
TSIM2 Simulator User's Manual i

.

TSIM2 Simulator User's Manual

ERC32/LEON2/LEON3/LEON4 TSIM2-UM
Version 2.0.39

June 2015

Kungsgatan 12 tel +46 31 7758650
411 19 Gothenburg fax +46 31 421407
Sweden www.aeroflex.com/gaisler

TSIM2 Simulator User's Manual ii

TSIM2 Simulator User's Manual
Copyright © 2015 Cobham Gaisler AB

TSIM2 Simulator User's Manual iii

Table of Contents
1. Introduction ... 1

1.1. General ... 1
1.2. Supported platforms and system requirements ... 1
1.3. Obtaining TSIM ... 1
1.4. Problem reports .. 1

2. Installation ... 2
2.1. General ... 2
2.2. License installation ... 2

3. Operation .. 3
3.1. Overview .. 3
3.2. Starting TSIM .. 3
3.3. Standalone mode commands .. 7
3.4. Symbolic debug information ... 10
3.5. Breakpoints and watchpoints .. 10
3.6. Profiling .. 11
3.7. Code coverage ... 11
3.8. Check-pointing ... 12
3.9. Performance ... 13
3.10. Backtrace ... 13
3.11. Connecting to gdb ... 13
3.12. Thread support ... 14

3.12.1. TSIM thread commands ... 14
3.12.2. GDB thread commands .. 15

4. Emulation characteristics .. 17
4.1. Common behaviour ... 17

4.1.1. Timing ... 17
4.1.2. UARTs ... 17
4.1.3. Floating point unit (FPU) .. 17
4.1.4. Delayed write to special registers .. 17
4.1.5. Idle-loop optimisation ... 17
4.1.6. Custom instruction emulation ... 17
4.1.7. Chip-specific errata .. 18

4.2. ERC32 specific emulation .. 18
4.2.1. Processor emulation .. 18
4.2.2. MEC emulation ... 18
4.2.3. Interrupt controller ... 19
4.2.4. Watchdog ... 19
4.2.5. Power-down mode .. 20
4.2.6. Memory emulation ... 20
4.2.7. EDAC operation .. 20
4.2.8. Extended RAM and I/O areas ... 20
4.2.9. SYSAV signal ... 20
4.2.10. EXTINTACK signal ... 20
4.2.11. IWDE signal .. 21

4.3. LEON2 specific emulation ... 21
4.3.1. Processor .. 21
4.3.2. Cache memories ... 21
4.3.3. LEON peripherals registers .. 21
4.3.4. Interrupt controller ... 21
4.3.5. Power-down mode .. 21
4.3.6. Memory emulation ... 21
4.3.7. SPARC V8 MUL/DIV/MAC instructions ... 21
4.3.8. DSU and hardware breakpoints ... 22

4.4. LEON3 specific emulation ... 22
4.4.1. General ... 22

TSIM2 Simulator User's Manual iv

4.4.2. Processor .. 22
4.4.3. Cache memories ... 22
4.4.4. Power-down mode .. 22
4.4.5. LEON3 peripherals registers .. 22
4.4.6. Interrupt controller ... 22
4.4.7. Memory emulation ... 22
4.4.8. CASA instruction ... 23
4.4.9. SPARC V8 MUL/DIV/MAC instructions ... 23
4.4.10. DSU and hardware breakpoints ... 23
4.4.11. AHB status registers ... 23

4.5. LEON4 specific emulation ... 23
4.5.1. General ... 23
4.5.2. Processor .. 23
4.5.3. L1 Cache memories .. 23
4.5.4. L2 Cache memory .. 23
4.5.5. Power-down mode .. 23
4.5.6. LEON4 peripherals registers .. 24
4.5.7. Interrupt controller ... 24
4.5.8. Memory emulation ... 24
4.5.9. CASA instruction ... 24
4.5.10. SPARC V8 MUL/DIV/MAC instructions .. 24
4.5.11. GRFPU emulation .. 24
4.5.12. DSU and hardware breakpoints ... 24
4.5.13. AHB status registers ... 24

5. Loadable modules ... 25
5.1. TSIM I/O emulation interface ... 25

5.1.1. simif structure ... 25
5.1.2. ioif structure .. 27
5.1.3. Structure to be provided by I/O device ... 27
5.1.4. Cygwin specific io_init() ... 28

5.2. LEON AHB emulation interface .. 29
5.2.1. procif structure .. 29
5.2.2. Structure to be provided by AHB module ... 30
5.2.3. Big versus little endianess .. 33

5.3. TSIM/LEON co-processor emulation .. 33
5.3.1. FPU/CP interface ... 33
5.3.2. Structure elements .. 33
5.3.3. Attaching the FPU and CP ... 34
5.3.4. Big versus little endianess .. 34
5.3.5. Additional TSIM commands .. 35
5.3.6. Example FPU .. 35

6. TSIM library (TLIB) ... 36
6.1. Introduction ... 36
6.2. Function interface ... 36
6.3. AHB modules .. 37
6.4. I/O interface .. 37
6.5. UART handling .. 38
6.6. Linking a TLIB application .. 38
6.7. Limitations .. 38

7. Cobham UT699/UT699e AHB module ... 39
7.1. Overview .. 39
7.2. Loading the module .. 39
7.3. UT699e ... 40
7.4. Debugging ... 40
7.5. 10/100 Mbps Ethernet Media Access Controller interface ... 40

7.5.1. Start up options ... 40
7.5.2. Commands .. 40
7.5.3. Debug flags ... 40

TSIM2 Simulator User's Manual v

7.5.4. Ethernet packet server ... 41
7.5.5. Ethernet packet server protocol ... 41

7.6. SpaceWire interface with RMAP support .. 41
7.6.1. Start up options ... 42
7.6.2. Commands .. 42
7.6.3. Debug flags ... 42
7.6.4. SpaceWire packet server .. 43
7.6.5. SpaceWire packet server protocol .. 43

7.7. PCI initiator/target and GPIO interface ... 45
7.7.1. Commands .. 45
7.7.2. Debug flags ... 45
7.7.3. User supplied dynamic library .. 45
7.7.4. PCI bus model API .. 47
7.7.5. GPIO model API ... 47

7.8. CAN interface .. 48
7.8.1. Start up options ... 48
7.8.2. Commands .. 48
7.8.3. Debug flags ... 49
7.8.4. Packet server ... 49
7.8.5. CAN packet server protocol ... 49

8. Cobham UT700 AHB module ... 51
8.1. Overview .. 51
8.2. Loading the module .. 51
8.3. SPI bus model API ... 52

9. Cobham Gaisler GR712 AHB module .. 53
9.1. Overview .. 53
9.2. Loading the module .. 53
9.3. Debugging ... 53
9.4. CAN interface .. 53

9.4.1. Start up options ... 53
9.4.2. Commands .. 54
9.4.3. Debug flags ... 54
9.4.4. Packet server ... 54
9.4.5. CAN packet server protocol ... 54

9.5. 10/100 Mbps Ethernet Media Access Controller interface ... 56
9.5.1. Start up options ... 56
9.5.2. Commands .. 56
9.5.3. Debug flags ... 57
9.5.4. Ethernet packet server ... 57
9.5.5. Ethernet packet server protocol ... 57

9.6. SpaceWire interface with RMAP support .. 58
9.6.1. Start up options ... 58
9.6.2. Commands .. 59
9.6.3. Debug flags ... 59
9.6.4. SpaceWire packet server .. 59
9.6.5. SpaceWire packet server protocol .. 59

9.7. SPI and GPIO user modules ... 61
9.7.1. SPI bus model API ... 62
9.7.2. GPIO model API ... 63

9.8. UART interfaces .. 63
9.8.1. Start up options ... 63
9.8.2. Commands .. 63

10. Atmel AT697 PCI emulation ... 64
10.1. Overview ... 64
10.2. Loading the module ... 64
10.3. AT697 initiator mode .. 64
10.4. AT697 target mode ... 65
10.5. Definitions ... 65

TSIM2 Simulator User's Manual vi

10.5.1. PCI command table .. 65
10.6. Read/write function installed by PCI module .. 65
10.7. Read/write function installed by AT697 module ... 65
10.8. Registers ... 66
10.9. Debug flags ... 66
10.10. Commands ... 67

11. Support .. 68
12. Disclaimer .. 69

TSIM2 Simulator User's Manual 1

1. Introduction

1.1. General

TSIM is a generic SPARC1 architecture simulator capable of emulating ERC32- and LEON-based computer
systems.

TSIM provides several unique features:

• Emulation of ERC32 and LEON2/3/4 processors
• Superior performance: up to 60 MIPS on high-end PC (Intel i7-2600K @3.4GHz)
• Accelerated processor standby mode, allowing faster-than-realtime simulation speeds
• Standalone operation or remote connection to GNU debugger (gdb)
• Also provided as library to be included in larger simulator frameworks
• 64-bit time for practically unlimited simulation periods
• Instruction trace buffer
• EDAC emulation (ERC32)
• MMU emulation (LEON2/3/4)
• SRAM emulation and functional emulation of SDRAM (with SRAM timing) (LEON2/3/4)
• Local scratch-pad RAM (LEON3/4)
• Loadable modules to include user-defined I/O devices
• Non-intrusive execution time profiling
• Code coverage monitoring
• Instruction trace buffer
• Stack backtrace with symbolic information
• Check-pointing capability to save and restore complete simulator state
• Unlimited number of breakpoints and watchpoints
• Pre-defined functional simulation modules for GR712, UT699, UT700 and AT697

1.2. Supported platforms and system requirements

TSIM supports the following platforms: Solaris 2.8, Linux, Linux-x64, Windows XP/7, and Windows XP/7
with Cygwin Unix emulation.

1.3. Obtaining TSIM

The primary site for TSIM is www.gaisler.com where the latest version of TSIM can be ordered and eval-
uation versions downloaded.

1.4. Problem reports

Please send problem reports or comments to support@gaisler.com.

1SPARC is a registered trademark of SPARC International

http://www.gaisler.com

TSIM2 Simulator User's Manual 2

2. Installation

2.1. General

TSIM is distributed as a tar-file (e.g. tsim-erc32-2.0.39.tar.gz) with the following contents:

Table 2.1. TSIM content

doc TSIM documentation

samples Sample programs

iomod Example I/O modules

tsim/cygwin TSIM binary for cygwin

tsim/linux TSIM binary for linux

tsim/linux-x64 TSIM binary for linux-x64

tsim/solaris TSIM binary for solaris

tsim/win32 TSIM binary for native windows

tlib/cygwin TSIM library for cygwin

tlib/linux TSIM library for linux

tlib/linux-x64 TSIM library for linux-x64

tlib/solaris TSIM library for solaris

tlib/win32 TSIM library for native windows

The tar-file can be installed at any location with the following command:

gunzip -c tsim-erc32-2.0.39.tar.gz | tar xf -

2.2. License installation

TSIM is licensed using a HASP USB hardware key. Before use, a device driver for the key must be installed.
The latest drivers can be found at http://sentinelcustomer.safenet-inc.com/sentineldownloads.

http://sentinelcustomer.safenet-inc.com/sentineldownloads/?s=&c=End+User&p=HASP+HL&o=all&t=Runtime+%26+Device+Driver&l=all

TSIM2 Simulator User's Manual 3

3. Operation

3.1. Overview

TSIM can operate in two modes: standalone and attached to gdb. In standalone mode, ERC32 or LEON
applications can be loaded and simulated using a command line interface. A number of commands are
available to examine data, insert breakpoints and advance simulation. When attached to gdb, TSIM acts as a
remote gdb target, and applications are loaded and debugged through gdb (or a gdb front-end such as ddd).

3.2. Starting TSIM

TSIM is started as follows on a command line:

tsim-erc32 [options] [input_files]

tsim-leon [options] [input_files]

tsim-leon3 [options] [input_files]

tsim-leon4 [options] [input_files]

The following command line options are supported by TSIM:

-ahbm ahb_module
Use ahb_module as loadable AHB module rather than the default ahb.so (LEON only). If multi-
ple -ahbm switches are specified up to 16 AHB modules can be loaded. The enviromental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

-ahbstatus
Adds AHB status register support.

-asi1noallocate
Makes ASI 1 reads not allocate cache lines (LEON3/4 only).

-at697e
Configure caches according to the Atmel AT697E device (LEON2 only).

-banks ram_banks
Sets how many RAM banks the SRAM is divided on. Supported values are 1, 2 or 4. Default is 1.
(LEON only).

-bopt
Enables idle-loop optimisation (see Section 4.1.5).

-bp
Enables emulation of LEON3/4 branch prediction

-c file
Reads commands from file and executes them at startup.

-cfg file
Reads extra configuration options from file.

-cfgreg_and and_mask, -cfgreg_or or_mask
LEON2 only: Patch the Leon Configuration Register (0x80000024). The new value will be: (reg &
and_mask)| or_mask.

-covtrans
Enable MMU translations for the coverage system. Needed when MMU is enabled and not mapping
1-to-1.

TSIM2 Simulator User's Manual 4

-cpm cp_module
Use cp_module as loadable co-processor module file name (LEON). The enviromental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

-cas
When running a VXWORKS SMP image the SPARCV9 “casa” instruction is used. The option -cas
enables this instruction (LEON3/4 only).

-dcsize size
Defines the set-size (KiB) of the LEON data cache. Allowed values are powers of two in the range 1 -
64 for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.

-dlock
Enable data cache line locking. Default is disabled. (LEON only).

-dlram addr size
Allocates size KiB of local dcache scratchpad memory at address addr. (LEON3/4)

-dlsize size
Sets the line size of the LEON data cache (in bytes). Allowed values are 16 or 32. Default is 16.

-drepl repl
Sets the replacement algorithm for the LEON data cache. Allowed values are rnd (default for LEON2)
for random replacement, lru (default for LEON3/4) for the least-recently-used replacement algorithm
and lrr for the least-recently-replaced replacement algorithm.

-dsets sets
Defines the number of sets in the LEON data cache. Allowed values are 1 - 4.

-exc2b
Issue 0x2b memory exception on memory write store error (LEON2 only)

-ext nr
Enable extended irq ctrl with extended irq number nr (LEON3/4 only)

-fast_uart
Run UARTs at infinite speed, rather than with correct (slow) baud rate.

-fpm fp_module
Use fp_module as loadable FPU module rather than the default fp.so (LEON only). The enviromental
variable TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

-freq system_clock
Sets the simulated system clock (MHz). Will affect UART timing and performance statistics. Default
is 14 for ERC32 and 50 for LEON.

-gdb
Listen for GDB connection directly at start-up.

-gdbuartfwd
Forward output from first UART to GDB.

-gr702rc
Set cache parameters to emulate the GR702RC device.

-gr712rc
Set parameters to emulate the GR712RC device. Must be used when using the GR712 AHB module.

-grfpu
Emulate the GRFPU floating point unit, rather then Meiko or GRFPU-lite (LEON only).

-hwbp
Use TSIM hardware breakpoints for gdb breakpoints.

TSIM2 Simulator User's Manual 5

-icsize size
Defines the set-size (KiB) of the LEON instruction cache. Allowed values are powers of two in the
range 1 - 64 for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.

-ift
Generate illegal instruction trap on IFLUSH. Emulates the IFT input on the ERC32 processor.

-ilock
Enable instruction cache line locking. Default is disabled.

-ilram addr size
Allocates size bytes of local icache scratchpad memory at address addr. (LEON3/4)

-ilsize size
Sets the line size of the LEON instruction cache (in bytes). Allowed values are 16 or 32. Default is 16
for LEON2/3 and 32 for LEON4.

-iom io_module
Use io_module as loadable I/O module rather than the default io.so. The enviromental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

-irepl repl
Sets the replacement algorithm for the LEON instruction cache. Allowed values are rnd (default for
LEON2) for random replacement, lru (default for LEON3/4) for the least-recently-used replacement
algorithm and lrr for the least-recently-replaced replacement algorithm.

-isets sets
Defines the number of sets in the LEON instruction cache. Allowed values are 1(default) - 4.

-iwde
Set the IWDE input to 1. Default is 0. (TSC695E only)

-l2wsize size
Enable emulation of L2 cache (LEON4 only) with size KiB. The size must be binary aligned (e.g.
16, 32, 64 ...).

-logfile filename
Logs the console output to filename. If filename is preceded by ‘+’ output is append.

-mfailok
Do not fail on startup even if explicitely requested io/ahb modules fails to load.

-mflat
This switch should be used when the application software has been compiled with the gcc -mflat
option, and debugging with gdb is done.

-mmu
Adds MMU support (LEON only).

-nb
Do not break on error exceptions when debugging through GDB.

-nfp
Disables the FPU to emulate system without FP hardware. Any FP instruction will generate an FP
disabled trap.

-nomac
Disable LEON MAC instruction. (LEON only).

-noeditline
Disable use of editline for history and tab completion.

TSIM2 Simulator User's Manual 6

-nosram
Disable SRAM on startup. SDRAM will appear at 0x40000000 (LEON only).

-nothreads
Disable threads support.

-notimers
Disable the LEON timer unit.

-nouart
Disable emulation of UARTs. All access to UART registers will be routed to the I/O module.

-nov8
Disable SPARC V8 MUL/DIV instructions (LEON only).

-nrtimers val
Adds support for more than 2 timers. Value val can be in the range of 2 - 8 (LEON3/4 only). Default:
2. See also the -sametimerirq and -timerirqbase number switches.

-numbp num
Sets the upper limit on number of possible breakpoints.

-numwp num
Sets the upper limit on number of possible watchpoints.

-nwin win
Defines the number of register windows in the processor. The default is 8. Only applicable to LEON3/4.

-port portnum
Use portnum for gdb communication (port 1234 is default)

-pr
Enable profiling.

-ram ram_size
Sets the amount of simulated RAM (KiB). Default is 4096.

-rest file_name
Restore saved state from file_name.tss. See Section 3.8.

-rom rom_size
Sets the amount of simulated ROM (KiB). Default is 2048.

-rom8, -rom16
By default, the PROM area at reset time is considered to be 32-bit. Specifying -rom8 or -rom16 will
initialise the memory width field in the memory configuration register to 8- or 16-bits. The only visible
difference is in the instruction timing.

-rtems ver
Override autodetected RTEMS version for thread support. ver should be 46, 48, 48-edisoft or 410.

-sametimerirq
Force the irq number to be the same for all timers. Default: separate increasing irqs for each timer.
(LEON3/4 only). See also the -nrtimers val and -timerirqbase number switches.

-sdram sdram_size
Sets the amount of simulated SDRAM (MiB). Default is 0. (LEON only)

-sdbanks <1|2>
Sets the SDRAM banks. This parameter is used to calculate the used SDRAM in conjunction with the
mcfg2.sdramsize field. The actually used SDRAM at runtime is sdbanks*mcfg2.sdramsize. Default:1
(LEON only)

TSIM2 Simulator User's Manual 7

-sym file
Read symbols from file. Useful for self-extracting applications

-timer32
Use 32 bit timers instead of 24 bit. (LEON2 only)

-timerirqbase number
Set the irq number of the first timer to interrupt number number (LEON3/4 only). Default: 8. See also
the -nrtimers val and -sametimerirq switches.

