUT_CLAIM macro, i.e. INPUT_CLAIM(I->gpio) (see the example below).

A typical user supplied dynamic library would look like this:

/* sinple gpio user nodule that toggles all input bits */
#i ncl ude <stdio. h>

#i nclude <string. h>

#include "tsimh"

(QEROFLEX

TSIM2 Simulator User's Manual 62 GAISLER

#i nclude "gr712i nput provi der. h"
extern struct gr712_subsystem *gr 712i nput system
static struct gr712_inp_layout *lay = O;

static void Change(struct gpio_input *ctrl) {

}

int gpioout(struct gpio_input *ctrl, unsigned int out) {
) C

static void gr712_inp_setup (int id,
struct gr712_inp_l ayout * I,
char **argv, int argc) {
lay = 1;
printf("User-dll: gr712_inp_setup: daimng %\n", |->gpio[0]._b.nane);
I NPUT_CLAI M | - >gpi o[0]);
| - >gpi o[0] . gpi oout = gpi oout;
gr 712i nput syst em >si ni f - >event (Change, (unsi gned | ong) & - >gpi o[0] , 10000000) ;
}

static struct gr712_subsystem gr712_gpio =
gr712_inp_setup, 0,0

I
-~

}

struct gr712_subsystem *gr712i nput system = &gr 712_gpi o;

A typical Makefile that would create a user supplied dynamic library gpio.(dll|so) would look like this:

MDLL_FI X=$(i f $(strip $(shell uname|grep M NGAB2)),dl I, so)
MLIB=$(if $(strip $(shell unane|grep M NGMB2)),-Iws2_32 -luser32 -lkernel 32 -1wi nnm)
all:gpio.$(MDLL_FI X)

pci . $(M DLL_FI X) : gpio.o
$(CC) -shared -g gpio.o -o gpio.$(MDLL_FI X) $(M.LIB)

gpi 0. 0: gpio.c
$(CC) -fPIC-c -g -O0 gpio.c -0 gpio.o
cl ean:
-rm-f *.0 *.so

The user can then specify the user module to be loaded by the gr712.so AHB module using the - desi gn-
i nput and - desi gni nput end command line options:

- desi gni nput ./gr712/ exanpl es/ i nput/ gpi 0. so -desi gni nput end
These switches are interpreted by gr712.so.

9.7.1. SPI bus model API
The structurest ruct spi _i nput modelsthe SPI bus. It isdefined as:

/* Spi input provider */

struct spi_input {
struct input_inp _b;
int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
uint32 out, uint32 *in);

The spishift callback should be set by the SPI user module at startup. It is called by the GR712 module
whenever it shifts aword through the SPI bus.

Table 9.7. spishift callback parameters

Par ameter Description
select Slave select bits(in case of GR712 these should beignored and GPIO used instead)
bitent Number of bits set in the MODE register, if bitent is-1 then the operationis not a

shift and the call isto indicate a select change, i.e. if the coreis disabled.
out Shift out (tx) data

(QEROFLEX

TSIM2 Simulator User's Manual 63 GAISLER
Parameter Description
in Shift in (rx) data

The return value of spishift isignored.
9.7.2. GPIO model API

The structure st ruct gpi o_i nput modelsthe GPIO pins. It is defined as:

/* GPIO input provider */

struct gpio_input {
struct input_inp _b;
int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
int (*gpioin) (struct gpio_input *ctrl, unsigned int in);

I

The gpioout callback should be set by the user module at startup. The gpioin callback is set by the GR712
AHB module. The gpioout callback is called by the GR712 module whenever a GPIO output pin changes.
The gpioin calback is called by the user module when the input pins should change. Typically the user
modulewould register an event handler at acertain time offset and call gpioin from within the event handler.

Table 9.8. gpioout callback parameters

Parameter Description

out The values of the output pins

Table 9.9. gpioin callback parameters

Parameter Description

in Theinput pin values

The return value of gpioin/gpioout isignored.

