
Frontgrade Gaisler Zephyr distribution

Zephyr

Gaisler Zephyr
distribution User's Manual

U
S

E
R

 M
A

N
U

A
L

R
E

L
E

A
S

E
D

 D
E

C
E

M
B

E
R

 2
02

3

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 2

Table of Contents
1. Introduction .. 4

1.1. Installing Zephyr ... 4
1.1.1. Extracting the archive .. 4
1.1.2. Installing kernel improvements .. 4
1.1.3. Installing GRLIB drivers into Zephyr ... 5

1.2. Archive content ... 5
2. Zephyr kernel .. 6

2.1. Kernel patches .. 6
2.1.1. Applying the patches ... 6

3. GRLIB device drivers ... 7
3.1. Drivers included in the package ... 7
3.2. Enabling the drivers ... 7
3.3. Application configuration .. 7

3.3.1. Example .. 8
4. Support .. 9
I. Device drivers reference .. 10

5. Driver registration .. 15
5.1. Manual registration .. 15
5.2. System specific device registration tables ... 15

6. GRSPW Packet driver ... 17
6.1. Introduction .. 17
6.2. Software design overview .. 17
6.3. Device Interface .. 22
6.4. DMA interface .. 30
6.5. API reference .. 43
6.6. Restrictions ... 45

7. GRCAN CAN driver .. 46
7.1. Introduction .. 46
7.2. Opening and closing device ... 46
7.3. Operation mode ... 48
7.4. Configuration .. 49
7.5. Receive filters ... 51
7.6. Driver statistics ... 51
7.7. Device status ... 52
7.8. CAN bus transfers ... 52
7.9. Interrupt API ... 56

8. SPI driver ... 58
8.1. Introduction .. 58
8.2. Driver registration .. 58
8.3. Opening and closing device ... 58
8.4. Status service .. 59
8.5. Transfer Configuration .. 59
8.6. Transfer Interface ... 61
8.7. Synchronous TX/RX mode .. 63
8.8. Slave select ... 64
8.9. Restrictions ... 64

9. AHB Status Register driver .. 65
9.1. Introduction .. 65
9.2. Driver registration .. 65
9.3. Opening and closing device ... 65
9.4. Register interface ... 66
9.5. Interrupt service routine .. 66

10. Clock gating unit driver ... 69
10.1. Introduction ... 69
10.2. Driver registration .. 69
10.3. Opening and closing device ... 69
10.4. Operation .. 70

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 3

10.5. Core reset ... 71
10.6. Probe clock gating status ... 71
10.7. CPU override .. 71

11. GR1553B Driver .. 73
11.1. Introduction ... 73

12. GR1553B Bus Controller Driver ... 75
12.1. Introduction ... 75
12.2. BC Device Handling ... 76
12.3. Descriptor List Handling ... 78

13. GR1553B Remote Terminal Driver .. 90
13.1. Introduction ... 90
13.2. User Interface .. 90

14. GR1553B Bus Monitor Driver .. 100
14.1. Introduction ... 100
14.2. User Interface .. 100

15. GR716 memory protection unit driver .. 105
15.1. Introduction ... 105
15.2. Driver registration .. 105
15.3. Examples .. 105
15.4. Opening and closing device .. 105
15.5. Operation mode .. 106
15.6. Reset .. 107
15.7. Segment configuration ... 107

16. Memory scrubber .. 111
16.1. Introduction ... 111
16.2. Software design overview .. 111
16.3. Memory scrubber user interface .. 112
16.4. API reference ... 119

17. SpaceWire Router Driver ... 121
17.1. Introduction ... 121
17.2. Driver sources .. 121
17.3. Routing ... 121
17.4. Register and access driver .. 121
17.5. Setup routing table .. 122
17.6. Link handling .. 125
17.7. Error handling .. 128
17.8. Time codes .. 129
17.9. Interrupt codes ... 130
17.10. Configure timeouts .. 132
17.11. Configure packet max length .. 133
17.12. Configure Plug-and-Play .. 133
17.13. Read out credit counters ... 133

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 4

1. Introduction

Frontgrade Gaisler Zephyr distribution provides software support for processors and SoC systems in addition to
what is publically available at the Zephyr project [https://www.zephyrproject.org].