-tsc691
Emulate the TSC691 device, rather than TSC695

-tsc695e
Obsolete. TSIM/ERC32 now always emulates the TSC695 device rather that the early ERC32 chip-set.

-uartX device
Here X, can be 1 or 2. By default, UART1 is connected to stdin/stdout and UART2 is disconnected. This
switch can be used to connect the uarts to other devices. E.g., ‘-uart1 /dev/ptypc’ will attach UART1 to
ptypc. On Linux ‘-uart1 /dev/ptmx‘ can be used in which case the pseudo terminal slave’s name to use
will be printed. If you use minicom to connect to the uart then use minicom’s -p <pseudo termi-
nal> option. On windows use //./com1, //./com2 etc. to access the serial ports. The serial port settings
can be adjusted by doubleclicking the “Ports (COM and LPT)” entry in controlpanel->system->hard-
ware->devicemanager. Use the “Port Setting” tab in the dialogue that pops up.

-ut699
Set parameters to emulate the UT699 device. Must be used when using the UT699 AHB module.

-ut699e
Set parameters to emulate the UT699E device. Must be used when using the UT699E AHB module.

-ut700
Set parameters to emulate the UT700 device. Must be used when using the UT700 AHB module.

-wdfreq freq
Specify the frequency of the watchdog clock. (ERC32 only)

input_files
Executable files to be loaded into memory. The input file is loaded into the emulated memory according
to the entry point for each segment. Recognized formats are elf32, aout and srecords.

Command line options can also be specified in the file .tsimcfg in the home directory. This file will be read
at startup and the contents will be appended to the command line.

3.3. Standalone mode commands

If the file .tsimrc exists in the home directory, it will be used as a batch file and the commands in it will
be executed at startup.

Below is a description of commands that are recognized by the simulator when used in standalone mode:

batch file
Execute a batch file of TSIM commands.

+bp, break address
Adds an breakpoint at address.

bp, break
Prints all breakpoints and watchpoints.

-bp, del [num]
Deletes breakpoint/watchpoint num. If num is omitted, all breakpoints and watchpoints are deleted.

TSIM2 Simulator User's Manual 8

bt
Print backtrace.

cont [count/time]
Continue execution at present position. See the go [address] [count/time] command for how
to specify count or time.

coverage <enable | disable | save [file_name] | clear | print address [len]>
Code coverage control. Coverage can be enabled, disabled, cleared, saved to a file or printed to the
console.

dump file address length
Dumps memory content to file file, in whole aligned words. The address argument can be a sym-
bol.

dis [addr] [count]
Disassemble [count] instructions at address [addr]. Default values for count is 16 and addr is the
program counter address.

echo string
Print string to the simulator window.

edac [clear | cerr | merr address]
Insert EDAC errors, or clear EDAC checksums (ERC32 only)

event
Print events in the event queue. Only user-inserted events are printed.

flush [all | icache | dcache | addr]
Flush the LEON caches. Specifying all will flush both the icache and dcache. Specifying icache or
dcache will flush the respective cache. Specifying addr will flush the corresponding line in both
caches.

float
Prints the FPU registers

gdb
Listen for gdb connection.

go [address] [count/time]
The go command will set pc to address and npc to address + 4, and resume execution. No other
initialisation will be done. If address is not given, the default load address will be assumed. If a count is
specified, execution will stop after the specified number of instructions. If a time is given, execution will
continue until time is reached (relative to the current time). The time can be given in micro-seconds,
milliseconds, seconds, minutes, hours or days by adding ‘us’, ‘ms’, ‘s’, ‘min’, ‘h’ or ‘d’ to the time
expression. Example: go 0x40000000 400 ms.

NOTE: For the go command, if the count/time parameter is given, address must be specified.

help
Print a small help menu for the TSIM commands.

hist [length]
Enable the instruction trace buffer. The length last executed instructions will be placed in the trace
buffer. A hist command without length will display the trace buffer. Specifying a zero trace length
will disable the trace buffer. See the inst [length] command for displaying only a part of the in-
struction trace buffer.

icache, dcache
Dumps the contents of tag and data cache memories (LEON only).

TSIM2 Simulator User's Manual 9

inc time
Increment simulator time without executing instructions. Time is given in the same format as for the go
command. Event queue is evaluated during the advancement of time.

inst [length]
Display the latest length (default 30) instructions in the instruction trace buffer. See the hist
[length] command for how to enable the instruction trace buffer.

leon
Display LEON peripherals registers.

load files
Load files into simulator memory.

l2cache
Display contents of L2 cache. (LEON4 only)

mec
Display ERC32 MEC registers.

mem [addr] [count]
Display memory at addr for count bytes. Same default values as for dis. Unimplemented registers
are displayed as zero.

vmem [vaddr] [count]
Same as mem but does a MMU translation on vaddr first (LEON only).

mmu
Display the MMU registers (LEON only).

quit
Exits the simulator.

perf [reset]
The perf command will display various execution statistics. A ‘perf reset’ command will reset the
statistics. This can be used if statistics shall be calculated only over a part of the program. The run and
reset command also resets the statistic information.

prof [0|1] [stime]
Enable (‘prof 1’) or disable (‘prof 0’) profiling.Without parameters, profiling information is printed.
Default sampling period is 1000 clock cycles, but can be changed by specifying stime.

reg [reg_name value]
Prints and sets the IU registers in the current register window. reg without parameters prints the IU
registers. reg reg_name value sets the corresponding register to value. Valid register names are psr,
tbr, wim, y, g1-g7, o0-o7 and l0-l7. To view the other register windows, use reg wn, where n is 0 - 7.

reset
Performs a power-on reset. This command is equal to run 0.

restore file
Restore simulator state from file.

run [addr] [count/time]
Resets the simulator and starts execution from address addr, the default is 0. The event queue is emptied
but any set breakpoints remain. See the go [address] [count/time] command on how to specify
the time or count.

save file
Save simulator state to file.

TSIM2 Simulator User's Manual 10

step
Execute and disassemble one instruction. See also trace [num] .

sym [file]
Load symbol table from file. If file is omitted, prints current (.text) symbols.

trace [num]
Executes and disassembles unbounded or up to num instruction(s), until finished, hitting a break-
point/watchpoint or some other reason to stop.

version
Prints the TSIM version and build date.

walk address [iswrite|isid|issu]*
If the MMU is enabled printout a table walk for the given address. The flags iswrite, isid and issu are
specifying the context: iswrite for a write access (default read), isid for a icache access (default dcache),
issu for a supervisor access (default user).

watch address
Adds a watchpoint at address.

wmem, wmemh, wmemb address value
Write a word, half-word or byte directly to simulated memory.

xwmem asi address value
Write a word to simulated memory using ASI=asi. Applicable to LEON3/4.

Typing a ‘Ctrl-C’ will interrupt a running simulator. Short forms of the commands are allowed, e.g c, co,
or con, are all interpreted as cont.

3.4. Symbolic debug information

TSIM will automatically extract (.text) symbol information from elf-files. The symbols can be used where
an address is expected:

tsim> break main
breakpoint 3 at 0x020012f0: main
tsim> dis strcmp 5
02002c04 84120009 or %o0, %o1, %g2
02002c08 8088a003 andcc %g2, 0x3, %g0
02002c0c 3280001a bne,a 0x02002c74
02002c10 c64a0000 ldsb [%o0], %g3
02002c14 c6020000 ld [%o0], %g3

The sym command can be used to display all symbols, or to read in symbols from an alternate (elf) file:

tsim> sym /opt/rtems/src/examples/samples/dhry
read 234 symbols
tsim> sym
0x02000000 L _text_start
0x02000000 L _trap_table
0x02000000 L text_start
0x02000000 L start
0x0200102c L _window_overflow
0x02001084 L _window_underflow
0x020010dc L _fpdis
0x02001a4c T Proc_3

Reading symbols from alternate files is necessary when debugging self-extracting applications, such as
bootproms created with mkprom or linux/uClinux.

3.5. Breakpoints and watchpoints

TSIM supports execution breakpoints and write data watchpoints. In standalone mode, hardware breakpoints
are always used and no instrumentation of memory is made. When using the gdb interface, the gdb ‘break’

TSIM2 Simulator User's Manual 11

command normally uses software breakpoints by overwriting the breakpoint address with a ‘ta 1’ instruction.
Hardware breakpoints can be inserted by using the gdb ‘hbreak’ command or by starting tsim with -hwbp,
which will force the use of hardware breakpoints also for the gdb ‘break’ command. Data write watchpoints
are inserted using the ‘watch’ command. A watchpoint can only cover one word address, block watchpoints
are not available.

3.6. Profiling

The profiling function calculates the amount of execution time spent in each subroutine of the simulated
program. This is made without intervention or instrumentation of the code by periodically sample the exe-
cution point and the associated call tree. Cycles in the call graph are properly handled, as well as sections of
the code where no stack is available (e.g. trap handlers). The profiling information is printed as a list sorted
on highest execution time ration. Profiling is enabled through the prof 1 command. The sampling period is
by default 1000 clocks which typically provides a good compromise between accuracy and performance.
Other sampling periods can also be set through the prof 1 n command. Profiling can be disabled through
the prof 0 command. Below is an example profiling the dhrystone benchmark:

bash$tsim-erc32 /opt/rtems/src/examples/samples/dhry
tsim> pro 1
profiling enabled, sample period 1000
tsim> go
resuming at 0x02000000
Execution starts, 200000 runs through Dhrystone
Stopped at time 23375862 (1.670e+00 s)
tsim> pro
function samples ratio(%)
start 36144 100.00
_start 36144 100.00
main 36134 99.97
Proc_1 10476 28.98
Func_2 9885 27.34
strcmp 8161 22.57
Proc_8 2641 7.30
.div 2097 5.80
Proc_6 1412 3.90
Proc_3 1321 3.65
Proc_2 1187 3.28
.umul 1092 3.02
Func_1 777 2.14
Proc_7 772 2.13
Proc_4 731 2.02
Proc_5 453 1.25
Func_3 227 0.62
printf 8 0.02
vfprintf 8 0.02
_vfprintf_r 8 0.02

tsim>

3.7. Code coverage

To aid software verification, the professional version of TSIM includes support for code coverage. When en-
abled, code coverage keeps a record for each 32-bit word in the emulated memory and monitors whether the
location has been read, written or executed. The coverage function is controlled by the coverage command:

coverage enable enable coverage

coverage disable disable coverage

coverage save [filename] write coverage data to file (file name optional)

coverage print address [len] print coverage data to console, starting at address

coverage clear reset coverage data

The coverage data for each 32-bit word of memory consists of a 5-bit field, with bit0 (lsb) indicating that
the word has been executed, bit1 indicating that the word has been written, and bit2 that the word has been
read. Bit3 and bit4 indicates the presence of a branch instruction; if bit3 is set then the branch was taken
while bit4 is set if the branch was not taken.

TSIM2 Simulator User's Manual 12

As an example, a coverage data of 0x6 would indicate that the word has been read and written, while 0x1
would indicate that the word has been executed. When the coverage data is printed to the console or save to
a file, it is presented for one block of 32 words (128 bytes) per line:

tsim> cov print start
02000000 : 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
02000080 : 0
02000100 : 0
02000180 : 0

When the code coverage is saved to file, only blocks with at least one coverage field set are written to the
file. Block that have all the coverage fields set to zero are not saved in order to decrease the file size.

NOTE: Only the internally emulated memory (PROM, SRAM and SDRAM) are subject for code coverage.
Any memory emulated in the user's I/O module must be handled by a user-defined coverage function.

The address ranges that are monitored are based on TSIM's startup parameters. For instance, the range
corresponding to the SDRAM for LEON will begin at address 0x40000000 if TSIM was started with -
nosram or -ram 0, or will begin at 0x60000000 otherwise. Reconfiguration of the memory controller during
execution will not be taken into account for monitored address ranges. Coverage information on memory
reads will be recorded even for cache hits.

NOTE on MMU and coverage: The monitored ranges are based on physical addresses. The TSIM coverage
system does no address translations by default, for performance reasons. To get proper physical address
coverage when the MMU is is enabled and not mapping 1-to-1, use the -covtrans option. There is no
support for getting virtual address coverage.

When coverage is enabled, disassembly will include an extra column after the address, indicating the cov-
erage data. This makes it easier to analyse which instructions has not been executed:

tsim> di start
02000000 1 a0100000 clr %l0
02000004 1 29008004 sethi %hi(0x2001000), %l4
02000008 1 81c52000 jmp %l4
0200000c 1 01000000 nop
02000010 0 91d02000 ta 0x0
02000014 0 01000000 nop
02000018 0 01000000 nop

The coverage data is not saved or restored during check-pointing operations. When enabled, the coverage
function reduces the simulation performance of about 30%. When disabled, the coverage function does not
impact simulation performance. Individual coverage fields can be read and written using the TSIM function
interface using the tsim_coverage() call (see Section 6.2). Enabling and disabling the coverage func-
tionality from the function interface should be done using tsim_cmd().

Example scripts for annotating C code using saved coverage information from TSIM can be found in the
coverage sub-directory.

3.8. Check-pointing

The professional version of TSIM can save and restore its complete state, allowing to resume simulation
from a saved check-point. Saving the state is done with the save command:

tsim> save file_name

The state is saved to file_name.tss. To restore the state, use the restore command:
tsim> restore file_name

The state will be restored from file_name.tss. Restore directly at startup can be performed with the
‘-rest file_name’ command line switch.

NOTE: TSIM command line options are not stored (such as alternate UART devices, etc.).

TSIM2 Simulator User's Manual 13

NOTE: AT697, UT699, UT700 and GR712 simulation modules do not support check-pointing.

3.9. Performance

TSIM is highly optimised, and capable of simulating ERC32 systems faster than realtime. On high-end
Athlon processors, TSIM achieves more than 1 MIPS / 100 MHz (CPU frequency of host). Enabling various
debugging features such as watchpoints, profiling and code coverage can however reduce the simulation
performance with up to 40%.

3.10. Backtrace

The bt command will display the current call backtrace and associated stack pointer:

tsim> bt
 %pc %sp
 #0 0x0200190c 0x023ffcc8 Proc_1 + 0xf0
 #1 0x02001520 0x023ffd38 main + 0x230
 #2 0x02001208 0x023ffe00 _start + 0x60
 #3 0x02001014 0x023ffe40 start + 0x1014

3.11. Connecting to gdb

TSIM can act as a remote target for gdb, allowing symbolic debugging of target applications. To initiate gdb
communication, start the simulator with the -gdb switch or use the TSIM gdb command:

bash-2.04$./tsim -gdb

TSIM/LEON - remote SPARC simulator, build 2001.01.10 (demo version)
serial port A on stdin/stdout
allocated 4096 K RAM memory
allocated 2048 K ROM memory
gdb interface: using port 1234

Then, start gdb in a different window and connect to TSIM using the extended-remote protocol:

bash-2.04$ sparc-rtems-gdb t4.exe
(gdb) target extended-remote localhost:1234
Remote debugging using localhost:1234
0x0 in ?? ()
(gdb)

To interrupt simulation, Ctrl-C can be typed in both gdb and TSIM windows. The program can be restarted
using the gdb run command but a load has first to be executed to reload the program image into the simulator:

(gdb) load
Loading section .text, size 0x14e50 lma 0x40000000
Loading section .data, size 0x640 lma 0x40014e50
Start address 0x40000000 , load size 87184
Transfer rate: 697472 bits/sec, 278 bytes/write.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/jgais/src/gnc/t4.exe

If gdb is detached using the detach command, the simulator returns to the command prompt, and the program
can be debugged using the standard TSIM commands. The simulator can also be re-attached to gdb by
issuing the gdb command to the simulator (and the target command to gdb). While attached, normal TSIM
commands can be executed using the gdb monitor command. Output from the TSIM commands is then
displayed in the gdb console.

TSIM translates SPARC traps into (Unix) signals which are properly communicated to gdb. If the application
encounters a fatal trap, simulation will be stopped exactly on the failing instruction. The target memory and
register values can then be examined in gdb to determine the error cause.

TSIM2 Simulator User's Manual 14

Profiling an application executed from gdb is possible if the symbol table is loaded in TSIM before execution
is started. gdb does not download the symbol information to TSIM, so the symbol table should be loaded
using the monitor command:

 (gdb) monitor sym t4.exe
 read 158 symbols

When an application that has been compiled using the gcc -mflat option is debugged through gdb, TSIM
should be started with -mflat in order to generate the correct stack frames to gdb.

3.12. Thread support

TSIM has thread support for the RTEMS operating system. Additional OS support will be added to future
versions. The GDB interface of TSIM is also thread aware and the related GDB commands are described
later.

3.12.1. TSIM thread commands

thread info - lists all known threads. The currently running thread is marked with an asterisk. (The wide
example output below has been split into two parts.)

tsim> thread info

 Name | Type | Id | Prio | Time (h:m:s) | Entry point ...
-- ...
 Int. | internal | 0x09010001 | 255 | 5:30.682722 | bsp_idle_thread ...
-- ...
 UI1 | classic | 0x0a010001 | 100 | 0.041217 | system_init ...
-- ...
 ntwk | classic | 0x0a010002 | 100 | 0.251199 | soconnsleep ...
-- ...
 ETH0 | classic | 0x0a010003 | 100 | 0.000161 | soconnsleep ...
-- ...
* TA1 | classic | 0x0a010004 | 1 | 0.034739 | prep_timer ...
-- ...
 TA2 | classic | 0x0a010005 | 1 | 0.025740 | prep_timer ...
-- ...
 TA3 | classic | 0x0a010006 | 1 | 0.021357 | prep_timer ...
-- ...
 TTCP | classic | 0x0a010007 | 100 | 0.002914 | rtems_ttcp_main ...
-- ...

... | PC | State

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | READY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | SUSP

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | READY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | Wevnt

... ---

... | 0x40006a28 printf + 0x4 | READY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | DELAY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | DELAY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | Wevnt

... ---

thread bt id prints a backtrace of a thread.

tsim> thread bt 0x0a010007

 %%pc
#0 0x40044bec _Thread_Dispatch + 0xd8
#1 0x400418f8 rtems_event_receive + 0x74
#2 0x40031eb4 rtems_bsdnet_event_receive + 0x18

TSIM2 Simulator User's Manual 15

#3 0x40032050 soconnsleep + 0x50
#4 0x40033d48 accept + 0x60
#5 0x4000366c rtems_ttcp_main + 0xda0

A backtrace of the current thread (equivalent to normal bt command):

tsim> thread bt
 %pc %sp
#0 0x40006a28 0x4008d7d0 printf + 0x0
#1 0x40001c04 0x4008d838 Test_task + 0x178
#2 0x4005c88c 0x4008d8d0 _Thread_Handler + 0xfc
#3 0x4005c78c 0x4008d930 _Thread_Evaluate_mode + 0x58

3.12.2. GDB thread commands

TSIM needs the symbolic information of the image that is being debugged to be able to check for thread
information. Therefore the symbols needs to be read from the image using the sym command before issuing
the gdb command. When a program running in GDB stops TSIM reports which thread it is in. The command
info threads can be used in GDB to list all known threads.