9.8. UART interfaces
The GR712 module addsfive extraUARTS in addition to the one built in UART (the second built in UART
isisdisabled by the - gr 712r ¢ option). The extra UARTS are numbered 2 through 6.

9.8.1. Start up options

-uart X device
Worksliketheordinary - uart Xdevi ce option but for X in the range 2-6, with the extra possibility
to set the UART to use stdin and stdout by using - uar t X st di o.

9.8.2. Commands

uartX_connect devi ce
Hasthe sameeffect as - uart X devi ce above but can as acommand.

uartX_status
Shows the status of the UART.

uartX_dbg<fl ag|list | help | clean >
Toggle, show, disable or show help for debug options for the given UART.

X in the above commands isin the range 2-6.

TSIM2 Simulator User's Manual

(QEROFLEX

64 GAISLER

10. Atmel AT697 PCIl emulation

10.1. Overview

The PCl emulationisimplemented asa AT697 AHB modulethat will processall accessesto memory region
0xa0000000 - 0xfO000000 (AHB dlave mode) and the APB registers starting at 0x80000100. The AT697
AHB module implements all registers of the PCI core. It will in turn load the PCI user modules that will
implement the devices. The AT697 AHB module is supposed to be the PCI host. Both PCI Initiator and
PCI Target mode are supported. The interface to the PCI user modules is implemented on bus level. Two

callbacks model the PCI bus.

The following files are delivered with the AT697 TSIM module:

Table 10.1. Files delivered with the AT697 TSM module

File Description

at697/linux/at697.s0 AT697 AHB module for Linux

at697/win32/at697.dll AT697 AHB module for Windows

Input Theinput directory containstwo examples of PCI user mod-

ules

at697/examples/input/README.txt

Description of the user module examples

at697/examplesinput/Makefile

Makefile for building the user modules

at697/examples/input/pci.c

PCI user module example that makes AT697 PCI initiator
accesses

at697/examples/input/pci_target.c

PCI user module example that makes AT697 PCI target ac-

CEesseS

at697/examples/input/at697inputprovider.h

Interface between the AT697 module and the user defined
PCI module

at697/examples/input/pci_input.h

AT697 PCI input provider definitions

at697/examples/input/input.h

Generic input provider definitions

at697/examples/input/tsim.h

TSIM interface definitions

at697/examples/input/end.h

Defines the endian of the local machine

10.2. Loading the module

The module isloaded using the TSIM2 option - ahbm All core specific options described in the following
sections need to be surrounded by the options - desi gni nput and - desi gni nput end, e.g:

On Linux:

tsimleon -ahbm ./at697/1inux/at697.so

- desi gni nput ./at 697/ exanpl es/input/pci.so -designi nputend

On Windows:

tsimleon -ahbm ./at697/wi n32/at697.dl

- desi gni nput ./at 697/ exanpl es/input/pci.dll -designinputend

This loads the AT697 AHB module ./at697.s0 which in turn loads the PCI user module ./pci.so. The PCI
user module ./pci.so communicates with ./at697.s0 using the PCl user module interface, while ./at697.s0
communicates with TSIM viathe AHB interface.

10.3. AT697 initiator mode

The PCI user module should supply one callback functionacc() . The AT697 AHB module will call this
function to emulate AHB slave mode accesses or DMA accesses that are forwarded viaacc() . The cmd

TSIM2 Simulator User's Manual 65 QE&OFLEX

parameter determines which command to use. Configuration cycles have to be handled by the PCl user
module.

10.4. AT697 target mode

The AT697 AHB module supplies one callback t ar get _acc() to the PCI user modules to implement
target mode accesses from the PCI bus to the AHB bus. The PCI user module should trigger access events
itself by inserting itself into the event queue.