In summary the package includes:

• Zephyr kernel improvements
• Based on official zephyr-v3.5.0
• Kernel patches (Section 2.1)

• GRLIB device drivers (Chapter 3)
• Examples
• Documentation

Specific support for the following SoC components are included:

• GR716A component
• GR716B component

The purpose of this software distribution is to provide a common Zephyr RTOS kernel environment adapted for
SPARC LEON processors. This Zephyr support package is based on the Zephyr release zephyr-v3.5.0, it adds
Frontgrade Gaisler kernel patches, provides device drivers which has not been upstreamed, and demonstrates usage
on LEON with examples.

Currently only the LEON SPARC processor family is supported by this distribution. Please see the Frontgrade
Gaisler website for updates on NOEL-V support in Zephyr.

1.1. Installing Zephyr

Zephyr development environment and documentation packages are freely available via the Zephyr Project web
site and Git repositories. Application development information and the kernel reference is available online via
the Zephyr Project Documentation [https://docs.zephyrproject.org/latest/index.html]. Examples and demos for
Zephyr are also available.

To get started with Zephyr on LEON, the official Getting started Guide [https://docs.zephyrproject.org/lat-
est/getting_started/index.html], is the recommended starting point. After following the guide, the Zephyr envi-
ronment will reside in ${HOME}/zephyrproject with the kernel source tree in ${HOME}/zephyrpro-
ject/zephyr.

The official guide describes how to install the required host tools, the SDK (including compiler tools), and how
to retrieve the Zephyr kernel and module source code using the west tool. By default, the guide will check out
the Zephyr master branch. Section 2.1 below describes how to switch to the recommended base commit and apply
the provided patches. Zephyr SDK version 0.16.4 has been tested together with zephyr-gaisler-1.0.0.

The examples in the Getting started Guide can be used with the GR716A-MINI board, by using the CMake argu-
ment -DBOARD=gr716a_mini. The output binary in zephyr/zephyr.elf can be loaded and run directly
with tsim-gr716 or GRMON. Further information about the Zephyr GR716A-MINI integration is available at:
https://docs.zephyrproject.org/latest/boards/sparc/gr716a_mini/doc/index.html.

1.1.1. Extracting the archive

It is assumed that the steps in the Zephyr official Getting started Guide (above) have been performed before
proceeding with the following.

After obtaining the compressed tar file for the Frontgrade Gaisler Zephyr distribution, uncompress and untar it
to a suitable location. The distribution has been prepared to reside in the /opt/zephyr-gaisler-1.0.0
directory, but can be installed in any location. It can be installed with the following commands:

 $ mkdir -p /opt
 $ cd /opt
 $ tar -xf /path/to/zephyr-gaisler-1.0.0.tar.bz2

1.1.2. Installing kernel improvements

See Section 2.1.1 for instruction on how to apply the kernel patches.

https://www.frontgrade.com/gaisler
https://www.zephyrproject.org
https://www.zephyrproject.org
https://docs.zephyrproject.org/latest/index.html
https://docs.zephyrproject.org/latest/index.html
https://docs.zephyrproject.org/latest/getting_started/index.html
https://docs.zephyrproject.org/latest/getting_started/index.html
https://docs.zephyrproject.org/latest/getting_started/index.html
https://docs.zephyrproject.org/latest/boards/sparc/gr716a_mini/doc/index.html

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 5

1.1.3. Installing GRLIB drivers into Zephyr

See Section 3.2 for instruction on how enable the GRLIB driver in Zephyr.