Program received signal SIGINT, Interrupt.
[Switching to Thread 167837703]

0x40001b5c in console_outbyte_polled (port=0, ch=113 ’q’) at ../../../../../../../../../rtems-
4.6.5/c/src/lib/libbsp/sparc/leon3/console/debugputs.c:38
38 while ((LEON3_Console_Uart[LEON3_Cpu_Index+port]->status & LEON_REG_UART_STATUS_THE)
== 0);

(gdb) info threads

 8 Thread 167837702 (FTPD Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 7 Thread 167837701 (FTPa Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 6 Thread 167837700 (DCtx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 5 Thread 167837699 (DCrx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 4 Thread 167837698 (ntwk ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 3 Thread 167837697 (UI1 ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 2 Thread 151060481 (Int. ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
* 1 Thread 167837703 (HTPD ready) 0x40001b5c in console_outbyte_polled (port=0, ch=113 ’q’)
 at ../../../../../../../../../rtems-4.6.5/c/src/lib/libbsp/sparc/leon3/console/debugputs.c:38

Using the thread command a specified thread can be selected:

(gdb) thread 8

[Switching to thread 8 (Thread 167837702)]#0 0x4002f760 in _Thread_Dispatch () at ../../../../
../../rtems-4.6.5/cpukit/score/src/threaddispatch.c:109
109 _Context_Switch(&executing->Registers, &heir->Registers);

Then a backtrace of the selected thread can be printed using the bt command:

(gdb) bt

#0 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-4.6.5/cpukit/score/src/thread-
dispatch.c:109
#1 0x40013ee0 in rtems_event_receive (event_in=33554432, option_set=0, ticks=0,
event_out=0x43fecc14)
 at ../../../../leon3/lib/include/rtems/score/thread.inl:205
#2 0x4002782c in rtems_bsdnet_event_receive (event_in=33554432, option_set=2, ticks=0,
event_out=0x43fecc14)
 at ../../../../../../rtems-4.6.5/cpukit/libnetworking/rtems/rtems_glue.c:641
#3 0x40027548 in soconnsleep (so=0x43f0cd70) at ../../../../../../rtems-4.6.5/cpukit/libnetwork-
ing/rtems/rtems_glue.c:465
#4 0x40029118 in accept (s=3, name=0x43feccf0, namelen=0x43feccec) at ../../../../../../rtems-
4.6.5/cpukit/libnetworking/rtems/rtems_syscall.c:215
#5 0x40004028 in daemon () at ../../../../../../rtems-4.6.5/c/src/libnetworking/rtems_servers/
ftpd.c:1925
#6 0x40053388 in _Thread_Handler () at ../../../../../../rtems-4.6.5/cpukit/score/src/threadhan-
dler.c:123

TSIM2 Simulator User's Manual 16

#7 0x40053270 in __res_mkquery (op=0, dname=0x0, class=0, type=0, data=0x0, datalen=0,
newrr_in=0x0, buf=0x0, buflen=0)
 at ../../../../../../../rtems-4.6.5/cpukit/libnetworking/libc/res_mkquery.c:199

It is possible to use the frame command to select a stack frame of interest and examine the registers using
the info registers command. Note that the info registers command only can see the following registers for
an inactive task: g0-g7, l0-l7, i0-i7, o0-o7, pc and psr. The other registers will be displayed as 0:

(gdb) frame 5

#5 0x40004028 in daemon () at ../../../../../../rtems-4.6.5/c/src/libnetworking/rtems_servers/
ftpd.c:1925
1925 ss = accept(s, (struct sockaddr *)&addr, &addrLen);

(gdb) info reg

g0 0x0 0
g1 0x0 0
g2 0xffffffff -1
g3 0x0 0
g4 0x0 0
g5 0x0 0
g6 0x0 0
g7 0x0 0
o0 0x3 3
o1 0x43feccf0 1140772080
o2 0x43feccec 1140772076
o3 0x0 0
o4 0xf34000e4 -213909276
o5 0x4007cc00 1074252800
sp 0x43fecc88 0x43fecc88
o7 0x40004020 1073758240
10 0x4007ce88 1074253448
11 0x4007ce88 1074253448
12 0x400048fc 1073760508
13 0x43feccf0 1140772080
14 0x3 3
15 0x1 1
16 0x0 0
17 0x0 0
i0 0x0 0
i1 0x40003f94 1073758100
i2 0x0 0
i3 0x43ffafc8 1140830152
i4 0x0 0
i5 0x4007cd40 1074253120
fp 0x43fecd08 0x43fecd08
i7 0x40053380 1074082688
y 0x0 0
psr 0xf34000e0 -213909280
wim 0x0 0
tbr 0x0 0
pc 0x40004028 0x40004028 <daemon+148>
npc 0x4000402c 0x4000402c <daemon+152>
fsr 0x0 0
csr 0x0 0

It is not supported to set thread specific breakpoints. All breakpoints are global and stops the execution of
all threads. It is not possible to change the value of registers other than those of the current thread.

TSIM2 Simulator User's Manual 17

4. Emulation characteristics

4.1. Common behaviour

4.1.1. Timing

The simulator time is maintained and incremented according the IU and FPU instruction timing. The par-
allel execution between the IU and FPU is modelled, as well as stalls due to operand dependencies. In-
struction timing has been modelled after the real devices. Integer instructions have a higher accuracy than
floating-point instructions due to the somewhat unpredictable operand-dependent timing of the ERC32 and
LEON MEIKO FPU. Typical usage patterns have higher accuracy than atypical ones, e.g. having vs. not
having caches enabled on LEON systems. Tracing using the inst or hist command will display the current
simulator time in the left column. This time indicates when the instruction is fetched. Cache misses, wait-
states or data dependencies will delay the following fetch according to the incurred delay.

4.1.2. UARTs

If the baudrate register is written by the application software, the UARTs will operate with correct timing.
If the baudrate is left at the default value, or if the -fast_uart switch was used, the UARTs operate
at infinite speed. This means that the transmitter holding register always is empty and a transmitter empty
interrupt is generated directly after each write to the transmitter data register. The receivers can never over-
flow or generate errors.

Note that with correct UART timing, it is possible that the last character of a program is not displayed on
the console. This can happen if the program forces the processor in error mode, thereby terminating the
simulation, before the last character has been shifted out from the transmitter shift register. To avoid this,
an application should poll the UART status register and not force the processor in error mode before the
transmitter shift registers are empty. The real hardware does not exhibit this problem since the UARTs
continue to operate even when the processor is halted.

4.1.3. Floating point unit (FPU)

The simulator maps floating-point operations on the hosts floating point capabilities. This means that ac-
curacy and generation of IEEE exceptions is host dependent and will not always be identical to the actual
ERC32/LEON hardware. The simulator implements (to some extent) data-dependant execution timing as
in the real MEKIO FPU (ERC32/LEON2). For LEON3/4, the -grfpu switch will enable emulation of the
GRFPU instruction timing.

4.1.4. Delayed write to special registers

The SPARC architecture defines that a write to the special registers (%psr, %wim, %tbr, %fsr, %y) may have
up to 3 delay cycles, meaning that up to 3 of the instructions following a special register write might not ‘see’
the newly written value due to pipeline effects. While ERC32 and LEON have between 2 and 3 delay cycles,
TSIM has 0. This does not affect simulation accuracy or timing as long as the SPARC ABI recommendations
are followed that each special register write must always be followed by three NOP. If the three NOP are
left out, the software might fail on real hardware while still executing ‘correctly’ on the simulator.

4.1.5. Idle-loop optimisation

To minimise power consumption, LEON and ERC32 applications will typically place the processor in pow-
er-down mode when the idle task is scheduled in the operation system. In power-down mode, TSIM incre-
ments the event queue without executing any instructions, thereby significantly improving simulation per-
formance. However, some (poorly written) code might use a busy loop (BA 0) instead of triggering pow-
er-down mode. The -bopt switch will enable a detection mechanism which will identify such behaviour
and optimise the simulation as if the power-down mode was entered.

4.1.6. Custom instruction emulation

TSIM/LEON allows the emulation of custom (non-SPARC) instructions. A handler for non-standard in-
struction can be installed using the tsim_ext_ins() callback function (see Section 6.2). The function handler

TSIM2 Simulator User's Manual 18

is called each time an instruction is encountered that would cause an unimplemented instruction trap. The
handler is passed the opcode and all processor registers in a pointer, allowing it to decode and emulate a
custom instruction, and update the processor state.

The definition for the custom instruction handler is:

int myhandler (struct ins_interface *r);

The pointer *r is a structure containing the current instruction opcode and processor state:

struct ins_interface {
 uint32 psr; /* Processor status registers */
 uint32 tbr; /* Trap base register */
 uint32 wim; /* Window maks register */
 uint32 g[8]; /* Global registers */
 uint32 r[128]; /* Windowed register file */
 uint32 y; /* Y register */
 uint32 pc; /* Program counter *
 uint32 npc; /* Next program counter */
 uint32 inst; /* Current instruction */
 uint32 icnt; /* Clock cycles in curr inst */
 uint32 asr17;
 uint32 asr18;
};

SPARC uses an overlapping windowed register file, and accessing registers must be done using the current
window pointer (%psr[4:0]). To access registers %r8 - %r31 in the current window, use:

 cwp = r->psr & 7;
 regval = r->r[((cwp << 4) + RS1) % (nwindows * 16)];

Note that global registers (%r0 - %r7) should always be accessed by r->g[RS1].

The return value of the custom handler indicates which trap the emulated instruction has generated, or 0
if no trap was caused. If the handler could not decode the instruction, 2 should be returned to cause an
unimplemented instruction trap.

The number of clocks consumed by the instruction should be returned in r->icnt; This value is by default 1,
which corresponds to a fully pipelined instruction without data interlock. The handler should not increment
the %pc or %npc registers, as this is done by TSIM.

4.1.7. Chip-specific errata

Incorrect behavior described in errata documents for specific devices are not emulated by TSIM in general.

4.2. ERC32 specific emulation

4.2.1. Processor emulation

TSIM/ERC32 emulates the behaviour of the TSC695 processor from Atmel by default. The parallel execu-
tion between the IU and FPU is modelled, as well as stalls due to operand dependencies (IU & FPU). Starting
TSIM with the -tsc691 will enable TSC691 emulation (3-chip ERC32).

4.2.2. MEC emulation

The following table outlines the implemented MEC registers:

Table 4.1. Implemented MEC registers

Register Address Status

MEC control register 0x01f80000 implemented

Software reset register 0x01f80004 implemented

Power-down register 0x01f80008 implemented

TSIM2 Simulator User's Manual 19

Register Address Status

Memory configuration register 0x01f80010 partly implemented

IO configuration register 0x01f80014 implemented

Waitstate configuration register 0x01f80018 implemented

Access protection base register 1 0x01f80020 implemented

Access protection end register 1 0x01f80024 implemented

Access protection base register 2 0x01f80028 implemented

Access protection end register 2 0x01f8002c implemented

Interrupt shape register 0x01f80044 implemented

Interrupt pending register 0x01f80048 implemented

Interrupt mask register 0x01f8004c implemented

Interrupt clear register 0x01f80050 implemented

Interrupt force register 0x01f80054 implemented

Watchdog acknowledge register 0x01f80060 implemented

Watchdog trap door register 0x01f80064 implemented

RTC counter register 0x01f80080 implemented

RTC counter program register 0x01f80080 implemented

RTC scaler register 0x01f80084 implemented

RTC scaler program register 0x01f80084 implemented

GPT counter register 0x01f80088 implemented

GPT counter program register 0x01f80088 implemented

GPT scaler register 0x01f8008c implemented

GPT scaler program register 0x01f8008c implemented

Timer control register 0x01f80098 implemented

System fault status register 0x01f800A0 implemented

First failing address register 0x01f800A4 implemented

GPI configuration register 0x01f800A8 I/O module callback

GPI data register 0x01f800AC I/O module callback

Error and reset status register 0x01f800B0 implemented

Test control register 0x01f800D0 implemented

UART A RX/TX register 0x01f800E0 implemented

UART B RX/TX register 0x01f800E4 implemented

UART status register 0x01f800E8 implemented

The MEC registers can be displayed with the mec command, or using mem (‘mem 0x1f80000 256’). The
registers can also be written using wmem (e.g. ‘wmem 0x1f80000 0x1234’). When written, care has to be
taken not to write an unimplemented register bit with ‘1’, or a MEC parity error will occur.

4.2.3. Interrupt controller

Internal interrupts are generated as defined in the MEC specification. All 15 interrupts can be tested via the
interrupt force register. External interrupts can be generated through loadable modules.

4.2.4. Watchdog

The watchdog timer operate as defined in the MEC specification. The frequency of the watchdog clock can
be specified using the -wdfreq switch. The frequency is specified in MHz.

TSIM2 Simulator User's Manual 20

4.2.5. Power-down mode

The power-down register (0x01f800008) is implemented as in the specification. A Ctrl-C in the simulator
window will exit the power-down mode. In power-down mode, the simulator skips time until the next event
in the event queue, thereby significantly increasing the simulation speed.

4.2.6. Memory emulation

The amount of simulated memory is configured through the -ram and -rom switches. The RAM size can
be between 256 KiB and 32 MiB, the ROM size between 128 KiB and 4 MiB. Access to unimplemented
MEC registers or non-existing memory will result in a memory exception trap.

The memory configuration register is used to decode the simulated memory. The fields RSIZ and PSIZ are
used to set RAM and ROM size, the remaining fields are not used.

NOTE: After reset, the MEC is set to decode 128 KiB of ROM and 256 KiB of RAM. The memory config-
uration register has to be updated to reflect the available memory. The waitstate configuration register is
used to generate waitstates. This register must also be updated with the correct configuration after reset.

4.2.7. EDAC operation

The EDAC operation of ERC32 is implemented on the simulated RAM area (0x2000000 - 0x2FFFFFF).
The ERC32 Test Control Register can be used to enable the EDAC test mode and insert EDAC errors to
test the operation of the EDAC. The edac command can be used to monitor the number of errors in the
memory, to insert new errors, or clear all errors. To see the current memory status, use the edac command
without parameters:

tsim> edac
RAM error count : 2
 0x20000000 : MERR
 0x20000040 : CERR

TSIM keeps track of the number of errors currently present, and reports the total error count, the address of
each error, and its type. The errors can either be correctable (CERR) or non-correctable (MERR). To insert
an error using the edac command, do ‘edac cerr addr’ or ‘edac merr addr’ :

tsim> edac cerr 0x2000000
correctable error at 0x02000000
tsim> edac
RAM error count : 1
 0x20000000 : CERR

To remove all injected errors, do edac clear. When accessing a location with an EDAC error, the behaviour
of TSIM is identical to the real hardware. A correctable error will trigger interrupt 1, while un-correctable
errors will cause a memory exception. The operation of the FSFR and FAR registers are fully implemented.

NOTE: The EDAC operation affect simulator performance when there are inserted errors in the memory. To
obtain maximum simulation performance, any diagnostic software should remove all inserted errors after
having performed an EDAC test.

4.2.8. Extended RAM and I/O areas

TSIM allows emulation of user defined I/O devices through loadable modules. EDAC emulation of extended
RAM areas is not supported.

4.2.9. SYSAV signal

TSIM emulates changes in the SYSAV output by calling the command() callback in the I/O module with
either “sysav 0” or “sysav 1” on each changes of SYSAV.

4.2.10. EXTINTACK signal

TSIM emulates assertion of the EXTINTACK output by calling the command() callback in the I/O module
with “extintack” on each assertion. Note that EXTINTACK is only asserted for one external interrupt as
programmed in the MEC interrupt shape register.

TSIM2 Simulator User's Manual 21

4.2.11. IWDE signal

The TSC695E processor input signal can be controlled by the -iwde switch at start-up. If the switch is
given, the IWDE signal will be high, and the internal watchdog enabled. If -iwde is not given, IWDE will
be low and the internal watchdog will be disabled. Note that the simulator must started in TSC695E-mode
using the -tsc695e switch, for this option to take effect.

4.3. LEON2 specific emulation

4.3.1. Processor

The LEON2 version of TSIM emulates the behavior of the LEON2 VHDL model. The (optional) MMU can
be emulated using the -mmu switch.

4.3.2. Cache memories

TSIM/LEON2 can emulate any permissible cache configuration using the -icsize, -ilsize, -dcsize
and -dlsize options. Allowed sizes are 1 - 64 KiB with 16 - 32 bytes/line. The characteristics of the LEON
multi-set caches can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock and -dlock
options. Diagnostic cache reads/writes are implemented. The simulator commands icache and dcache can
be used to display cache contents. Starting TSIM with -at697e will configure that caches according to
the Atmel AT697E device.

4.3.3. LEON peripherals registers

The LEON peripherals registers can be displayed with the leon command, or using mem (‘mem 0x80000000
256’). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234’).

4.3.4. Interrupt controller

External interrupts are not implemented, so the I/O port interrupt register has no function. Internal interrupts
are generated as defined in the LEON specification. All 15 interrupts can also be generated from the user
defined I/O module using the set_irq() callback.

4.3.5. Power-down mode

The power-down register 0x80000018) is implemented as in the specification. A Ctrl-C in the simulator
window will exit the power-down mode. In power-down mode, the simulator skips time until the next event
in the event queue, thereby significantly increasing the simulation speed.

4.3.6. Memory emulation

The memory configuration registers 1/2 are used to decode the simulated memory. The memory configura-
tion registers has to be programmed by software to reflect the available memory, and the number and size
of the memory banks. The waitstates fields must also be programmed with the correct configuration after
reset. Both SRAM and functionally modelled SDRAM (with SRAM timing) can be emulated.

Using the -banks option, it is possible to set over how many RAM banks the external SRAM is divided
in. Note that software compiled with BCC/RCC, and not run through mkprom must not use this option. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for
both mkprom and TSIM.

The memory EDAC of LEON2-FT is not implemented.

4.3.7. SPARC V8 MUL/DIV/MAC instructions

TSIM/LEON optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly em-
ulate LEON systems which do not implement these instructions, use the -nomac to disable the MAC in-
struction and/or -nov8 to disable multiply and divide instructions.

TSIM2 Simulator User's Manual 22

4.3.8. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

4.4. LEON3 specific emulation

4.4.1. General

The LEON3 version of TSIM emulates the behavior of the LEON3MP template VHDL model distribut-
ed in the GRLIB-1.0 IP library. The system includes the following modules: LEON3 processor, APB
bridge, IRQMP interrupt controller, LEON2 memory controller, GPTIMER timer unit with two 32-bit
timers, two APBUART uarts. The AHB/APB plug&play information is provided at address 0xFFFFF000 -
0xFFFFFFFF (AHB) and 0x800FF000 - 0x800FFFFF (APB).

4.4.2. Processor

The instruction timing of the emulated LEON3 processor is modelled after LEON3 VHDL model in GRLIB
IP library. The processor can be configured with 2 - 32 register windows using the -nwin switch. The
MMU can be emulated using the -mmu switch. Local scratch pad RAM can be added with the -ilram
and -dlram switches.