10.5. Definitions

#define ESA PCI_SPACE | O 0
#define ESA PCl_SPACE_MEM 1
#define ESA PCI_SPACE CONFIG 2
#define ESA PCI_SPACE_MEMLINE 3

/* atc697 pci input provider */
struct esa_pci _input {
struct input_inp _b;

int (*acc)(struct esa_pci_input *ctrl, int cnd, unsigned int addr,
unsigned int *data, unsigned int *abort,unsigned int *ws);

int (*target_acc)(struct esa_pci_input *ctrl, int cnd, unsigned int addr,
unsi gned int *data, unsigned int *mexc);

I
10.5.1. PClI command table

0000: "1 RQ acknow edge",

0001: " Speci al cycle",

0010: "1/ 0 Read",

0011: "1/OWite",

0100: "Reserved",

0101: "Reserved",

0110: "Menory Read",

0111: "Menory Wite",

1000: "Reserved",

1001: "Reserved",

1010: "Configuration Read",
1011: "Configuration Wite",
1100: "Menory Read Miutltiple",
1101: "Dual Address Cycle",
1110: "Menory Read Line",
1111: "Menory Wite And Invalidate”

10.6. Read/write function installed by PCI module

This function should be set by the PCI user module:

int (*acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr, unsigned int *data,
unsi gned int *abort, unsigned int *ws);

If set, the function is called by the AT697 AHB module whenever the PCI interface initiates a transaction.
The function is called for AHB-slave mapped accesses as well as AHB-Master/APB DMA.The parameter
cnd specifies the command to execute, see Section 10.5.1. Parameter addr specifies the address. The
user module should return the read data in * dat a for a read command or write the * dat a on a write
command and return thetimeto completionin*ws as PCI clocks. A possibletarget abort should be returned
in*abor t . Thereturn value should be: 0: taken, 1: not taken (master abort)

10.7. Read/write function installed by AT697 module

The following function isinstalled by the AT697 AHB module:

int (*target_acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr, unsigned int
*data, unsigned int *mexc);

The PCI user module can call this function to emulate a PCl target mode accessto the AT697 AHB module.
Parameter cnd specifies the command to execute, see Section 10.5.1. The AT697 module is supposed to

TSIM2 Simulator User's Manual 66

(QEROFLEX

GAISLER

be the host and accesses to the configuration space is not supported. Parameter addr specifies the address.
Parameter * dat a should point to a memory location where to return the read data on a read command or
point to the write data on a write command. Parameter * mexc should point to a memory location where
to return a possible error. If the call was hit by MEMBARO, MEMBAR1 or IOBAR, t ar get _read()

will return 1 otherwise 0.

10.8. Registers

Table 10.2 contains alist of implemented and not implemented fields of the AT697F PCI Registers. Only
register fields that are relevant for the emulated PCl module is implemented.

Table 10.2. PCI register support

Register Implemented Not implemented
PCIID1 deviceid, vendor id
PCISC stat 13, stat 12, stat 11, stat 7, stat 6 stat 5, |statl5 statl4 statl0 9 stat8 com10 com9
stat 4, com2, com 1, com1 com8 com7 com6 com5 com4 com3
PCIID2 class code, revision id
PCIBHDLC [bist, header type, latency timer, cache
size] config-space only
PCIMBAR1 base address, pref, type, msi
PCIMBAR2 base address, pref, type, msi
PCIIOBAR3 io base address, ms
PCISID subsystem id, svi
PCICP pointer
PCILI [max_lat min_gnt int_pin int_ling] con-
fig-space-only
PCIRT [retry trdy] config-space-only
PCICW ben
PCISA start address
PCIW ben
PCIDMA wdcnt, com b2b
PCIIS act, xff, xfe, rfe dmeas, ss
PCIIC mod, commsb dwr, dww, perr
PCITPA tpal, tpa2
PCITSC errmem, xff, xfe, rfe, tms
PCIITE dmaer,imier, tier cmfer, imper, tbeer, tper, syser
PCIITP dmaer,imier, tier cmfer, imper, tbeer, tper, syser
PCIITF dmaer,imier, tier, cmfer, imper, tbeer,
tper, syser
PCID dat
PCIBE dat
PCIDMAA addr
PCIA PO, p1, p2, p3

10.9. Debug flags

The switch - desi gndbgon flags can be used to enable debug output. The possible values for flags are

asfollows:

TSIM2 Simulator User's Manual 67 QEE«OFLEX

Table 10.3. Debug flags

ESAPCI_REGACC Trace accesses to the PCI registers

ESAPCI_ACC Trace accesses to the PCI AHB-slave address space
ESAPCI_DMA Trace DMA

ESAPCI_IRQ Trace PCI IRQ

10.10. Commands

pci
Displays all PCI registers.