1.2. Archive content

The extracted distribution archive contains the following directories and files:

 patch Kernel patches

 grlib-drivers Zephyr module with device drivers

 examples Example applications

 zephyr-gaisler-1.0.0.pdf This document

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 6

2. Zephyr kernel

Zephyr is an open-source Real-Time Operating System (RTOS) with device drivers and a cross-compilation
toolchain that can be used with GRLIB System On Chip (SoC) processor designs. The Zephyr Project [https://
www.zephyrproject.org] provides the software source code releases, documentation, forums and other resources
available to the Zephyr Community.

An overview of the the Zephyr support for GRLIB processors can be found on the Frontgrade Gaisler website
[https://gaisler.com/index.php/products/operating-systems/zephyr].

2.1. Kernel patches

Patches for the Zephyr kernel tree are provided in the directory named patch, and should be applied on top
of the Zephyr tag zephyr-v3.5.0. These patches add improvements related to the SPARC architecture and
the LEON3 SOC:s which reside in the kernel. For example device drivers and kernel improvements which were
not part of the upstream Zephyr repository at the time of the release tag. Note that the patch set provided by this
distribution may change between Zephyr release versions because they may become added to the official kernel
tree between releases.

Summary of patches:

• SOC support for the GR716B component
• Board description for the GR716B-MINI board, compatible with TSIM3
• Extended device tree for GR716A
• Support for SPARC V8E single-vector trapping (SVT). Enabled by default on GR716A and GR716B
• Device driver for the GRLIB GRGPIO GPIO controller, using the Zephyr GPIO API. Enabled for GR716A

and GR716B.
• Device driver for the GRLIB SPIMCTRL SPI master controller, using the Zephyr SPI API. Enabled for

SPIMCTRL in GR716A and GR716B.
• Device driver for the GR716A ADC controllers, using the Zephyr ADC API. Allows using the 8 ADC con-

trollers in GR716A.

2.1.1. Applying the patches

It is assumed that Zephyr is installed according to the Zephyr official documentation. To apply the patches, issue:

 $ cd $HOME/zephyrproject/zephyr
 $ git branch gaisler-3.5.0 zephyr-v3.5.0
 $ git checkout gaisler-3.5.0
 $ git am /path/to/the/patch/dir/*.patch
 $ west update

The command west update is needed to synchronize third-party modules with any changes made to the file
zephyr/west.yml.

The patches can be inspected for example with the Git log front end command gitk.

https://www.frontgrade.com/gaisler
https://www.zephyrproject.org
https://www.zephyrproject.org
https://www.zephyrproject.org
https://gaisler.com/index.php/products/operating-systems/zephyr
https://gaisler.com/index.php/products/operating-systems/zephyr

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 7

3. GRLIB device drivers

The drivers in the Zephyr GRLIB driver module are drivers which have either not been upstreamed (yet), or do
not fit naturally in the Zephyr kernel, or share code with BCC bare-metal distribution from Frontgrade Gaisler. In
general this is because there is no related API provided by Zephyr for the type interface class (SpaceWire, MIL-
STD-1553B, etc.).

Users of the BCC LEON cross-compiler driver library (libdrv) will find these Zephyr drivers familiar: the user
interface is the same.

3.1. Drivers included in the package

Below is a list of the drivers currently distributed in the GRLIB Zephyr driver module.