4.4.3. Cache memories

The evaluation version of TSIM/LEON3 implements 2*4 KiB caches, with 16 bytes per line. The commer-
cial TSIM version can emulate any permissible cache configuration using the -icsize, -ilsize, -dc-
size and -dlsize options. Allowed sizes are 1 - 256 KiB with 16 - 32 bytes/line. The characteristics of
the LEON multi-way caches can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock
and -dlock options. Diagnostic cache reads/writes are implemented. The simulator commands icache and
dcache can be used to display cache contents.

4.4.4. Power-down mode

The LEON3 power-down function is implemented as in the specification. A Ctrl-C in the simulator window
will exit the power-down mode. In power-down mode, the simulator skips time until the next event in the
event queue, thereby significantly increasing the simulation speed.

4.4.5. LEON3 peripherals registers

The LEON3 peripherals registers can be displayed with the leon command, or using mem (‘mem
0x80000000 256’). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234’).

4.4.6. Interrupt controller

The IRQMP interrupt controller is fully emulated as described in the GRLIB IP Manual. The IRQMP reg-
isters are mapped at address 0x80000200. All 15 interrupts can also be generated from the user-defined I/
O module using the set_irq() callback.

4.4.7. Memory emulation

The LEON2 memory controller is emulated in the LEON3 version of TSIM. The memory configuration
registers 1/2 are used to decode the simulated memory. The memory configuration registers has to be pro-
grammed by software to reflect the available memory, and the number and size of the memory banks. The
waitstates fields must also be programmed with the correct configuration after reset. Both SRAM and func-
tionally modelled SDRAM (with SRAM timing) can be emulated.

Using the -banks option, it is possible to set over how many RAM banks the external SRAM is divided
in. Note that software compiled with BCC/RCC, and not run through mkprom must not use this option. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for
both mkprom and TSIM.

The memory EDAC of LEON3-FT is not implemented.

TSIM2 Simulator User's Manual 23

Options regarding memory characteristics are not available in the evaluation version of TSIM/LEON3.

4.4.8. CASA instruction

The SPARCV9 “casa” command is implemented if the -cas switch is given. The “casa” instruction is used
in VXWORKS SMP multiprocessing to synchronize using a lock free protocol.

4.4.9. SPARC V8 MUL/DIV/MAC instructions

TSIM/LEON3 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly em-
ulate LEON systems which do not implement these instructions, use the -nomac to disable the MAC in-
struction and/or -nov8 to disable multiply and divide instructions.

4.4.10. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

4.4.11. AHB status registers

When using -ahbstatus or a chip option for a chip that has AHB status registers, AHB status registers are
enabled. As TSIM/LEON3 does not emulate FT, the CE bit will never be set. Furthermore, the HMASTER
field is set to 0 when the CPU caused the error and 1 when any other master caused the error.

4.5. LEON4 specific emulation

4.5.1. General

The LEON4 version of TSIM emulates the behavior of the LEON4MP template VHDL model distributed
in the GRLIB-1.0.x IP library. The system includes the following modules: LEON4 processor, APB bridge,
IRQMP interrupt controller, LEON2 memory controller, L2 cache, GPTIMER timer unit with two 32-bit
timers, two APBUART uarts. The AHB/APB plug&play information is provided at address 0xFFFFF000 -
0xFFFFFFFF (AHB) and 0x800FF000 - 0x800FFFFF (APB).

4.5.2. Processor

The instruction timing of the emulated LEON4 processor is modelled after LEON4 VHDL model in GRLIB
IP library. The processor can be configured with 2 - 32 register windows using the -nwin switch. The
MMU can be emulated using the -mmu switch. Local scratch pad RAM can be added with the -ilram
and -dlram switches.

4.5.3. L1 Cache memories

TSIM/LEON4 can emulate any permissible cache configuration using the -icsize, -ilsize, -dcsize
and -dlsize options. Allowed sizes are 1 - 256 KiB with 16 - 32 bytes/line. The characteristics of the
LEON multi-set caches can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock and
-dlock options. Diagnostic cache reads/writes are implemented. The simulator commands icache and
dcache can be used to display cache contents.

4.5.4. L2 Cache memory

The LEON4 L2 cache is emulated, and placed between the memory controller and AHB bus. Both the PROM
and SRAM/SDRAM areas are cached in the L2. The size of the L2 cache is default 64 KiB, but can be
configured to any (binary aligned) size using the -l2wsize switch at start-up. Setting the size to 0 will
disable the L2 cache. The L2 cache is implemented with one way and 32 bytes/line. The contents of the L2
cache can be displayed with the l2cache command.

4.5.5. Power-down mode

The LEON4 power-down function is implemented as in the specification. A Ctrl-C in the simulator window
will exit the power-down mode. In power-down mode, the simulator skips time until the next event in the
event queue, thereby significantly increasing the simulation speed.

TSIM2 Simulator User's Manual 24

4.5.6. LEON4 peripherals registers

The LEON4 peripherals registers can be displayed with the leon command, or using mem (‘mem
0x80000000 256’). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234’).

4.5.7. Interrupt controller

The IRQMP interrupt controller is fully emulated as described in the GRLIB IP Manual. The IRQMP reg-
isters are mapped at address 0x80000200. All 15 interrupts can also be generated from the user-defined I/
O module using the set_irq() callback.

4.5.8. Memory emulation

The LEON2 memory controller is emulated in the LEON4 version of TSIM. The memory configuration
registers 1/2 are used to decode the simulated memory. The memory configuration registers has to be pro-
grammed by software to reflect the available memory, and the number and size of the memory banks. The
waitstates fields must also be programmed with the correct configuration after reset. Both SRAM and func-
tionally modelled SDRAM (with SRAM timing) can be emulated.

Using the -banks option, it is possible to set over how many RAM banks the external SRAM is divided
in. Note that software compiled with BCC/RCC, and not run through mkprom must not use this option. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for
both mkprom and TSIM.

The memory EDAC of LEON4-FT is not implemented.

4.5.9. CASA instruction

The SPARCV9 “casa” command is implemented if the -cas switch is given. The “casa” instruction is used
in VXWORKS SMP multiprocessing to synchronize using a lock free protocol.

4.5.10. SPARC V8 MUL/DIV/MAC instructions

TSIM/LEON4 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly em-
ulate LEON systems which do not implement these instructions, use the -nomac to disable the MAC in-
struction and/or -nov8 to disable multiply and divide instructions.

4.5.11. GRFPU emulation

By default, TSIM-LEON4 emulates the GRFPU-Lite FPU. If the simulator is started with -grfpu, the fully
pipelined GRFPU is emulated. Due to the complexity of the GRFPU, the instruction timing is approximated
and might show some discrepancies compared to the real hardware.

4.5.12. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

4.5.13. AHB status registers

When using -ahbstatus, AHB status registers are enabled. As TSIM/LEON4 does not emulate FT, the
CE bit will never be set. Furthermore, the HMASTER field is set to 0 when the CPU caused the error and
1 when any other master caused the error.

TSIM2 Simulator User's Manual 25

5. Loadable modules

5.1. TSIM I/O emulation interface

User-defined I/O devices can be loaded into the simulator through the use of loadable modules. As the real
processor, the simulator primarily interacts with the emulated device through read and write requests, while
the emulated device can optionally generate interrupts and DMA requests. This is implemented through the
module interface described below. The interface is made up of two parts; one that is exported by TSIM and
defines TSIM functions and data structures that can be used by the I/O device; and one that is exported by
the I/O device and allows TSIM to access the I/O device. Address decoding of the I/O devices is straight-
forward: All access that do not map on the internally emulated memory and control registers are forwarded
to the I/O module.

TSIM exports two structures: simif and ioif. The simif structure defines functions and data structures be-
longing to the simulator core, while ioif defines functions provided by system (ERC32/LEON) emulation.
At startup, TSIM searches for ‘io.so’ in the current directory, but the location of the module can be specified
using the -iom switch. Note that the module must be compiled to be position-independent, i.e. with the -
fPIC switch (gcc). The win32 version of TSIM loads io.dll instead of io.so. See the iomod directory in the
TSIM distribution for an example io.c and how to build the .so and .dll modules. The enviromental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

5.1.1. simif structure

The simif structure is defined in sim.h:

struct sim_options {
 int phys_ram;
 int phys_sdram;
 int phys_rom;
 double freq;
 double wdfreq;
};
struct sim_interface {
 struct sim_options *options; /* tsim command-line options */
 uint64 *simtime; /* current simulator time */
 void (*event)(void (*cfunc)(), uint32 arg, uint64 offset);
 void (*stop_event)(void (*cfunc)());
 int *irl; /* interrup request level */
 void (*sys_reset)(); /* reset processor */
 void (*sim_stop)(); /* stop simulation */
 char *args; /* concaterated argv */
 void (*stop_event_arg)(void (*cfunc)(),int arg,int op);

 /* Restorable events */
 unsigned short (*reg_revent)(void (*cfunc) (unsigned long arg));
 unsigned short (*reg_revent_prearg)(void (*cfunc) (unsigned long arg),
 unsigned long arg);
 int (*revent)(unsigned short index, unsigned long arg, uint64 offset);
 int (*revent_prearg)(unsigned short index, uint64 offset);
 void (*stop_revent)(unsigned short index);
};
struct sim_interface simif; /* exported simulator functions */

The elements in the structure has the following meaning:

struct sim_options *options;
Contains some tsim startup options. options.freq defines the clock frequency of the emulated processor
and can be used to correlate the simulator time to the real time.

uint64 *simtime;
Contains the current simulator time. Time is counted in clock cycles since start of simulation. To cal-
culate the elapsed real time, divide simtime with options.freq.

void (*event)(void (*cfunc)(), int arg, uint64 offset);
TSIM maintains an event queue to emulate time-dependant functions. The event() function inserts
an event in the event queue. An event consists of a function to be called when the event expires, an

TSIM2 Simulator User's Manual 26

argument with which the function is called, and an offset (relative the current time) defining when the
event should expire.

NOTE: The event() function may NOT be called from a signal handler installed by the I/O module,
but only from event callbacks or at start of simulation. The event queue can hold a maximum of 2048
events.

NOTE: For save and restore support, restorable events should be used instead.

void (*stop_event)(void (*cfunc)());
stop_event() will remove all events from the event queue which has the calling function equal to
cfunc().

NOTE: The stop_event() function may NOT be called from a signal handler installed by the I/
O module.

int *irl;
Current IU interrupt level. Should not be used by I/O functions unless they explicitly monitor theses
lines.

void (*sys_reset)();
Performs a system reset. Should only be used if the I/O device is capable of driving the reset input.

void (*sim_stop)();
Stops current simulation. Can be used for debugging purposes if manual intervention is needed after
a certain event.

char *args;
Arguments supplied when starting tsim. The arguments are concatenated as a single string.

void (*stop_event_arg)(void (*cfunc)(),int arg,int op);
Similar to stop_event() but differentiates between 2 events with same cfunc but with different
arg given when inserted into the event queue via event(). Used when simulating multiple instances
of an entity. Parameter op should be 1 to enable the arg check.

unsigned short (*reg_revent)(void (*cfunc) (unsigned long arg));
Registers a restorable event that will use cfunc as callback. The returned index should be used
when calling revent(). The event argument is supplied when calling revent(). The call to
reg_revent() should be done once at I/O or AHB module initialization.

unsigned short (*reg_revent_prearg)(void (*cfunc) (unsigned long arg),
unsigned long arg);

Registers a restorable event that will use cfunc as callback and arg as argument. This can be used
to register an argument that is a pointer to a data structure. The returned index should be used when
calling revent_prearg(). The call to reg_revent_prearg() should be done once at I/O or
AHB module initialization.

int (*revent)(unsigned short index, unsigned long arg, uint64 offset);
This inserts an event registered by reg_revent() into the event queue with the registered cfunc
for the given index. Multiple events with the same index can be in the event queue at the same time.
The arg and offset arguments are the same as for the event() function.

NOTE: See the description of event() for limitations on number of events and from which contexts
events can be added.

int (*revent_prearg)(unsigned short index, uint64 offset);
This inserts an event registered by reg_revent_prearg() into the event queue with the registered
cfunc and arg for the given index. Multiple events with the same index can be in the event queue
at the same time. The offset argument is the same as for the event() function.

TSIM2 Simulator User's Manual 27

NOTE: See the description of event() for limitations on number of events and from which contexts
events can be added.

void (*stop_revent)(unsigned short index);
This removes all events from the event queue that has been entered by revent() or
revent_prearg() using the given index.

NOTE: The stop_revent() function may not be called from a signal handler installed by the I/
O module.

5.1.2. ioif structure

ioif is defined in sim.h:

structio_interface {
 void (*set_irq)(int irq, int level);
 int (*dma_read)(uint32 addr, uint32 *data, int num);
 int (*dma_write)(uint32 addr, uint32 *data, int num);
 int (*dma_write_sub)(uint32 addr, uint32 *data, int sz);
};
extern struct io_interface ioif; /* exported processor interface */

The elements of the structure have the following meaning:

void (*set_irq)(int irq, int level);
ERC32 use: drive the external MEC interrupt signal. Valid interrupts are 0 - 5 (corresponding to MEC
external interrupt 0 - 4, and EWDINT) and valid levels are 0 or 1. Note that the MEC interrupt shape
register controls how and when processor interrupts are actually generated. When -nouart has been
used, MEC interrupts 4, 5 and 7 can be generated by calling set_irq() with irq 6, 7 and 9 (level
is not used in this case.

LEON use: set the interrupt pending bit for interrupt irq. Valid values on irq is 1 - 15. Care should
be taken not to set interrupts used by the LEON emulated peripherals. Note that the LEON interrupt
control register controls how and when processor interrupts are actually generated. Note that level is
not used with LEON.

int (*dma_read)(uint32 addr, uint32 *data, int num);
int (*dma_write)(uint32 addr, uint32 *data, int num);

Performs DMA transactions to/from the emulated processor memory. Only 32-bit word transfers are
allowed, and the address must be word aligned. On bus error, 1 is returned, otherwise 0. For ERC32, the
DMA transfer uses the external DMA interface. For LEON, DMA takes place on the AMBA AHB bus.

int (*dma_write_sub)(uint32 addr, uint32 *data, int sz);
Performs DMA transactions to/from the emulated processor memory on the AMBA AHB bus. Available
for LEON only. On bus error, 1 is returned, otherwise 0. Write size is indicated by sz as follows: 0 =
byte, 1 = half-word, 2 = word, 3 = double-word.

5.1.3. Structure to be provided by I/O device

struct io_subsystem {
 void (*io_init)(struct sim_interface sif, struct io_interface iif); /* start-up */
 void (*io_exit)(); /* called once on exit */
 void (*io_reset)(); /* called on processor reset */
 void (*io_restart)(); /* called on simulator restart */
 int (*io_read)(unsigned int addr, int *data, int *ws);
 int (*io_write)(unsigned int addr, int *data, int *ws, int size);
 char *(*get_io_ptr)(unsigned int addr, int size);
 void (*command)(char * cmd); /* I/O specific commands */
 void (*sigio)();/* called when SIGIO occurs */
 void (*save)(char *fname);/* save simulation state */
 void (*restore)(char *fname); /* restore simulation state */
};
extern struct io_subsystem *iosystem; /* imported I/O emulation functions */

The elements of the structure have the following meanings:

TSIM2 Simulator User's Manual 28

void (*io_init)(struct sim_interface sif, struct io_interface iif);
Called once on simulator startup. Set to NULL if unused.

void (*io_exit)();
Called once on simulator exit. Set to NULL if unused.

void (*io_reset)();
Called every time the processor is reset (i.e also startup). Set to NULL if unused.

void (*io_restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

int (*io_read)(unsigned int addr, int *data, int *ws);
Processor read call. The processor always reads one full 32-bit word from addr. The data should be
returned in *data, the number of waitstates should be returned in *ws. If the access would fail (illegal
address etc.), 1 should be returned, on success 0.

int (*io_write)(unsigned int addr, int *data, int *ws, int size);
Processor write call. The size of the written data is indicated in size: 0 = byte, 1 = half-word, 2 = word,
3 = doubleword. The address is provided in addr, and is always aligned with respect to the size of the
written data. The number of waitstates should be returned in *ws. If the access would fail (illegal address
etc.), 1 should be returned, on success 0.

char * (*get_io_ptr)(unsigned int addr, int size);
TSIM can access emulated memory in the I/O device in two ways: either through the io_read/
io_write functions or directly through a memory pointer. get_io_ptr() is called with the target
address and transfer size (in bytes), and should return a character pointer to the emulated memory array
if the address and size is within the range of the emulated memory. If outside the range, -1 should be
returned. Set to NULL if not used.

int (*command)(char * cmd);
The I/O module can optionally receive command-line commands. A command is first sent to the AHB
and I/O modules, and if not recognised, the to TSIM. command() is called with the full command
string in *cmd. Should return 1 if the command is recognized, otherwise 0. TSIM/ERC32 also calls this
callback when the SYSAV bit in the ERSR register changes. The commands “sysav 0” and “sysav 1”
are then issued. When TSIM commands are issued through the gdb ‘monitor’ command, a return value
of 0 or 1 will result in an ‘OK’ response to the gdb command. A return value > 1 will send the value
itself as the gdb response. A return value %lt; 1 will truncate the lsb 8 bits and send them back as a
gdb error response: ‘Enn’.

void (*sigio)();
Not used as of tsim-1.2, kept for compatibility reasons.

void (*save)(char *fname);
The save() function is called when save command is issued in the simulator. The I/O module should
save any required state which is needed to completely restore the state at a later stage. *fname points
to the base file name which is used by TSIM. TSIM saves its internal state to fname.tss. It is suggested
that the I/O module save its state to fname.ios. Note that any events placed in the event queue by the
I/O module will be saved (and restored) by TSIM.

void (*restore)(char *fname);
The restore() function is called when restore command is issued in the simulator. The I/O module
should restore any required state to resume operation from a saved check-point. *fname points to the
base file name which is used by TSIM. TSIM restores its internal state from fname.tss.

5.1.4. Cygwin specific io_init()

Due to problems of resolving cross-referenced symbols in the module loading when using Cygwin, the
io_init() routine in the I/O module must initialise a local copy of simif and ioif. This is done by providing
the following io_init() routine:

TSIM2 Simulator User's Manual 29

static void io_init(struct sim_interface sif, struct io_interface iif)
{
#ifdef __CYGWIN32__
 /* Do not remove, needed when compiling on Cygwin! */
 simif = sif;
 ioif = iif;
#endif
 /* additional init code goes here */
};

The same method is also used in the AHB and FPU/CP modules.

5.2. LEON AHB emulation interface

In addition to the above described I/O modules, TSIM also allows emulation of the LEON2/3/4 processor
core with a completely user-defined memory and I/O architecture. This is in other words not applicable to
ERC32. By loading an AHB module (ahb.so), the internal memory emulation is disabled. The emulated
processor core communicates with the AHB module using an interface similar to the AHB master interface
in the real LEON VHDL model. The AHB module can then emulate the complete AHB bus and all attached
units.

The AHB module interface is made up of two parts; one that is exported by TSIM and defines TSIM functions
and data structures that can be used by the AHB module; and one that is exported by the AHB module and
allows TSIM to access the emulated AHB devices.