(QEROFLEX

TSIM2 Simulator User's Manual 68 GAISLER

11. Support

For support contact the Aeroflex Gaisler support team at support@gaisier.com.

TSIM2 Simulator User's Manual 69 QE&OFLEX

12. Disclaimer

Aeroflex Gaider AB, reservestheright to make changesto any products and services described herein at any
time without notice. Consult Aeroflex or an authorized sales representative to verify that theinformation in
this document is current before using this product. Aeroflex does not assume any responsibility or liability
arising out of the application or use of any product or service described herein, except as expressly agreed
to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey
a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of
Aeroflex or of third parties.

	TSIM2 Simulator User's Manual
	Table of Contents
	1. Introduction
	1.1. General
	1.2. Supported platforms and system requirements
	1.3. Obtaining TSIM
	1.4. Problem reports

	2. Installation
	2.1. General
	2.2. License installation

	3. Operation
	3.1. Overview
	3.2. Starting TSIM
	3.3. Standalone mode commands
	3.4. Symbolic debug information
	3.5. Breakpoints and watchpoints
	3.6. Profiling
	3.7. Code coverage
	3.8. Check-pointing
	3.9. Performance
	3.10. Backtrace
	3.11. Connecting to gdb
	3.12. Thread support
	3.12.1. TSIM thread commands
	3.12.2. GDB thread commands

	4. Emulation characteristics
	4.1. Common behaviour
	4.1.1. Timing
	4.1.2. UARTs
	4.1.3. Floating point unit (FPU)
	4.1.4. Delayed write to special registers
	4.1.5. Idle-loop optimisation
	4.1.6. Custom instruction emulation

	4.2. ERC32 specific emulation
	4.2.1. Processor emulation
	4.2.2. MEC emulation
	4.2.3. Interrupt controller
	4.2.4. Watchdog
	4.2.5. Power-down mode
	4.2.6. Memory emulation
	4.2.7. EDAC operation
	4.2.8. Extended RAM and I/O areas
	4.2.9. SYSAV signal
	4.2.10. EXTINTACK signal
	4.2.11. IWDE signal

	4.3. LEON2 specific emulation
	4.3.1. Processor
	4.3.2. Cache memories
	4.3.3. LEON peripherals registers
	4.3.4. Interrupt controller
	4.3.5. Power-down mode
	4.3.6. Memory emulation
	4.3.7. SPARC V8 MUL/DIV/MAC instructions
	4.3.8. DSU and hardware breakpoints

	4.4. LEON3 specific emulation
	4.4.1. General
	4.4.2. Processor
	4.4.3. Cache memories
	4.4.4. Power-down mode
	4.4.5. LEON3 peripherals registers
	4.4.6. Interrupt controller
	4.4.7. Memory emulation
	4.4.8. CASA instruction
	4.4.9. SPARC V8 MUL/DIV/MAC instructions
	4.4.10. DSU and hardware breakpoints
	4.4.11. AHB status registers

	4.5. LEON4 specific emulation
	4.5.1. General
	4.5.2. Processor
	4.5.3. L1 Cache memories
	4.5.4. L2 Cache memory
	4.5.5. Power-down mode
	4.5.6. LEON4 peripherals registers
	4.5.7. Interrupt controller
	4.5.8. Memory emulation
	4.5.9. CASA instruction
	4.5.10. SPARC V8 MUL/DIV/MAC instructions
	4.5.11. GRFPU emulation
	4.5.12. DSU and hardware breakpoints
	4.5.13. AHB status registers