Table 3.1. Drivers included in the Zephyr GRLIB driver module

Driver Kernel configuration (Kconfig) to include driver Example
provided

GR716A pin control CONFIG_GRLIB_GR716A_MISC Yes

GR716A PLL control CONFIG_GRLIB_GR716A_MISC Yes

AHBSTAT driver CONFIG_GRLIB_AHBSTAT Yes

GRLIB clock gating unit driver CONFIG_GRLIB_CLKGATE Yes

GR1553B driver CONFIG_GRLIB_GR1553B Yes

GRCAN and GRCANFD driver CONFIG_GRLIB_GRCAN No

GRLIB GRSPW2 packet driver CONFIG_GRLIB_GRSPW Yes

GRLIB SpaceWire router CONFIG_GRLIB_GRSPWROUTER Yes

I2C master driver CONFIG_GRLIB_I2CMST No

GR716A memory protection unit driver CONFIG_GRLIB_GR716A_MEMPROT Yes

Memory scrubber (MEMSCRUB) driver CONFIG_GRLIB_MEMSCRUB Yes

GRLIB SPI (SPICTRL) driver CONFIG_GRLIB_SPICTRL No

3.2. Enabling the drivers

The extracted zephyr-gaisler-1.0.0.tar.bz2 contains a Zephyr module consisting of device driv-
er source code and configuration files. To make the drivers available to an application, the application lo-
cal CMakeLists.txt file will need a reference to the grlib-drivers path in its CMake variable
EXTRA_ZEPHYR_MODULES. Assuming the module is installed in the default location, the line to add to
CMakeLists.txt is:

 set(EXTRA_ZEPHYR_MODULES /opt/zephyr-gaisler-1.0.0/grlib-drivers)

An example on setting EXTRA_ZEPHYR_MODULES can be found in examples/ahb-
stat/CMakeLists.txt.

3.3. Application configuration

A general description on how to configure the Zephyr kernel and subsystems to adapt for a target application is is
available in the Zephyr documentation: Interactive Kconfig interfaces [https://docs.zephyrproject.org/latest/build/
kconfig/menuconfig.html]. That page describes the interactive menuconfig and guiconfig systems which are ref-
erenced in the following.

When the module has been added to EXTRA_ZEPHYR_MODULES, the configuration system will be aware of the
GRLIB drivers and will make new options available in the Zephyr menuconfig. These new options are available
under "Modules" ---> "grlib-drivers". The menuconfig and guiconfig interfaces are useful for ex-
ploring the options described by the module Kconfig. However, changes made in the interactive configuration
interfaces are stored in the build directory and will be lost if the build directory is manually removed, or when

https://www.frontgrade.com/gaisler
https://docs.zephyrproject.org/latest/build/kconfig/menuconfig.html
https://docs.zephyrproject.org/latest/build/kconfig/menuconfig.html
https://docs.zephyrproject.org/latest/build/kconfig/menuconfig.html

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 8

using west build --pristine. If an appliction is designed to use one of the Zephyr device drivers permanently, the
preferred route is to update the application prj.conf as described below.

A driver can be selected permanently in the application by adding the corresponding configuration option to the
application local prj.conf file. For example by adding a line with the content CONFIG_GRLIB_AHBSTAT=y
to enable building the AHBSTAT device driver. See also Table 3.1.

A useful method to determine kernel configuration parameters the application needs is to use the interactive menu-
config action [D] Save minimal config (advanced). That will write the minimum set of application
configuration parameters to a file, which can be merged with prj.conf.

3.3.1. Example

Below is an example of prj.conf and CMakeLists.txt for an application using the AHBSTAT device
driver.

Example 3.1. A minimal prj.conf

 CONFIG_GRLIB_AHBSTAT=y

Example 3.2. A minimal CMakeLists.txt

 cmake_minimum_required(VERSION 3.20.0)
 set(BOARD gr716a_mini)
 set(EXTRA_ZEPHYR_MODULES /opt/zephyr-gaisler-1.0.0/grlib-drivers)
 find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
 project(hello_world)
 target_sources(app PRIVATE src/main.c)

See also the directory /opt/zephyr-gaisler-1.0.0/example/ahbstat.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 9

4. Support

For support contact the support team at support@gaisler.com.

When contacting support, please identify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support service is only for paying customers with a support contract.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 10

Part I. Device drivers reference
The following sections describe the device drivers included in zephyr-gaisler-1.0.0. Each driver is described in
a separate chapter.