At start-up, TSIM searches for ‘ahb.so’ in the current directory, but the location of the module can be spec-
ified using the -ahbm switch. Note that the module must be compiled to be position-independent, i.e. with
the -fPIC switch (gcc). The win32 version of TSIM loads ahb.dll instead of ahb.so. See the iomod direc-
tory in the TSIM distribution for an example ahb.c and how to build the .so /.dll modules. The enviromental
variable TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

5.2.1. procif structure

TSIM exports one structure for AHB emulation: procif. The procif structure defines a few functions giving
access to the processor emulation and cache behaviour. The procif structure is defined in tsim.h:

struct proc_interface {
 void (*set_irl)(int level); /* generate external interrupt */
 void (*cache_snoop)(uint32 addr);
 void (*cctrl)(uint32 *data, uint32 read);
 void (*power_down)();
 void (*set_irq_level)(int level, int set);
 void (*set_irq)(uint32 irq, uint32 level); /* generate external interrupt */
};
extern struct proc_interface procif;

The elements in the structure have the following meaning:

void (*set_irl)(int level);
Set the current interrupt level (iui.irl in VHDL model). Allowed values are 0 - 15, with 0 meaning no
pending interrupt. Once the interrupt level is set, it will remain until it is changed by a new call to
set_irl(). The modules interrupt callback routine should typically reset the interrupt level to avoid
new interrupts.

void (*cache_snoop)(uint32 addr);
The cache_snoop() function can be used to invalidate data cache lines (regardless of whether data
cache snooping is enabled or not). The tags to the given address will be checked, and if a match is
detected the corresponding cache lines will be flushed (i.e. the tag will be cleared). If an MMU is
present and is enabled the argument should be a virtual address. See also the snoop function in struct
ahb_interface.

void (*cctrl)(uint32 *data, uint32 read);
Read and write the cache control register (CCR). The CCR is attached to the APB bus in the LEON2
VHDL model, and this function can be called by the AHB module to read and write the register. If read

TSIM2 Simulator User's Manual 30

= 1, the CCR value is returned in *data, else the value of *data is written to the CCR. The cctrl()
function is only needed for LEON2 emulation, since LEON3/4 accesses the cache controller through
a separate ASI load/store instruction.

void (*power_down)();
The LEON processor enters power down-mode when called.

void (*set_irq_level)(int level, int set);
Callback set_irq_level can be used to emulate level triggered interrupts. Parameter set should
be 1 to activate the interrupt level specified in parameter level or 0 to reset it. The interrupt level
will remain active after it is set until it is reset again. Multiple calls can be made with different level
parameters in which case the highest level is used.

void (*set_irq)(uint32 irq, uint32 level);
Set the interrupt pending bit for interrupt irq. Valid values on irq is 1 - 15. Care should be taken not
to set interrupts used by the LEON emulated peripherals. Note that the LEON interrupt control register
controls how and when processor interrupts are actually generated.

5.2.2. Structure to be provided by AHB module

tsim.h defines the structure to be provided by the emulated AHB module:

struct ahb_access {
 uint32 address;
 uint32 *data;
 uint32 ws;
 uint32 rnum;
 uint32 wsize;
 uint32 cache; /* No longer used */
};

struct pp_amba {
 int is_apb;
 unsigned int vendor, device, version, irq;
 struct {
 unsigned int addr, p, c, mask, type;
 } bars[4];
};

struct ahb_subsystem {
 void (*init)(struct proc_interface procif);/* called once on start-up */
 void (*exit)(); /* called once on exit */
 void (*reset)(); /* called on processor reset */
 void (*restart)(); /* called on simulator restart */
 int (*read)(struct ahb_access *access);
 int (*write)(struct ahb_access *access);
 char *(*get_io_ptr)(unsigned int addr, int size);
 int (*command)(char * cmd); /* I/O specific commands */
 int (*sigio)(); /* called when SIGIO occurs */
 void (*save)(char * fname); /* save state */
 void (*restore)(char * fname); /* restore state */
 int (*intack)(int level); /* interrupt acknowledge */
 int (*plugandplay)(struct pp_amba **); /* LEON3/4: get plug & play information */
 void (*intpend)(unsigned int pend); /* LEON3/4 only: interrupt pending change */
 int meminit; /* tell tsim weather to initialize mem */
 struct sim_interface *simif; /* initialized by tsim */
 unsigned char *(*get_mem_ptr_ws)(); /* initialized if meminit was set */
 void (*snoop) (unsigned int addr); /* initialized with cache snoop routine */
 struct io_interface *io; /* initialized by tsim */
 void (*dprint)(char *p); /* initialized by tsim, prints out a debug string */
 struct proc_interface *proc; /* initialized by tsim, access to proc_interface */
 int (*cacheable)(uint32 addr, uint32 size); /* Cacheability of area */
 int (*lprintf)(const char *format, ...); /* initialized by tsim */
 int (*vlprintf)(const char *format, va_list ap); /* initialized by tsim */
};

extern struct ahb_subsystem *ahbsystem; /* imported AHB emulation functions */

The elements of the structure have the following meanings:

void (*init)(struct proc_interface procif);
Called once on simulator startup. Set to NULL if unused.

TSIM2 Simulator User's Manual 31

void (*exit)();
Called once on simulator exit. Set to NULL if unused.

void (*reset)();
Called every time the processor is reset (i.e. also startup). Set to NULL if unused.

void (*restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

void int (*read)(struct ahb_access *ahbacc);
Processor AHB read. The processor always reads one or more 32-bit words from the AHB bus. The
following fields of ahbacc is used. The ahbacc.addr field contains the read address of the first word
to read. The ahbacc.data field points to a buffer that the module can fill in. The module can also change
the pointer to point to a different buffer. The ahbacc.ws field should be set by the module to the number
of cycles for the complete access. The ahbacc.rnum field contains the number of words to be read. The
function should return 0 for a successful access, 1 for failed access and -1 for an area not handled by
the module. The ahbacc.wsize field is not used during read cycles. The ahbacc.cache field is no longer
in use (use struct ahb_subsystem.cacheable instead).

int (*write)(struct ahb_access *ahbacc);
Processor AHB write. The processor can write 1, 2, 4 or 8 bytes per access. The following fields of
ahbacc is used. The ahbacc.addr field contains the address of the write. The ahbacc.data field points
to the data to write; either one word for byte, half word or word writes or two words for double-word
writes. The ahbacc.wsize field defines write size as follows: 0 = byte, 1 = half-word, 2 = word, 3 =
double-word. The function should return 0 for a successful access, 1 for failed access and -1 for an area
not handled by the module. The ahbacc.rnum field is not used during write cycles. The ahbacc.cache
field is no longer in use (use struct ahb_subsystem.cacheable instead).

char * (*get_io_ptr)(unsigned int addr, int size);
During file load operations and displaying of memory contents, TSIM will access emulated memory
through a memory pointer. get_io_ptr() is called with the target address and transfer size (in bytes),
and should return a character pointer to the emulated memory array if the address and size is within the
range of the emulated memory. If outside the range, -1 should be returned. Set to NULL if not used.

int (*command)(char * cmd);
The AHB module can optionally receive command-line commands. A command is first sent to the AHB
and I/O modules, and if not recognised, then to TSIM. command() is called with the full command
string in *cmd. Should return 1 if the command is recognized, otherwise 0. When TSIM commands are
issued through the gdb ‘monitor’ command, a return value of 0 or 1 will result in an ‘OK’ response to
the gdb command. A return value > 1 will send the value itself as the gdb response. A return value < 1
will truncate the lsb 8 bits and send them back as a gdb error response: ‘Enn’.

void (*save)(char *fname);
The save() function is called when save command is issued in the simulator. The AHB module should
save any required state which is needed to completely restore the state at a later stage. *fname points
to the base file name which is used by TSIM. TSIM save its internal state to fname.tss. It is suggested
that the AHB module save its state to fname.ahs. Note that any events placed in the event queue by the
AHB module will be saved (and restored) by TSIM.

void (*restore)(char * fname);
The restore() function is called when restore command is issued in the simulator. The AHB module
should restore any required state to resume operation from a saved check-point. *fname points to the
base file name which is used by TSIM. TSIM restores its internal state from fname.tss.

int (*intack)(int level);
intack() is called when the processor takes an interrupt trap (tt = 0x11 - 0x1f). The level of the taken
interrupt is passed in level. This callback can be used to implement interrupt controllers. intack()
should return 1 if the interrupt acknowledgement was handled by the AHB module, otherwise 0. If 0 is
returned, the default LEON interrupt controller will receive the intack instead.

TSIM2 Simulator User's Manual 32

int (*plugandplay)(struct pp_amba **p);
Leon3/4 only: The plugandplay() function is called at startup. optioplugandplay() should
return in p a static pointer to an array with elements of type struct pp_amba and return the number
of entries in the array. The callback plugandplay() is used to add entries in the AHB and APB
configuration space. Each struct pp_amba entry specifies an entry: If is_apb is set to 1 the entry
will appear in the APB configuration space and only member bars[0] will be used. If is_apb is 0 then the
entry will appear in the AHB slave configuration space and bars[0-3] will be used. If is_apb is 2 then the
entry will appear in the AHB master configuration space and bars[0-3] will be used. The members of
the struct resemble the fields in a configuration space entries. The entry is mapped to the first free slot.

void (*intpend)(unsigned int pend);
Leon3/4 only: The intpend() function is called when the set of pending interrupts changes. The
pend argument is a bitmask with the bits of pending interrupts set to 1.

int meminit;
If all loaded AHB modules sets meminit to 1, TSIM will initialize and emulate initialize and emulate
SRAM/SDRAM/PROM memory. Thus, the AHB module should initialize meminit with 1 if TSIM
(or another AHB module) should handle memory simulation. Calls to read and write should return -1
(undecoded area) for the memory regions in which case TSIM (or possibly some other AHB module)
will handle them. If meminit is set to 0 the AHB module itself should emulate the memory address
regions.

struct sim_interface *simif;
Entry simif is initialized by tsim with the global struct sim_interface structure.

unsigned char *(*get_mem_ptr_ws) (unsigned int addr, int size, int *wws,
int *rws)

If meminit was set to 1 tsim will initialize get_mem_ptr_ws with a callback that can be used to
query a pointer to the host memory emulating the LEON’s memory, along with waitstate information.
Note that the host memory pointer returned is in the hosts byte order (normally little endian on a PC).
The size parameter should be the length of the access (1 for byte, 2 for short, 4 for word and 8 for
double word access). The wws and rws parameters will return the calculated write and read waitstates
for a possible access. See also snoop below for responsibilities when DMA writes are done via pointers
from this function.

void (*snoop) (unsigned int addr)
The callback snoop is initialized by tsim. If data cache snooping is enabled (and functioning, i.e. not
ut699) it flushes (i.e. invalidates) data cache lines corresponding to physical address addr (on LEON3/4
even when MMU is enabled). If the AHB module is doing DMA writes directly to memory pointers, it is
the responsibility of the AHB module to call this for all changed words for snooping to work correctly.

struct io_interface *io;
Initialized with the I/O interface structure pointer.

void (*dprint)(char *);
Initialized by tsim with a callback pointer to the debug output function. Output ends up in log, when
logging is enabled and gets forwarded to gdb when running TSIM via gdb. See lprintf and vl-
printf for the formatted couterparts.

struct proc_interface *proc;
Initialized with the procif structure pointer.

int (*cacheable)(uint32 addr, uint32 size)
The cacheable callback is initialized by the module to NULL or a function returning cacheabil-
ity for a memory area. The function should return 1 if the range [addr,addr+size) is cacheable, 0
if it is uncacheable or -1 if the memory area it is not handled by the module. If all modules re-
turn -1 and/or lack the cacheable callback, the area will be considered cacheable for memory ar-
eas [0x00000000,0x20000000) and [0x40000000-0x80000000) and non-cacheable for all other areas.
NOTE: For any (correspondingly aligned) area as large as the largest data cache or instruction cache

TSIM2 Simulator User's Manual 33

line size in the system, the cacheable callback may not return different results for different words
in the area.

int (*lprintf)(const char *format, ...)
Initialized by TSIM with a function for formatted loggable debug output. The function interface works
like for printf.

int (*vlprintf)(const char *format, va_list ap)
Initialized by TSIM with a function for formatted loggable debug output. The function interface works
like for vprintf.

5.2.3. Big versus little endianess

SPARC conforms to the big endian byte ordering. This means that the most significant byte of a (half) word
has lowest address. To execute efficiently on little-endian hosts (such as Intel x86 PCs), emulated memory
is organised on word basis with the bytes within a word arranged according the endianess of the host. Read
cycles can then be performed without any conversion since SPARC always reads a full 32-bit word. During
byte and half word writes, care must be taken to insert the written data properly into the emulated memory.
On a byte-write to address 0, the written byte should be inserted at address 3, since this is the most significant
byte according to little endian. Similarly, on a half-word write to bytes 0/1, bytes 2/3 should be written. For
a complete example, see the prom emulation function in io.c.

5.3. TSIM/LEON co-processor emulation

5.3.1. FPU/CP interface

The professional version of TSIM/LEON can emulate a user-defined floating-point unit (FPU) and co-pro-
cessor (CP). The FPU and CP are included into the simulator using loadable modules. To access the module,
use the structure ‘cp_interface’ defined in io.h. The structure contains a number of functions and variables
that must be provided by the emulated FPU/CP:

/* structure of function to be provided by an external co-processor */
struct cp_interface {
 void (*cp_init)(); /* called once on start-up */
 void (*cp_exit)(); /* called once on exit */
 void (*cp_reset)(); /* calledon processor reset */
 void (*cp_restart)(); /* called on simulator restart */
 uint32 (*cp_reg)(int reg, uint32 data, int read);
 int (*cp_load)(int reg, uint32 data, int *hold);
 int (*cp_store)(int reg, uint32 *data, int *hold);
 int (*cp_exec)(uint32 pc, uint32 inst, int *hold);
 int (*cp_cc)(int *cc, int *hold); /* get condition codes */
 int *cp_status; /* unit status */
 void (*cp_print)(); /* print registers */
 int (*command)(char * cmd); /* CP specific commands */
 int set_fsr(uint32 fsr); /* initialized by tsim */
};
extern struct cp_interface *cp; /* imported co-processor emulation functions */

5.3.2. Structure elements

void (*cp_init)(struct sim_interface sif, struct io_interface iif);
Called once on simulator startup. Set to NULL if not used.

void (*cp_exit)();
Called once on simulator exit. Set to NULL if not used.

void (*cp_reset)();
Called every time the processor is reset. Set to NULL if not used.

void (*cp_restart)();
Called every time the simulator is restarted. Set to NULL if not used.

uint32 (*cp_reg)(int reg, uint32 data, int read);
Used by the simulator to perform diagnostics read and write to the FPU/CP registers. Calling
cp_reg() should not have any side-effects on the FPU/CP status. reg indicates which register to

TSIM2 Simulator User's Manual 34

access: 0-31 indicates %f0-%f31/%c0- %31, 34 indicates %fsr/%csr. read indicates read or write ac-
cess: read==0 indicates write access, read!=0 indicates read access. Written data is passed in data, the
return value contains the read value on read accesses.

int (*cp_exec)(uint32 pc, uint32 inst, int *hold);
Execute FPU/CP instruction. The %pc is passed in pc and the instruction opcode in inst. If data
dependency is emulated, the number of stall cycles should be return in *hold. The return value should
be zero if no trap occurred or the trap number if a trap did occur (0x8 for the FPU, 0x28 for CP). A trap
can occur if the FPU/CP is in exception_pending mode when a new FPU/CP instruction is executed.

int (*cp_cc)(int *cc, int *hold); /* get condition codes */
Read condition codes. Used by FBCC/CBCC instructions. The condition codes (0 - 3) should be returned
in *cc. If data dependency is emulated, the number of stall cycles should be return in *hold. The
return value should be zero if no trap occurred or the trap number if a trap did occur (0x8 for the FPU,
0x28 for CP). A trap can occur if the FPU/CP is in exception_pending mode when a FBCC/CBCC
instruction is executed.

int *cp_status;/* unit status */
Should contain the FPU/CP execution status: 0 = execute_mode, 1 = exception_pending, 2 =
exception_mode.

void (*cp_print)();/* print registers */
Should print the FPU/CP registers to stdio.

int (*command)(char * cmd); /* CP specific commands */
User defined FPU/CP control commands. NOT YET IMPLEMENTED.

int (*set_fsr)(char * cmd); /* initialized by tsim */
This callback is initialized by tsim and can be called to set the FPU status register.

5.3.3. Attaching the FPU and CP

At startup the simulator tries to load two dynamic link libraries containing an external FPU or CP. The
simulator looks for the file fp.so and cp.so in the current directory and in the search path defined by ldconfig.
The location of the modules can also be defined using -cpm and -fpm switches. The enviromental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths. Each library is
searched for a pointer ‘cp’ that points to a cp_interface structure describing the co-processor. Below is an
example from fp.c:

struct cp_interface test_fpu = {
 cp_init, /* cp_init */
 NULL, /* cp_exit */
 cp_init, /* cp_reset */
 cp_init, /* cp_restart */
 cp_reg, /* cp_reg */
 cp_load, /* cp_load */
 cp_store, /* cp_store */
 fpmeiko, /* cp_exec */
 cp_cc, /* cp_cc */
 &fpregs.fpstate, /* cp_status */
 cp_print, /* cp_print */
 NULL /* cp_command */
};
struct cp_interface *cp = &test_fpu; /* Attach pointer!! */

5.3.4. Big versus little endianess

SPARC is conforms to the big-endian byte ordering. This means that the most significant byte of a (half)
word has lowest address. To execute efficiently on little-endian hosts (such as Intel x86 PCs), emulated
register-file is organised on word basis with the bytes within a word arranged according the endianess of the
host. Double words are also in host order, and the read/write register functions must therefore invert the lsb
of the register address when performing word access on little-endian hosts. See the file fp.c for examples
(cp_load(), cp_store()).

TSIM2 Simulator User's Manual 35

5.3.5. Additional TSIM commands

float
Shows the registers of the FPU

cp
Shows the registers of the co-processor.

5.3.6. Example FPU

The file fp.c contains a complete SPARC FPU using the co-processor interface. It can be used as a template
for implementation of other co-processors. Note that data-dependency checking for correct timing is not
implemented in this version (it is however implemented in the built-in version of TSIM).

TSIM2 Simulator User's Manual 36

6. TSIM library (TLIB)

6.1. Introduction

The professional version of TSIM is also available as a library, allowing the simulator to be integrated in
a larger simulation frame-work. The various TSIM commands and options are accessible through a simple
function interface. I/O functions can be added, and use a similar interface to the loadable I/O modules de-
scribed earlier.