	5. Loadable modules
	5.1. TSIM I/O emulation interface
	5.1.1. simif structure
	5.1.2. ioif structure
	5.1.3. Structure to be provided by I/O device
	5.1.4. Cygwin specific io_init()

	5.2. LEON AHB emulation interface
	5.2.1. procif structure
	5.2.2. Structure to be provided by AHB module
	5.2.3. Big versus little endianess

	5.3. TSIM/LEON co-processor emulation
	5.3.1. FPU/CP interface
	5.3.2. Structure elements
	5.3.3. Attaching the FPU and CP
	5.3.4. Big versus little endianess
	5.3.5. Additional TSIM commands
	5.3.6. Example FPU

	6. TSIM library (TLIB)
	6.1. Introduction
	6.2. Function interface
	6.3. AHB modules
	6.4. I/O interface
	6.5. UART handling
	6.6. Linking a TLIB application
	6.7. Limitations

	7. Aeroflex UT699/UT699e AHB module
	7.1. Overview
	7.2. Loading the module
	7.3. UT699e
	7.4. Debugging
	7.5. 10/100 Mbps Ethernet Media Access Controller interface
	7.5.1. Start up options
	7.5.2. Commands
	7.5.3. Debug flags
	7.5.4. Ethernet packet server
	7.5.5. Ethernet packet server protocol

	7.6. SpaceWire interface with RMAP support
	7.6.1. Start up options
	7.6.2. Commands
	7.6.3. Debug flags
	7.6.4. SpaceWire packet server
	7.6.5. SpaceWire packet server protocol

	7.7. PCI initiator/target and GPIO interface
	7.7.1. Commands
	7.7.2. Debug flags
	7.7.3. User supplied dynamic library
	7.7.4. PCI bus model API
	7.7.5. GPIO model API

	7.8. CAN interface
	7.8.1. Start up options
	7.8.2. Commands
	7.8.3. Debug flags
	7.8.4. Packet server
	7.8.5. CAN packet server protocol
	7.8.5.1. CAN message packet format
	7.8.5.2. Error counter packet format
	7.8.5.3. Acknowledge packet format
	7.8.5.4. Acknowledge packet format

	8. Aeroflex UT700 AHB module
	8.1. Overview
	8.2. Loading the module
	8.3. SPI bus model API

	9. Aeroflex Gaisler GR712 AHB module
	9.1. Overview
	9.2. Loading the module
	9.3. Debugging
	9.4. CAN interface
	9.4.1. Start up options
	9.4.2. Commands
	9.4.3. Debug flags
	9.4.4. Packet server
	9.4.5. CAN packet server protocol
	9.4.5.1. CAN message packet format
	9.4.5.2. Error counter packet format
	9.4.5.3. Acknowledge packet format
	9.4.5.4. Acknowledge packet format

	9.5. 10/100 Mbps Ethernet Media Access Controller interface
	9.5.1. Start up options
	9.5.2. Commands
	9.5.3. Debug flags
	9.5.4. Ethernet packet server
	9.5.5. Ethernet packet server protocol

	9.6. SpaceWire interface with RMAP support
	9.6.1. Start up options
	9.6.2. Commands
	9.6.3. Debug flags
	9.6.4. SpaceWire packet server
	9.6.5. SpaceWire packet server protocol

	9.7. SPI and GPIO user modules
	9.7.1. SPI bus model API
	9.7.2. GPIO model API

	9.8. UART interfaces
	9.8.1. Start up options
	9.8.2. Commands

	10. Atmel AT697 PCI emulation
	10.1. Overview
	10.2. Loading the module
	10.3. AT697 initiator mode
	10.4. AT697 target mode
	10.5. Definitions
	10.5.1. PCI command table

	10.6. Read/write function installed by PCI module
	10.7. Read/write function installed by AT697 module
	10.8. Registers
	10.9. Debug flags
	10.10. Commands

	11. Support
	12. Disclaimer