Examples on how to use the drivers can be found in the examples directory.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 11

Table of Contents
5. Driver registration .. 15

5.1. Manual registration .. 15
5.2. System specific device registration tables ... 15

6. GRSPW Packet driver ... 17
6.1. Introduction .. 17

6.1.1. Hardware Support ... 17
6.1.2. Driver sources .. 17
6.1.3. Driver registration ... 17
6.1.4. Examples ... 17
6.1.5. Known driver limitations .. 17

6.2. Software design overview ... 17
6.2.1. Overview ... 17
6.2.2. Initialization ... 18
6.2.3. Link control ... 18
6.2.4. Time Code support .. 18
6.2.5. RMAP support .. 18
6.2.6. Port support .. 19
6.2.7. SpaceWire node address configuration .. 19
6.2.8. User DMA buffer handling ... 19
6.2.9. Driver DMA buffer handling ... 20
6.2.10. Polling mode and interrupts ... 21
6.2.11. Starting and stopping DMA ... 21

6.3. Device Interface .. 22
6.3.1. Opening and closing device .. 22
6.3.2. Hardware capabilities ... 23
6.3.3. Link Control ... 24
6.3.4. Node address configuration ... 26
6.3.5. Time-control codes .. 27
6.3.6. Port Control ... 28
6.3.7. RMAP Control ... 29
6.3.8. Interrupt handling .. 30

6.4. DMA interface .. 30
6.4.1. Opening and closing DMA channels ... 30
6.4.2. Starting and stopping DMA operation ... 33
6.4.3. Packet buffer description .. 34
6.4.4. Packet buffer lists .. 35
6.4.5. Sending packets .. 36
6.4.6. Receiving packets .. 37
6.4.7. Transmission queue status ... 39
6.4.8. Queue flushing .. 40
6.4.9. Statistics .. 40
6.4.10. DMA channel configuration .. 41
6.4.11. DMA channel status ... 43

6.5. API reference .. 43
6.5.1. Data structures .. 44
6.5.2. Device functions ... 44
6.5.3. DMA functions ... 44

6.6. Restrictions ... 45
7. GRCAN CAN driver .. 46

7.1. Introduction .. 46
7.1.1. User Interface ... 46
7.1.2. Driver registration ... 46
7.1.3. Examples ... 46
7.1.4. Known driver limitations .. 46

7.2. Opening and closing device ... 46
7.2.1. Static buffer allocation ... 47

7.3. Operation mode ... 48

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 12

7.3.1. Starting and stopping ... 48
7.4. Configuration .. 49

7.4.1. Channel selection .. 49
7.4.2. GRCAN Timing parameters .. 50
7.4.3. GRCANFD Timing parameters .. 50

7.5. Receive filters ... 51
7.5.1. Data structures .. 51
7.5.2. Acceptance filter ... 51
7.5.3. Sync filter .. 51

7.6. Driver statistics ... 51
7.7. Device status ... 52
7.8. CAN bus transfers ... 52

7.8.1. Data structures .. 52
7.8.2. Transmission .. 53
7.8.3. Reception ... 54
7.8.4. Bus-off recovery ... 56
7.8.5. AHB error recovery ... 56

7.9. Interrupt API ... 56
7.9.1. Interrupt generation ... 56

8. SPI driver ... 58
8.1. Introduction .. 58
8.2. Driver registration .. 58
8.3. Opening and closing device ... 58
8.4. Status service .. 59
8.5. Transfer Configuration .. 59
8.6. Transfer Interface .. 61
8.7. Synchronous TX/RX mode .. 63
8.8. Slave select ... 64
8.9. Restrictions ... 64

9. AHB Status Register driver .. 65
9.1. Introduction .. 65
9.2. Driver registration .. 65
9.3. Opening and closing device ... 65
9.4. Register interface ... 66
9.5. Interrupt service routine .. 66

10. Clock gating unit driver ... 69
10.1. Introduction ... 69
10.2. Driver registration .. 69
10.3. Opening and closing device ... 69
10.4. Operation .. 70
10.5. Core reset ... 71
10.6. Probe clock gating status ... 71
10.7. CPU override .. 71