6.2. Function interface

The following functions are provided to access TSIM features:

int tsim_init (char *option);/* initialise tsim with optional params. */
Initialize TSIM - must be called before any other TSIM function (except tsim_set_diag())
are used. The options string can contain any valid TSIM startup option (as used for the standalone
simulator), with the exception that no filenames for files to be loaded into memory may be given.
tsim_init() may only be called once, use the TSIM reset command to reset the simulator without
exiting. tsim_init() will return 1 on success or 0 on failure.

int tsim_cmd (char *cmd);/* execute tsim command */
Execute TSIM command. Any valid TSIM command-line command may be given. The following return
values are defined:

SIGINT Simulation stopped due to interrupt

SIGHUP Simulation stopped normally

SIGTRAP Simulation stopped due to breakpoint hit

SIGSEGV Simulation stopped due to processor in error mode

SIGTERM Simulation stopped due to program termination

void tsim_exit (int val);
Should be called to cleanup TSIM internal state before main program exits.

void tsim_get_regs (unsigned int *regs);
Get SPARC registers. regs is a pointer to an array of integers, see tsim.h for how the various registers
are indexed.

void tsim_set_regs (unsigned int *regs);
Set SPARC registers. *regs is a pointer to an array of integers, see tsim.h for how the various registers
are indexed.

void tsim_disas(unsigned int addr, int num);
Disassemble memory. addr indicates which address to disassemble, num indicates how many instruc-
tions.

void tsim_set_diag (void (*cfunc)(char *));
Set console output function. By default, TSIM writes all diagnostics and console messages on stdout.
tsim_set_diag() can be used to direct all output to a user defined routine. The user function is
called with a single string parameter containing the message to be written.

void tsim_set_callback (void (*cfunc)(void));
Set the debug callback function. Calling tsim_set_callback() with a function pointer will cause
TSIM to call the callback function just before each executed instruction, when the history is enabled.
At this point the instruction to be executed can be seen as the last entry in the history. History can be
enabled with the tsim_cmd() function.

TSIM2 Simulator User's Manual 37

void tsim_gdb (unsigned char (*inchar)(), void (*outchar)(unsigned char
c));

Controls the simulator using the gdb ‘extended-remote’ protocol. The inchar parameter is a pointer
to a function that when called, returns next character from the gdb link. The outchar parameter is a
pointer to a function that sends one character to the gdb link.

void tsim_read(unsigned int addr, unsigned int *data);
Performs a read from addr, returning the value in *data. Only for diagnostic use.

void tsim_write(unsigned int addr, unsigned int data);
Performs a write to addr, with value data. Only for diagnostic use.

void tsim_stop_event(void (*cfunc)(), int arg, int op);
tsim_stop_event() can remove certain event depending on the setting of arg and op. If op = 0,
all instance of the callback function cfunc will be removed. If op = 1, events with the argument = arg
will be removed. If op = 2, only the first (earliest) of the events with the argument = arg will be removed.

NOTE: The stop_event() function may NOT be called from a signal handler installed by the I/O module.

void tsim_inc_time(uint64);
tsim_inc_time() will increment the simulator time without executing any instructions. The event
queue is evaluated during the advancement of time and the event callbacks are properly called. Can not
be called from event handlers.

int tsim_trap(int (*trap)(int tt), void (*rett)());
tsim_trap() is used to install callback functions that are called every time the processor takes a
trap or returns from a trap (RETT instruction). The trap() function is called with one argument (tt)
that contains the SPARC trap number. If tsim_trap() returns with 0, execution will continue. A
non-zero return value will stop simulation with the program counter pointing to the instruction that will
cause the trap. The rett() function is called when the program counter points to the RETT instruction
but before the instruction is executed. The callbacks are removed by calling tsim_trap() with a
NULL arguments.

int tsim_cov_get(int start, int end, char *ptr);
tsim_cov_get() will return the coverage data for the address range >= start and <end. The
coverage data will be written to a char array pointed to by *ptr, starting at ptr[0]. One character per
32-bit word in the address range will be written. The user must assure that the char array is large enough
to hold the coverage data.

int tsim_cov_set(int start, int end, char val);
tsim_cov_set() will fill the coverage data in the address range limited by start and end (see
above for definition) with the value of val.

int tsim_ext_ins (int (*func) (struct ins_interface *r));
tsim_ext_ins() installs a handler for custom instructions. func is a pointer to an instruction emu-
lation function as described in Section 4.1.6. Calling tsim_ext_ins() with a NULL pointer will
remove the handler.

int tsim_lastbp (int *addr)
When simulation stopped due to breakpoint or watchpoint hit (SIGTRAP), this function will return the
address of the break/watchpoint in *addr. The function return value indicates the break cause; 0 =
breakpoint, 1 = watchpoint.

6.3. AHB modules

AHB modules can be loaded by adding the “-ahbm <name>” switch to the tsim_init() string when
starting. See Section 5.2 for further information.

6.4. I/O interface

The TSIM library uses the same I/O interface as the standalone simulator. Instead of loading a shared library
containing the I/O module, the I/O module is linked with the main program. The I/O functions (and the

TSIM2 Simulator User's Manual 38

main program) has the same access to the exported simulator interface (simif and ioif) as described in the
loadable module interface. The TSIM library imports the I/O structure pointer, iosystem, which must be
defined in the main program.

An example I/O module is provided in tlib/<platform>/io.c , which shows how to add a prom.

A second example I/O module is provided in simple_io.c This module provides a simpler interface to attach
I/O functions. The following interface is provided:

void tsim_set_ioread (void (*cfunc)(int address, int *data, int *ws));
This function is used to pass a pointer to a user function which is to be called by TSIM when an I/O
read access is made. The user function is called with the address of the access, a pointer to where the
read data should be returned, and a pointer to a waitstate variable that should be set to the number of
waitstates that the access took.

void tsim_set_iowrite (void (*cfunc)(int address, int *data, int *ws,
int size));

This function is used to pass a pointer to a user function which is to be called by TSIM when an I/O
write access is made. The user function is called with the address of the access, a pointer to the data to
be written, a pointer to a waitstate variable that should be set to the number of waitstates that the access
took, and the size of the access (0=byte, 1=half-word, 2=word, 3=double-word).

6.5. UART handling

By default, the library is using the same UART handling as the standalone simulator. This means that the
UARTs can be connected to the console, or any Unix device (pseudo-ttys, pipes, fifos). If the UARTs are
to be handled by the user’s I/O emulation routines, >tsim_init() should be called with ‘-nouart’,
which will disable all internal UART emulation. Any access to the UART register by an application will
then be routed to the I/O module read/write functions.

6.6. Linking a TLIB application

Three sample application are provided, one that uses the simplified I/O interface (app1.c), and two that uses
the standard loadable module interface (app2 and app3). They are built by doing a ‘make all’ in the tlib
directory. The win32 version of TSIM provides the library as a DLL, for all other platform a static library
is provided (.a). Support for dynamic libraries on Linux or Solaris is not available.

6.7. Limitations

On Windows/Cygwin hosts TSIM is not capable of reading UART A/B from the console, only writing is
possible. If reading of UART A/B is necessary, the simulator should be started with -nouart, and emulation
of the UARTs should be handled by the I/O module.

TSIM2 Simulator User's Manual 39

7. Cobham UT699/UT699e AHB module

7.1. Overview

This chapter describes the UT699 loadable AHB module for the TSIM2 simulator. The AHB module pro-
vides simulation models for the Ethernet, SpaceWire, PCI, GPIO and CAN cores in the UT699 processor.
For more information about this chip see the Cobham UT699 user manual.

The interfaces are modelled at packet/transaction/message level and provides an easy way to connect the
simulated UT699 to a larger simulation framework.

The following files are delivered with the UT699 TSIM module:

Table 7.1. Files delivered with the UT699 TSIM module

File Description

ut699/linux/ut699.so UT699 AHB module for Linux

ut699/linux/ut699e.so UT699e AHB module for Linux

ut699/win32/ut699.dll UT699 AHB module for Windows

ut699/win32/ut699e.dll UT699e AHB module for Windows

out699/examples/input The input directory contains two examples of PCI us-
er modules

ut699/examples/input/README.txt Description of the user module examples

ut699/examples/input/pci.c PCI user module example that makes UT699 PCI ini-
tiator accesses

ut699/examples/input/pci_target.c PCI user module example that makes UT699 PCI tar-
get accesses

ut699/examples/input/gpio.c GPIO user module example

ut699/examples/input/ut699inputprovider.h Interface between the UT699 module and the user de-
fined PCI module

ut699/examples/input/pci_input.h UT699 PCI input provider definitions

ut699/examples/input/input.h Generic input provider definitions

ut699/examples/input/tsim.h TSIM interface definitions

ut699/examples/input/end.h Defines the endian of the local machine

ut699/examples/test The test directory contains tests that can be executed
in TSIM

ut699/examples/test/README.txt Description of the tests

ut699/examples/test/Makefile Makefile for building the tests

ut699/examples/test/cansend.c CAN transmission test

ut699/examples/test/canrec.c CAN reception test

ut699/examples/test/pci.c PCI interface test

ut699/examples/test/pcitest.h Header file for PCI test

7.2. Loading the module

The module is loaded using the TSIM2 option -ahbm. All core specific options described in the following
sections need to be surrounded by the options -designinput and -designinputend, e.g:

On Linux:

tsim-leon3 -ut699 -ahbm ./ut699/linux/ut699.so
 -designinput ./ut699/examples/input/pci.so -designinputend

TSIM2 Simulator User's Manual 40

On Windows:

tsim-leon3 -ut699 -ahbm ut699/win32/ut699.dll
 -designinput ./ut699/examples/input/pci.dll -designinputend

The option -ut699 needs to be given to TSIM to enable the UT699 processor configuration. Note that
when -ut699 is given, snooping will be set as non-functional.

7.3. UT699e

To enable the UT699e version of the UT699 replace ut699.[so|dll] with ut699e.[so|dll] and
option -ut699 with -ut699e. This:

• Enables snooping opposed to the non-functional snooping of the -ut699
• Sets UT699e build-id
• Changes MMU status/ctrl registers layout
• Contains GRSPW2 cores instead of GRSPW cores (the TSIM command, flag and packet interface is the

same however)

7.4. Debugging

To enable printout of debug information the -ut699_dbgon flag switch can be used. Alternatively one
can issue the ut699_dbgon flag command on the TSIM2 command line. The debug flags that are available
are described for each core in the following sections and can be listed by ut699_dbgon help.

7.5. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available
in the UT699. For core details and register specification please see the UT699 manual.

The following features are supported:

• Direct Memory Access
• Interrupts

7.5.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

7.5.2. Commands

Ethernet core TSIM commands

greth_connect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

greth_status
Print Ethernet register status

7.5.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 7.2. Ethernet debug flags

Flag Trace

GAISLER_GRETH_ACC GRETH accesses

TSIM2 Simulator User's Manual 41

Flag Trace

GAISLER_GRETH_L1 GRETH accesses verbose

GAISLER_GRETH_TX GRETH transmissions

GAISLER_GRETH_RX GRETH reception

GAISLER_GRETH_RXPACKET GRETH received packets

GAISLER_GRETH_RXCTRL GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET GRETH transmitted packets

GAISLER_GRETH_IRQ GRETH interrupts

7.5.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet
server should open a TCP socket which the module can connect to. The Ethernet core is connected to a
packet server using the -grethconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named greth_config, is included in TSIM distribution.
It uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core
to a physical Ethernet LAN. This makes it easy to connect the simulated GRETH core to real hardware. It
can provide a throughput in the order of magnitude of 500 to 1000 KiB/sec. See its distributed README
for usage instructions.

7.5.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length
field indicating the length of the packet to come (including its header).

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 0

0x4 RES IPID=1 TYPE=0 RES

31:16 RES, reserved for future use

15:8 IPID, IP core ID, must equal 1 for Ethernet

7:5 TYPE, packet type, 0 for data packets

4:0 RES, reserved for future use

Payload

0x8 - Ethernet frame

Figure 7.1. Ethernet data packet

7.6. SpaceWire interface with RMAP support

The UT699 AHB module contains 4 GRSPW cores which models the GRSPW cores available in the UT699.
For core details and register specification please see the UT699 manual.

The following features are supported:

TSIM2 Simulator User's Manual 42

• Transmission and reception of SpaceWire packets

• Interrupts

• RMAP

• Modifying the link state

7.6.1. Start up options

SpaceWire core start up options

-grspwXconnect host:port
Connect GRPSW core X to packet server at specified server and port.

-grspwXserver port
Open a packet server for core X on specified port.

-grspw_normap
Disable the RMAP handler. RMAP packets will be stored to the DMA channel.

-grspw_rmap
Enable the RMAP handler. All RMAP packages will be simulated in hardware. Includes support for
RMAP CRC. (Default)

-grspw_rmapcrc
Enable support for RMAP CRC. Performs RMAP CRC checks and calculations in hardware.

-grspw_rxfreq freq
Set the RX frequency which is used to calculate receive performance.

-grspw_txfreq freq
Set the TX frequency which is used to calculate transmission performance.

X in the above options has the range 1-4.

7.6.2. Commands

SpaceWire core TSIM commands

grspwX_connect host:port
Connect GRSPW core X to packet server at specified server and TCP port.

grspwX_server port
Open a packet server for core X on specified TCP port.

grspw_status
Print status for all GRSPW cores.

X in the above commands has the range 1-4.

7.6.3. Debug flags

The following debug flags are available for the SpaceWire interfaces. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 7.3. SpaceWire debug flags

Flag Trace

GAISLER_GRSPW_ACC GRSPW accesses

TSIM2 Simulator User's Manual 43

Flag Trace

GAISLER_GRSPW_RXPACKET GRSPW received packets

GAISLER_GRSPW_RXCTRL GRSPW rx protocol

GAISLER_GRSPW_TXPACKET GRSPW transmitted packets

GAISLER_GRSPW_TXCTRL GRSPW tx protocol

7.6.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -grsp-
wXserver or -grspwXconnect. TCP sockets are used for establishing the connections. When acting
as a server the core can only accept a single connection.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server.

7.6.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. Three different types of packets
are defined according to the table below.

Table 7.4. Packet types

Type Value

Data 0

Time code 1

Modify link state 2

Note that all packets are prepended by a one word length field which specified the length of the coming
packet including the header.

Data packet format:

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 1 0

0x4 RES IPID=0 TYPE=0 RES EEP

31:16 RES, reserved for future use

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 0 for data packets

4:1 RES, reserved for future use, must be set to 0

0 EEP, Error End of Packet. Set when the packet is truncated and terminated by an EEP.

Payload

0x8 - SpaceWire packet

Figure 7.2. SpaceWire data packet

TSIM2 Simulator User's Manual 44

Time code packet format:

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 0

0x4 RES IPID=0 TYPE=1 RES

31:16 RES, reserved for future use, must be set to 0

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 1 for time code packets

4:0 RES, reserved for future use, must be set to 0

Payload

31 8 7 6 5 0

0x8 RES CT CN

31:8 RES, reserved for future use, must be set to 0

7:6 CT, time control flags

5:0 CN, value of time counter

Figure 7.3. SpaceWire time code packet

Link state packet format:

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 3 2 0

0x4 RES IPID=0 TYPE=2 RES LS

31:16 RES, reserved for future use, must be set to 0

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 2 for link state packets

4:3 RES, reserved for future use, must be set to 0

0 Error reset

1 Error wait

2 Ready

3 Started

4 Connecting

2:0 LS, Link State:

5 Run

Figure 7.4. SpaceWire link state packet

TSIM2 Simulator User's Manual 45

7.7. PCI initiator/target and GPIO interface

The UT699 AHB module models the GPIO and PCI core available in the UT699 ASIC. For core details and
register specification please see the UT699 manual.

The GPIO/PCI emulation is implemented by a two stage model:

1. The TSIM AHB module ut699.dll implements the GPIO and PCI core itself
2. A user supplied dynamic library models the devices on the PCI bus and the GPIO pins.

To load a user supplied dynamic library use the following command line switch:

-designinput <pciexample> <switches> -designinputend

This will load a user supplied dynamic library “pciexample”. In addition the switches between -design-
input and -designinputend are local switches only propagated to the user dynamic library “pciex-
ample”.

7.7.1. Commands

PCI Commands

pci_status
Print status for the PCI core

7.7.2. Debug flags

The following debug flags are available for the PCI interface. Use them in conjunction with the ut699_dbgon
command to enable different levels of debug information.

Table 7.5. PCI interface debug flags

Flag Trace

GAISLER_GRPCI_ACC AHB accesses to/from PCI core

GAISLER_GRPCI_REGACC GRPCI APB register accesses

GAISLER_GRPCI_DMA_REGACC PCIDMA APB register accesses

GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus

GAISLER_GRPCI_TARGET_ACC GRPCI target accesses

GAISLER_GRPCI_INIT Print summary on startup

7.7.3. User supplied dynamic library

The user supplied dynamic library should expose a public symbol ut699inputsystem of type struct
ut699_subsystem *. The struct ut699_subsystem is defined as:

TSIM2 Simulator User's Manual 46

struct ut699_subsystem {
 void (*ut699_inp_setup) (int id, struct ut699_inp_layout *l,
 char **argv, int argc);
 void (*ut699_inp_restart) (int id, struct ut699_inp_layout *l);
 struct sim_interface *simif;
};

At initialization the callback ut699_inp_setup will be called once, supplied with a pointer to a structure
of type struct ut699_inp_layout.

struct ut699_inp_layout {
 struct grpci_input grpci;
 struct gpio_input gpio;
};

The callback ut699_inp_restart will be called every time the simulator restarts and the PCI user module can
access the global TSIM struct sim_interface structure through the simif member. See Chapter 5
for more details.

The user supplied dynamic library should claim the ut699_inp_layout.grpci member of the
structure by using the INPUT_CLAIM(l->grpci) macro (see the example below). A struct
grpci_input consists of callbacks that model the PCI bus (see Section 7.7.4).

A typical user supplied dynamic library would look like this:

#include "tsim.h"
#include "inputprovider.h"
int pci_acc(struct grpci_input *ctrl, int cmd, unsigned int addr, unsigned int wsize,
 unsigned int *data, unsigned int *abort, unsigned int *ws) {

 ... BUS access implementation ...

}

static void ut699_inp_setup (int id, struct ut699_inp_layout *l, char **argv, int argc)
{
 printf("Entered PCI setup\n");

 if (INPUT_ISCLAIMED(l->grpci)) {
 printf("module user for PCI already allocated \n");
 return;
 }

 for(i = 0; i < argc; i++) {
 ... do argument processing ...
 }

 l->grpci.acc = pci_acc;

 ... do module setup ...

 printf("ut699_inp_setup: Claiming %s\n", l->grpci._b.name);
 INPUT_CLAIM(l->grpci);
 return;
}

static struct ut699_subsystem ut699_pci = {
 ut699_inp_setup,0,0
};

struct ut699_subsystem *ut699inputsystem = &ut699_pci;

A typical Makefile that would create a user supplied dynamic library pci.(dll|so) from pci.c would look like
this:

M_DLL_FIX = $(if $(strip $(shell uname | grep MINGW32)),dll,so)
M_LIB = $(if $(strip $(shell uname | grep MINGW32)),-lws2_32 -luser32 -lkernel32 -
 lwinmm,)
all:pci.$(M_DLL_FIX)

pci.$(M_DLL_FIX) : pci.o
$(CC) -shared -g pci.o -o pci.$(M_DLL_FIX) $(M_LIB)

pci.o: pci.c \
inputprovider.h

TSIM2 Simulator User's Manual 47

$(CC) -fPIC -c -g -O0 pci.c -o pci.o
clean:
-rm -f *.o *.so

7.7.4. PCI bus model API

The structure struct grpci_input models the PCI bus. It is defined as:

/* ut699 pci input provider */

struct grpci_input {
 struct input_inp _b;

 int (*acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *abort, unsigned int *ws);

 int (*target_acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *mexc);
};

The acc callback should be set by the PCI user module at startup. It is called by the UT699 module whenever
it reads/writes as a PCI bus master.

Table 7.6. acc callback parameters

Parameter Description

cmd Command to execute, see Section 7.7.1 details

addr PCI address

data Data buffer, fill for read commands, read for write commands

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access, 3: 64-bit access. 64 bit
is only used to model STD instructions to the GRPCI AHB slave

ws Number of PCI clocks it shall to complete the transaction

abort Set to 1 to generate target abort, 0 otherwise

The return value of acc determines if the transaction terminates successfully (1) or with master abort (0).

The callback target_acc is installed by the UT699 AHB module. The PCI user dynamic library can call this
function to initiate an access to the UT699 PCI target.

Table 7.7. target_acc parameters

Parameter Description

cmd Command to execute, see Section 7.7.1 for details. I/O cycles are not
supported by the UT699 target.

addr PCI address

data Data buffer, returned data for read commands, supply data for write
commands

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access

mexc 0 if access is successful, 1 in case of target abort

If the address matched MEMBAR0, MEMBAR1 or CONFIG target_acc will return 1 otherwise 0.

7.7.5. GPIO model API

The structure struct gpio_input models the GPIO pins. It is defined as:

/* GPIO input provider */
struct gpio_input {
 struct input_inp _b;
 int (*gpioout)(struct gpio_input *ctrl, unsigned int out);

TSIM2 Simulator User's Manual 48

 int (*gpioin) (struct gpio_input *ctrl, unsigned int in);
};

The gpioout callback should be set by the user module at startup. The gpioin callback is set by the
U699 AHB module. The gpioout callback is called by the UT699 module whenever a GPIO output pin
changes. The gpioin callback is called by the user module when the input pins should change. Typically
the user module would register an event handler at a certain time offset and call gpioin from within the
event handler.

Table 7.8. gpioout callback parameters

Parameter Description

out The values of the output pins

Table 7.9. gpioin callback parameters

Parameter Description

in The input pin values

The return value of gpioin/gpioout is ignored.

7.8. CAN interface

The UT699 AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the
UT699. For core details and register specification please see the UT699 manual.

7.8.1. Start up options

CAN core start up options

-can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX_ack [0|1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This
option must be put after -can_ocX_connect.

X in the above options is in the range 1-2.

7.8.2. Commands

CAN core TSIM commands

can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

can_ocX_ack <0|1>
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This
command should only be issued after a connection has been established.

can_ocX_status
Prints out status information for the CAN_OC core.

X in the above commands is in the range 1-2.

TSIM2 Simulator User's Manual 49

7.8.3. Debug flags

The following debug flags are available for the CAN interfaces. Use them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 7.10. CAN debug flags

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses

GAISLER_CAN_OC_RXPACKET CAN_OC received messages

GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages

GAISLER_CAN_OC_ACK CAN_OC acknowledgements

GAISLER_CAN_OC_IRQ CAN_OC interrupts

7.8.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX_server or -can_ocX_connect. When acting as a server the core can only accept a single
connection.

7.8.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets
are defined according to the table below.

Table 7.11. CAN packet types

Type Value

Message 0x00

Error counter 0xFD

Acknowledge 0xFE

Acknowledge config 0xFF

7.8.5.1. CAN message packet format

Used to send and receive CAN messages.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

CAN message

Byte # Description Bits (MSB-LSB)

7 6 5 4 3 2 1 0

4 Protocol ID = 0 Prot ID 7-0

5 Control FF RTR - - DLC (max 8 bytes)

6-9 ID (32 bit word in network byte
order)

ID 10-0 (bits 31 - 11 ignored for standard frame format)
ID 28-0 (bits 31-29 ignored for extended frame format)

10-17 Data byte 1 - DLC Data byte n 7-0

Figure 7.5. CAN message packet format

7.8.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

TSIM2 Simulator User's Manual 50

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte # Field Description

4 Packet type Type of packet, 0xFD for error counter packets

5 Register 0 - RX error counter, 1 - TX error counter

6 Value Value to write to error counter

Figure 7.6. Error counter packet format

7.8.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface
will wait for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send
acknowledge packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done
automatically by the CAN interface when can_ocX_ack is issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge packet

Byte # Field Description

4 Packet type Type of packet, 0xFE for acknowledge packets

5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 7.7. Acknowledge packet format

7.8.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack or if the can_ocX_ack command has been issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte # Field Description

4 Packet type Type of packet, 0xFF for acknowledge configuration pack-
ets

bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, 0 - disabled

5 Ack configuration

bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Figure 7.8. Acknowledge configuration packet format

TSIM2 Simulator User's Manual 51

8. Cobham UT700 AHB module

8.1. Overview

The UT700 AHB module is very similar to the UT699 AHB module described in the previous chapter.
The differences between the UT700 and the UT699 models is the added SPI model that is only present in
the UT700 AHB module and that it has GRSPW2 cores instead of GRSPW cores and that the debug flag
toggling command is ut700_dbgon,

For information on the CAN, Spacewire, PCI and GPIO interfaces of the UT700 module, see the UT699
documentation in Chapter 7. The TSIM command, flag and packet interface is the same for both GRSPW
and GRSPW2.

The following files are delivered with the UT700 TSIM module:

Table 8.1. Files delivered with the UT700 TSIM module

File Description

ut700/linux/ut700.so UT700 AHB module for Linux

ut700/win32/ut700.dll UT700 AHB module for Windows

ut700/examples/input The input directory contains two examples of PCI
user modules

ut700/examples/input/README.txt Description of the user module examples

ut700/examples/input/Makefile Makefile for building the user modules

ut700/examples/input/pci.c PCI user module example that makes UT700 PCI
initiator accesses

ut700/examples/input/pci_target.c PCI user module example that makes UT700 PCI
target accesses

ut700/examples/input/ut700inputprovider.h Interface between the UT700 module and the user
defined PCI module

ut700/examples/input/pci_input.h UT700 PCI input provider definitions

ut700/examples/input/input.h Generic input provider definitions

ut700/examples/input/tsim.h TSIM interface definitions

ut700/examples/input/end.h Defines the endian of the local machine

ut700/examples/test The test directory contains tests that can be exe-
cuted in TSIM

ut700/examples/test/README.txt Description of the tests

ut700/examples/test/Makefile Makefile for building the tests

ut700/examples/test/cansend.c CAN transmission test

ut700/examples/test/canrec.c CAN reception test

ut700/examples/test/pci.c PCI interface test

ut700/examples/test/pcitest.h Header file for PCI test

8.2. Loading the module

The module is loaded using the TSIM2 option -ahbm. All core specific options described in the following
sections need to be surrounded by the options -designinput and -designinputend, e.g:

On Linux:

 tsim-leon3 -ut700 -ahbm ./ut700/linux/ut700.so
 -designinput ./ut700/examples/input/pci.so -designinputend

TSIM2 Simulator User's Manual 52

On Windows:

 tsim-leon3 -ut700 -ahbm ut700/win32/ut700.dll
 -designinput ./ut700/examples/input/pci.dll -designinputend

The option -ut700 needs to be given to TSIM to enable the UT700 processor configuration.

8.3. SPI bus model API

The UT700 user supplied so/dll differs from that of the UT699 in the addition of the SPI bus model API.
The structure struct spi_input models the SPI bus. It is defined as:

 /* Spi input provider */

 struct spi_input {
 struct input_inp _b;
 int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
 uint32 out, uint32 *in);
 };

The spishift callback should be set by the SPI user module at startup. It is called by the UT700 module
whenever it shifts a word through the SPI bus.

Table 8.2. spishift callback parameters

Parameter Description

select Slave select bits

bitcnt Number of bits set in the MODE register, if bitcnt is -1 then the operation is not a
shift and the call is to indicate a select change, i.e. if the core is disabled.

out Shift out (tx) data

in Shift in (rx) data

TSIM2 Simulator User's Manual 53

9. Cobham Gaisler GR712 AHB module

9.1. Overview

GR712 AHB module is a loadable AHB module that implements the GR712 peripherals including: GPIO,
GRTIMER with latch, SPI, CAN, GRETH, SPACEWIRE, AHBRAM and extra UARTS.

The following files are delivered with the GR712 TSIM module:

Table 9.1. Files delivered with the GR712 TSIM module

File Description

gr712/linux/gr712.so GR712 AHB module for Linux

gr712/win32/gr712.dll GR712 AHB module for Windows

gr712/examples/input The input directory contains two examples of user modules

gr712/examples/input/README.txt Description of the user module examples

gr712/examples/input/Makefile Makefile for building the user modules

gr712/examples/input/spi.c SPI user module example emulating a Intel SPI flash

gr712/examples/input/gpio.c GPIO user module emulating GPIO bit toggle

gr712/examples/input/gr712inputprovider.h Interface between the GR712 module and the user module

9.2. Loading the module

The module is loaded using the TSIM2 option -ahbm. All core specific options described in the following
sections need to be surrounded by the options -designinput and -designinputend, e.g:

On Linux:

tsim-leon -gr712rc -ahbm ./gr712/linux/gr712.so
 -designinput ./gr712/examples/input/spi.so -designinputend

On Windows:

tsim-leon -gr712rc -ahbm ./gr712/win32/gr712.dll
 -designinput ./gr712/examples/input/spi.dll -designinputend

The option -gr712rc needs to be given to TSIM to enable the GR712 processor configuration. The
above line loads the GR712 AHB module ./gr712.so which in turn loads the SPI user module ./spi.so.
The SPI user module ./spi.so communicates with ./gr712.so using the user module interface described in
gr712inputprovider.h,, while ./gr712.so communicates with TSIM via the AHB interface.

9.3. Debugging

To enable printout of debug information the -gr712_dbgon flag switch can be used. Alternatively one
can issue the gr712_dbgon flag command on the TSIM2 command line. The debug flags that are available
are described for each core in the following sections and can be listed by gr712_dbgon help.

9.4. CAN interface

The GR712 AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the
GR712. For core details and register specification please see the GR712 manual.

9.4.1. Start up options

CAN core start up options

-can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

TSIM2 Simulator User's Manual 54

-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX_ack [0|1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This
option must be put after -can_ocX_connect.

X in the above options is in the range 0-1.

9.4.2. Commands

CAN core TSIM commands

can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

can_ocX_ack <0|1>
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This
command should only be issued after a connection has been established.

can_ocX_status
Prints out status information for the CAN_OC core.

X in the above commands is in the range 0-1.

9.4.3. Debug flags

The following debug flags are available for the CAN interfaces. Use them in conjunction with the
gr712_dbgon command to enable different levels of debug information. To toggle debug output for indi-
vidual cores, use the can_ocX_dbg command, where X is in the range 0-1.

Table 9.2. CAN debug flags

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses

GAISLER_CAN_OC_RXPACKET CAN_OC received messages

GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages

GAISLER_CAN_OC_ACK CAN_OC acknowledgements

GAISLER_CAN_OC_IRQ CAN_OC interrupts

9.4.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX_server or -can_ocX_connect. When acting as a server the core can only accept a single
connection.

9.4.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets
are defined according to the table below.

Table 9.3. CAN packet types

Type Value

Message 0x00

TSIM2 Simulator User's Manual 55

Type Value

Error counter 0xFD

Acknowledge 0xFE

Acknowledge config 0xFF

9.4.5.1. CAN message packet format

Used to send and receive CAN messages.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

CAN message

Byte # Description Bits (MSB-LSB)

7 6 5 4 3 2 1 0

4 Protocol ID = 0 Prot ID 7-0

5 Control FF RTR - - DLC (max 8 bytes)

6-9 ID (32 bit word in network byte
order)

ID 10-0 (bits 31 - 11 ignored for standard frame format)
ID 28-0 (bits 31-29 ignored for extended frame format)

10-17 Data byte 1 - DLC Data byte n 7-0

Figure 9.1. CAN message packet format

9.4.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte # Field Description

4 Packet type Type of packet, 0xFD for error counter packets

5 Register 0 - RX error counter, 1 - TX error counter

6 Value Value to write to error counter

Figure 9.2. Error counter packet format

9.4.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface
will wait for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send
acknowledge packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done
automatically by the CAN interface when can_ocX_ack is issued.

TSIM2 Simulator User's Manual 56

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge packet

Byte # Field Description

4 Packet type Type of packet, 0xFE for acknowledge packets

5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 9.3. Acknowledge packet format

9.4.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack or if the can_ocX_ack command has been issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte # Field Description

4 Packet type Type of packet, 0xFF for acknowledge configuration pack-
ets

bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, 0 - disabled

5 Ack configuration

bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Figure 9.4. Acknowledge configuration packet format

9.5. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available
in the GR712. For core details and register specification please see the GR712 manual.

The following features are supported:

• Direct Memory Access
• Interrupts

9.5.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

9.5.2. Commands

Ethernet core TSIM commands

greth_connect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

TSIM2 Simulator User's Manual 57

greth_status
Print Ethernet register status

9.5.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
gr712_dbgon command to enable different levels of debug information.

Table 9.4. Ethernet debug flags

Flag Trace

GAISLER_GRETH_ACC GRETH accesses

GAISLER_GRETH_L1 GRETH accesses verbose

GAISLER_GRETH_TX GRETH transmissions

GAISLER_GRETH_RX GRETH reception

GAISLER_GRETH_RXPACKET GRETH received packets

GAISLER_GRETH_RXCTRL GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET GRETH transmitted packets

GAISLER_GRETH_IRQ GRETH interrupts

9.5.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet
server should open a TCP socket which the module can connect to. The Ethernet core is connected to a
packet server using the -grethconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named greth_config, is included in TSIM distribution.
It uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core
to a physical Ethernet LAN. This makes it easy to connect the simulated GRETH core to real hardware. It
can provide a throughput in the order of magnitude of 500 to 1000 KiB/sec. See its distributed README
for usage instructions.

9.5.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length
field indicating the length of the packet to come (including its header).

TSIM2 Simulator User's Manual 58

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 0

0x4 RES IPID=1 TYPE=0 RES

31:16 RES, reserved for future use

15:8 IPID, IP core ID, must equal 1 for Ethernet

7:5 TYPE, packet type, 0 for data packets

4:0 RES, reserved for future use

Payload

0x8 - Ethernet frame

Figure 9.5. Ethernet data packet

9.6. SpaceWire interface with RMAP support

The GR712 AHB module contains 6 GRSPW2 cores which models the GRSPW2 cores available in the
GR712. For core details and register specification please see the GR712 manual.

The following features are supported:

• Transmission and reception of SpaceWire packets

• Interrupts

• Time codes

• RMAP

• Modifying the link state

9.6.1. Start up options

SpaceWire core start up options

-grspwXconnect host:port
Connect GRPSW core X to packet server at specified server and port.

-grspwXserver port
Open a packet server for core X on specified port.

-grspw_normap
Disable the RMAP handler. RMAP packets will be stored to the DMA channel.

-grspw_rmap
Enable the RMAP handler. All RMAP packages will be simulated in hardware. Includes support for
RMAP CRC. (Default)

-grspw_rmapcrc
Enable support for RMAP CRC. Performs RMAP CRC checks and calculations in hardware.

-grspw_rxfreq freq
Set the RX frequency which is used to calculate receive performance.

TSIM2 Simulator User's Manual 59

-grspw_txfreq freq
Set the TX frequency which is used to calculate transmission performance.

X in the above options has the range 0-5.

9.6.2. Commands

SpaceWire core TSIM commands

grspwX_connect host:port
Connect GRSPW2 core X to packet server at specified server and TCP port.

grspwX_server port
Open a packet server for core X on specified TCP port.

grspw_status
Print status for all GRSPW2 cores.

X in the above commands has the range 0-5.

9.6.3. Debug flags

The following debug flags are available for the SpaceWire interfaces. Use the them in conjunction with
the gr712_dbgon command to enable different levels of debug information. To toggle debug output for
individual cores, use the grspwX_dbg command, where X is in the range 0-5.

Table 9.5. SpaceWire debug flags

Flag Trace

GAISLER_GRSPW_ACC GRSPW accesses

GAISLER_GRSPW_RXPACKET GRSPW received packets

GAISLER_GRSPW_RXCTRL GRSPW rx protocol

GAISLER_GRSPW_TXPACKET GRSPW transmitted packets

GAISLER_GRSPW_TXCTRL GRSPW tx protocol

GAISLER_GRSPW_RMAP GRSPW RMAP accesses

GAISLER_GRSPW_RMAPPACKET GRSPW RMAP packet dumps

GAISLER_GRSPW_RMAPPACKDE GRSPW RMAP packet decoding

GAISLER_GRSPW_DMAERR GRSPW DMA errors

9.6.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -grsp-
wXserver or -grspwXconnect. TCP sockets are used for establishing the connections. When acting
as a server the core can only accept a single connection.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server.

9.6.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. Three different types of packets
are defined according to the table below.

Table 9.6. Packet types

Type Value

Data 0

Time code 1

TSIM2 Simulator User's Manual 60

Type Value

Modify link state 2

Note that all packets are prepended by a one word length field which specified the length of the coming
packet including the header.

Data packet format:

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 1 0

0x4 RES IPID=0 TYPE=0 RES EEP

31:16 RES, reserved for future use

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 0 for data packets

4:1 RES, reserved for future use, must be set to 0

0 EEP, Error End of Packet. Set when the packet is truncated and terminated by an EEP.

Payload

0x8 - SpaceWire packet

Figure 9.6. SpaceWire data packet

Time code packet format:

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 0

0x4 RES IPID=0 TYPE=1 RES

31:16 RES, reserved for future use, must be set to 0

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 1 for time code packets

4:0 RES, reserved for future use, must be set to 0

Payload

31 8 7 6 5 0

0x8 RES CT CN

31:8 RES, reserved for future use, must be set to 0

7:6 CT, time control flags

5:0 CN, value of time counter

Figure 9.7. SpaceWire time code packet

TSIM2 Simulator User's Manual 61

Link state packet format:

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 3 2 0

0x4 RES IPID=0 TYPE=2 RES LS

31:16 RES, reserved for future use, must be set to 0

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 2 for link state packets

4:3 RES, reserved for future use, must be set to 0

0 Error reset

1 Error wait

2 Ready

3 Started

4 Connecting

2:0 LS, Link State:

5 Run

Figure 9.8. SpaceWire link state packet

9.7. SPI and GPIO user modules

The user supplied dynamic library should expose a public symbol gr712inputsystem of type struct
gr712_subsystem *. The struct gr712_subsystem is defined in gr712inputprovider.h as:

struct gr712_subsystem {
 void (*gr712_inp_setup) (int id,
 struct gr712_inp_layout * l,
 char **argv, int argc);
 void (*gr712_inp_restart) (int id,
 struct gr712_inp_layout * l);
 struct sim_interface *simif;
};

The callback gr712_inp_restart will be called every time the simulator restarts. At initialization the callback
gr712_inp_setup will be called once, supplied with a pointer to structure struct gr712_inp_layout
defined in gr712inputprovider.h (see Section 9.7.1 and Section 9.7.2 for details):

struct gr712_inp_layout {
 struct gpio_input gpio[2];
 struct spi_input spi;
};

The user module can access the global TSIM struct sim_interface structure through the simif
member. See Chapter 5 for more details.

The user supplied dynamic library should claim the gr712_inp_layout.gpio or gr712_inp_layout. spi mem-
bers by using the INPUT_CLAIM macro, i.e. INPUT_CLAIM(l->gpio) (see the example below).

A typical user supplied dynamic library would look like this:

/* simple gpio user module that toggles all input bits */
#include <stdio.h>
#include <string.h>
#include "tsim.h"

TSIM2 Simulator User's Manual 62

#include "gr712inputprovider.h"
extern struct gr712_subsystem *gr712inputsystem;
static struct gr712_inp_layout *lay = 0;

static void Change(struct gpio_input *ctrl) {
 ...
}

int gpioout(struct gpio_input *ctrl, unsigned int out) {
 ...
}

static void gr712_inp_setup (int id,
 struct gr712_inp_layout * l,
 char **argv, int argc) {
 lay = l;
 printf("User-dll: gr712_inp_setup:Claiming %s\n", l->gpio[0]._b.name);
 INPUT_CLAIM(l->gpio[0]);
 l->gpio[0].gpioout = gpioout;
 gr712inputsystem->simif->event(Change,(unsigned long)&l->gpio[0],10000000);
}

static struct gr712_subsystem gr712_gpio = {
 gr712_inp_setup,0,0
};

struct gr712_subsystem *gr712inputsystem = &gr712_gpio;

A typical Makefile that would create a user supplied dynamic library gpio.(dll|so) would look like this:

 M_DLL_FIX=$(if $(strip $(shell uname|grep MINGW32)),dll,so)
 M_LIB=$(if $(strip $(shell uname|grep MINGW32)),-lws2_32 -luser32 -lkernel32 -lwinmm,)
 all:gpio.$(M_DLL_FIX)

 pci.$(M_DLL_FIX) : gpio.o
 $(CC) -shared -g gpio.o -o gpio.$(M_DLL_FIX) $(M_LIB)

 gpio.o: gpio.c
 $(CC) -fPIC -c -g -O0 gpio.c -o gpio.o
clean:
 -rm -f *.o *.so

The user can then specify the user module to be loaded by the gr712.so AHB module using the -design-
input and -designinputend command line options:

-designinput ./gr712/examples/input/gpio.so -designinputend

These switches are interpreted by gr712.so.

9.7.1. SPI bus model API

The structure struct spi_input models the SPI bus. It is defined as:

/* Spi input provider */

struct spi_input {
 struct input_inp _b;
 int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
 uint32 out, uint32 *in);
};

The spishift callback should be set by the SPI user module at startup. It is called by the GR712 module
whenever it shifts a word through the SPI bus.

Table 9.7. spishift callback parameters

Parameter Description

select Slave select bits (in case of GR712 these should be ignored and GPIO used instead)

bitcnt Number of bits set in the MODE register, if bitcnt is -1 then the operation is not a
shift and the call is to indicate a select change, i.e. if the core is disabled.

out Shift out (tx) data

TSIM2 Simulator User's Manual 63

Parameter Description

in Shift in (rx) data

The return value of spishift is ignored.

9.7.2. GPIO model API

The structure struct gpio_input models the GPIO pins. It is defined as:

/* GPIO input provider */
struct gpio_input {
 struct input_inp _b;
 int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
 int (*gpioin) (struct gpio_input *ctrl, unsigned int in);
};

The gpioout callback should be set by the user module at startup. The gpioin callback is set by the GR712
AHB module. The gpioout callback is called by the GR712 module whenever a GPIO output pin changes.
The gpioin callback is called by the user module when the input pins should change. Typically the user
module would register an event handler at a certain time offset and call gpioin from within the event handler.

Table 9.8. gpioout callback parameters

Parameter Description

out The values of the output pins

Table 9.9. gpioin callback parameters

Parameter Description

in The input pin values

The return value of gpioin/gpioout is ignored.

9.8. UART interfaces
The GR712 module adds five extra UARTS in addition to the one built in UART (the second built in UART
is is disabled by the -gr712rc option). The extra UARTS are numbered 2 through 6.

9.8.1. Start up options

-uartX device
Works like the ordinary -uartX device option but for X in the range 2-6, with the extra possibility
to set the UART to use stdin and stdout by using -uartX stdio.

9.8.2. Commands

uartX_connect device
Has the same effect as -uartX device above but can as a command.

uartX_status
Shows the status of the UART.

uartX_dbg < flag | list | help | clean >
Toggle, show, disable or show help for debug options for the given UART.

X in the above commands is in the range 2-6.

TSIM2 Simulator User's Manual 64

10. Atmel AT697 PCI emulation

10.1. Overview

The PCI emulation is implemented as a AT697 AHB module that will process all accesses to memory region
0xa0000000 - 0xf0000000 (AHB slave mode) and the APB registers starting at 0x80000100. The AT697
AHB module implements all registers of the PCI core. It will in turn load the PCI user modules that will
implement the devices. The AT697 AHB module is supposed to be the PCI host. Both PCI Initiator and
PCI Target mode are supported. The interface to the PCI user modules is implemented on bus level. Two
callbacks model the PCI bus.

The following files are delivered with the AT697 TSIM module:

Table 10.1. Files delivered with the AT697 TSIM module

File Description

at697/linux/at697.so AT697 AHB module for Linux

at697/win32/at697.dll AT697 AHB module for Windows

Input The input directory contains two examples of PCI user mod-
ules

at697/examples/input/README.txt Description of the user module examples

at697/examples/input/Makefile Makefile for building the user modules

at697/examples/input/pci.c PCI user module example that makes AT697 PCI initiator
accesses

at697/examples/input/pci_target.c PCI user module example that makes AT697 PCI target ac-
cesses

at697/examples/input/at697inputprovider.h Interface between the AT697 module and the user defined
PCI module

at697/examples/input/pci_input.h AT697 PCI input provider definitions

at697/examples/input/input.h Generic input provider definitions

at697/examples/input/tsim.h TSIM interface definitions

at697/examples/input/end.h Defines the endian of the local machine

10.2. Loading the module

The module is loaded using the TSIM2 option -ahbm. All core specific options described in the following
sections need to be surrounded by the options -designinput and -designinputend, e.g:

On Linux:

tsim-leon -ahbm ./at697/linux/at697.so
 -designinput ./at697/examples/input/pci.so -designinputend

On Windows:

tsim-leon -ahbm ./at697/win32/at697.dll
 -designinput ./at697/examples/input/pci.dll -designinputend

This loads the AT697 AHB module ./at697.so which in turn loads the PCI user module ./pci.so. The PCI
user module ./pci.so communicates with ./at697.so using the PCI user module interface, while ./at697.so
communicates with TSIM via the AHB interface.

10.3. AT697 initiator mode

The PCI user module should supply one callback function acc(). The AT697 AHB module will call this
function to emulate AHB slave mode accesses or DMA accesses that are forwarded via acc(). The cmd

TSIM2 Simulator User's Manual 65

parameter determines which command to use. Configuration cycles have to be handled by the PCI user
module.

10.4. AT697 target mode

The AT697 AHB module supplies one callback target_acc() to the PCI user modules to implement
target mode accesses from the PCI bus to the AHB bus. The PCI user module should trigger access events
itself by inserting itself into the event queue.

10.5. Definitions

 #define ESA_PCI_SPACE_IO 0
 #define ESA_PCI_SPACE_MEM 1
 #define ESA_PCI_SPACE_CONFIG 2
 #define ESA_PCI_SPACE_MEMLINE 3

 /* atc697 pci input provider */
 struct esa_pci_input {
 struct input_inp _b;

 int (*acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *abort,unsigned int *ws);

 int (*target_acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *mexc);

};

10.5.1. PCI command table

0000: "IRQ acknowledge",
0001: "Special cycle",
0010: "I/O Read",
0011: "I/O Write",
0100: "Reserved",
0101: "Reserved",
0110: "Memory Read",
0111: "Memory Write",
1000: "Reserved",
1001: "Reserved",
1010: "Configuration Read",
1011: "Configuration Write",
1100: "Memory Read Mutltiple",
1101: "Dual Address Cycle",
1110: "Memory Read Line",
1111: "Memory Write And Invalidate"

10.6. Read/write function installed by PCI module

This function should be set by the PCI user module:

int (*acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr, unsigned int *data,
 unsigned int *abort, unsigned int *ws);

If set, the function is called by the AT697 AHB module whenever the PCI interface initiates a transaction.
The function is called for AHB-slave mapped accesses as well as AHB-Master/APB DMA.The parameter
cmd specifies the command to execute, see Section 10.5.1. Parameter addr specifies the address. The
user module should return the read data in *data for a read command or write the *data on a write
command and return the time to completion in *ws as PCI clocks. A possible target abort should be returned
in *abort. The return value should be: 0: taken, 1: not taken (master abort)

10.7. Read/write function installed by AT697 module

The following function is installed by the AT697 AHB module:

int (*target_acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr, unsigned int
 *data, unsigned int *mexc);

The PCI user module can call this function to emulate a PCI target mode access to the AT697 AHB module.
Parameter cmd specifies the command to execute, see Section 10.5.1. The AT697 module is supposed to

TSIM2 Simulator User's Manual 66

be the host and accesses to the configuration space is not supported. Parameter addr specifies the address.
Parameter *data should point to a memory location where to return the read data on a read command or
point to the write data on a write command. Parameter *mexc should point to a memory location where
to return a possible error. If the call was hit by MEMBAR0, MEMBAR1 or IOBAR, target_read()
will return 1 otherwise 0.

10.8. Registers

Table 10.2 contains a list of implemented and not implemented fields of the AT697F PCI Registers. Only
register fields that are relevant for the emulated PCI module is implemented.

Table 10.2. PCI register support

Register Implemented Not implemented

PCIID1 device id, vendor id

PCISC stat 13, stat 12, stat 11, stat 7, stat 6 stat 5,
stat 4, com2, com 1, com1

stat15 stat14 stat10_9 stat8 com10 com9
com8 com7 com6 com5 com4 com3

PCIID2 class code, revision id

PCIBHDLC [bist, header type, latency timer, cache
size] config-space only

PCIMBAR1 base address, pref, type, msi

PCIMBAR2 base address, pref, type, msi

PCIIOBAR3 io base address, ms

PCISID subsystem id, svi

PCICP pointer

PCILI [max_lat min_gnt int_pin int_line] con-
fig-space-only

PCIRT [retry trdy] config-space-only

PCICW ben

PCISA start address

PCIIW ben

PCIDMA wdcnt, com b2b

PCIIS act, xff, xfe, rfe dmas, ss

PCIIC mod, commsb dwr, dww, perr

PCITPA tpa1, tpa2

PCITSC errmem, xff, xfe, rfe, tms

PCIITE dmaer,imier, tier cmfer, imper, tbeer, tper, syser

PCIITP dmaer,imier, tier cmfer, imper, tbeer, tper, syser

PCIITF dmaer,imier, tier, cmfer, imper, tbeer,
tper, syser

PCID dat

PCIBE dat

PCIDMAA addr

PCIA p0, p1, p2, p3

10.9. Debug flags

The switch -designdbgon flags can be used to enable debug output. The possible values for flags are
as follows:

TSIM2 Simulator User's Manual 67

Table 10.3. Debug flags

ESAPCI_REGACC Trace accesses to the PCI registers

ESAPCI_ACC Trace accesses to the PCI AHB-slave address space

ESAPCI_DMA Trace DMA

ESAPCI_IRQ Trace PCI IRQ

10.10. Commands

pci
Displays all PCI registers.

TSIM2 Simulator User's Manual 68

11. Support

For support contact the Cobham Gaisler support team at support@gaisler.com.

TSIM2 Simulator User's Manual 69

12. Disclaimer

Aeroflex Gaisler AB, reserves the right to make changes to any products and services described herein at any
time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in
this document is current before using this product. Aeroflex does not assume any responsibility or liability
arising out of the application or use of any product or service described herein, except as expressly agreed
to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey
a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of
Aeroflex or of third parties.

	TSIM2 Simulator User's Manual
	Table of Contents
	1. Introduction
	1.1. General
	1.2. Supported platforms and system requirements
	1.3. Obtaining TSIM
	1.4. Problem reports

	2. Installation
	2.1. General
	2.2. License installation

	3. Operation
	3.1. Overview
	3.2. Starting TSIM
	3.3. Standalone mode commands
	3.4. Symbolic debug information
	3.5. Breakpoints and watchpoints
	3.6. Profiling
	3.7. Code coverage
	3.8. Check-pointing
	3.9. Performance
	3.10. Backtrace
	3.11. Connecting to gdb
	3.12. Thread support
	3.12.1. TSIM thread commands
	3.12.2. GDB thread commands

	4. Emulation characteristics
	4.1. Common behaviour
	4.1.1. Timing
	4.1.2. UARTs
	4.1.3. Floating point unit (FPU)
	4.1.4. Delayed write to special registers
	4.1.5. Idle-loop optimisation
	4.1.6. Custom instruction emulation
	4.1.7. Chip-specific errata

	4.2. ERC32 specific emulation
	4.2.1. Processor emulation
	4.2.2. MEC emulation
	4.2.3. Interrupt controller
	4.2.4. Watchdog
	4.2.5. Power-down mode
	4.2.6. Memory emulation
	4.2.7. EDAC operation
	4.2.8. Extended RAM and I/O areas
	4.2.9. SYSAV signal
	4.2.10. EXTINTACK signal
	4.2.11. IWDE signal

	4.3. LEON2 specific emulation
	4.3.1. Processor
	4.3.2. Cache memories
	4.3.3. LEON peripherals registers
	4.3.4. Interrupt controller
	4.3.5. Power-down mode
	4.3.6. Memory emulation
	4.3.7. SPARC V8 MUL/DIV/MAC instructions
	4.3.8. DSU and hardware breakpoints

	4.4. LEON3 specific emulation
	4.4.1. General
	4.4.2. Processor
	4.4.3. Cache memories
	4.4.4. Power-down mode
	4.4.5. LEON3 peripherals registers
	4.4.6. Interrupt controller
	4.4.7. Memory emulation
	4.4.8. CASA instruction
	4.4.9. SPARC V8 MUL/DIV/MAC instructions
	4.4.10. DSU and hardware breakpoints
	4.4.11. AHB status registers

	4.5. LEON4 specific emulation
	4.5.1. General
	4.5.2. Processor
	4.5.3. L1 Cache memories
	4.5.4. L2 Cache memory
	4.5.5. Power-down mode
	4.5.6. LEON4 peripherals registers
	4.5.7. Interrupt controller
	4.5.8. Memory emulation
	4.5.9. CASA instruction
	4.5.10. SPARC V8 MUL/DIV/MAC instructions
	4.5.11. GRFPU emulation
	4.5.12. DSU and hardware breakpoints
	4.5.13. AHB status registers

	5. Loadable modules
	5.1. TSIM I/O emulation interface
	5.1.1. simif structure
	5.1.2. ioif structure
	5.1.3. Structure to be provided by I/O device
	5.1.4. Cygwin specific io_init()

	5.2. LEON AHB emulation interface
	5.2.1. procif structure
	5.2.2. Structure to be provided by AHB module
	5.2.3. Big versus little endianess

	5.3. TSIM/LEON co-processor emulation
	5.3.1. FPU/CP interface
	5.3.2. Structure elements
	5.3.3. Attaching the FPU and CP
	5.3.4. Big versus little endianess
	5.3.5. Additional TSIM commands
	5.3.6. Example FPU

	6. TSIM library (TLIB)
	6.1. Introduction
	6.2. Function interface
	6.3. AHB modules
	6.4. I/O interface
	6.5. UART handling
	6.6. Linking a TLIB application
	6.7. Limitations

	7. Cobham UT699/UT699e AHB module
	7.1. Overview
	7.2. Loading the module
	7.3. UT699e
	7.4. Debugging
	7.5. 10/100 Mbps Ethernet Media Access Controller interface
	7.5.1. Start up options
	7.5.2. Commands
	7.5.3. Debug flags
	7.5.4. Ethernet packet server
	7.5.5. Ethernet packet server protocol

	7.6. SpaceWire interface with RMAP support
	7.6.1. Start up options
	7.6.2. Commands
	7.6.3. Debug flags
	7.6.4. SpaceWire packet server
	7.6.5. SpaceWire packet server protocol

	7.7. PCI initiator/target and GPIO interface
	7.7.1. Commands
	7.7.2. Debug flags
	7.7.3. User supplied dynamic library
	7.7.4. PCI bus model API
	7.7.5. GPIO model API

	7.8. CAN interface
	7.8.1. Start up options
	7.8.2. Commands
	7.8.3. Debug flags
	7.8.4. Packet server
	7.8.5. CAN packet server protocol
	7.8.5.1. CAN message packet format
	7.8.5.2. Error counter packet format
	7.8.5.3. Acknowledge packet format
	7.8.5.4. Acknowledge packet format

	8. Cobham UT700 AHB module
	8.1. Overview
	8.2. Loading the module
	8.3. SPI bus model API

	9. Cobham Gaisler GR712 AHB module
	9.1. Overview
	9.2. Loading the module
	9.3. Debugging
	9.4. CAN interface
	9.4.1. Start up options
	9.4.2. Commands
	9.4.3. Debug flags
	9.4.4. Packet server
	9.4.5. CAN packet server protocol
	9.4.5.1. CAN message packet format
	9.4.5.2. Error counter packet format
	9.4.5.3. Acknowledge packet format
	9.4.5.4. Acknowledge packet format

	9.5. 10/100 Mbps Ethernet Media Access Controller interface
	9.5.1. Start up options
	9.5.2. Commands
	9.5.3. Debug flags
	9.5.4. Ethernet packet server
	9.5.5. Ethernet packet server protocol

	9.6. SpaceWire interface with RMAP support
	9.6.1. Start up options
	9.6.2. Commands
	9.6.3. Debug flags
	9.6.4. SpaceWire packet server
	9.6.5. SpaceWire packet server protocol

	9.7. SPI and GPIO user modules
	9.7.1. SPI bus model API
	9.7.2. GPIO model API

	9.8. UART interfaces
	9.8.1. Start up options
	9.8.2. Commands

	10. Atmel AT697 PCI emulation
	10.1. Overview
	10.2. Loading the module
	10.3. AT697 initiator mode
	10.4. AT697 target mode
	10.5. Definitions
	10.5.1. PCI command table

	10.6. Read/write function installed by PCI module
	10.7. Read/write function installed by AT697 module
	10.8. Registers
	10.9. Debug flags
	10.10. Commands

	11. Support
	12. Disclaimer