11. GR1553B Driver .. 73
11.1. Introduction ... 73

11.1.1. Considerations and limitations .. 73
11.1.2. GR1553B Hardware ... 73
11.1.3. Software driver ... 73
11.1.4. Driver Registration ... 73

12. GR1553B Bus Controller Driver ... 75
12.1. Introduction ... 75

12.1.1. GR1553B Bus Controller Hardware .. 75
12.1.2. Software driver ... 75
12.1.3. Driver registration .. 75

12.2. BC Device Handling ... 76
12.2.1. Device API ... 76

12.3. Descriptor List Handling ... 78
12.3.1. Overview ... 78
12.3.2. Example: steps for creating a list .. 79

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 13

12.3.3. Major Frame ... 80
12.3.4. Minor Frame ... 80
12.3.5. Slot (Descriptor) .. 80
12.3.6. Changing a scheduled BC list (during BC-runtime) .. 81
12.3.7. Custom Memory Setup ... 81
12.3.8. Interrupt handling .. 81
12.3.9. List API ... 82

13. GR1553B Remote Terminal Driver .. 90
13.1. Introduction ... 90

13.1.1. GR1553B Remote Terminal Hardware .. 90
13.1.2. Driver registration .. 90

13.2. User Interface .. 90
13.2.1. Overview ... 90
13.2.2. Application Programming Interface ... 93

14. GR1553B Bus Monitor Driver .. 100
14.1. Introduction ... 100

14.1.1. GR1553B Remote Terminal Hardware ... 100
14.1.2. Driver registration .. 100

14.2. User Interface .. 100
14.2.1. Overview .. 100
14.2.2. Application Programming Interface ... 101

15. GR716 memory protection unit driver .. 105
15.1. Introduction ... 105

15.1.1. User Interface .. 105
15.1.2. Features .. 105
15.1.3. Limitations .. 105

15.2. Driver registration .. 105
15.3. Examples .. 105
15.4. Opening and closing device .. 105
15.5. Operation mode .. 106

15.5.1. Starting and stopping .. 106
15.6. Reset .. 107
15.7. Segment configuration ... 107

15.7.1. Number of segments ... 107
15.7.2. Data structures ... 108
15.7.3. Set ... 108
15.7.4. Get .. 109

16. Memory scrubber .. 111
16.1. Introduction ... 111

16.1.1. Hardware Support .. 111
16.1.2. Driver sources ... 111
16.1.3. Examples .. 111

16.2. Software design overview .. 111
16.2.1. Driver usage .. 111

16.3. Memory scrubber user interface .. 112
16.3.1. Return values .. 112
16.3.2. Opening and closing device ... 112
16.3.3. Configuring the memory range ... 113
16.3.4. Starting/stopping different modes. ... 114
16.3.5. Setting up error thresholds ... 117
16.3.6. Registering an ISR ... 118
16.3.7. Polling the error status .. 118

16.4. API reference ... 119
17. SpaceWire Router Driver ... 121

17.1. Introduction ... 121
17.2. Driver sources .. 121
17.3. Routing ... 121
17.4. Register and access driver .. 121
17.5. Setup routing table ... 122

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 14

17.5.1. GR716B ... 125
17.6. Link handling .. 125
17.7. Error handling .. 128
17.8. Time codes .. 129
17.9. Interrupt codes ... 130
17.10. Configure timeouts .. 132
17.11. Configure packet max length .. 133
17.12. Configure Plug-and-Play .. 133
17.13. Read out credit counters ... 133

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 15

5. Driver registration

Device drivers in this library can operate on any number of peripherals (cores) of a specific type. Before operation
starts, the drivers must have knowledge of the available peripheral devices. This knowledge is transferred at run-
time in a process named driver registration.

Drivers in this library rely on static memory allocation and will never call malloc() and related functions. This
means that memory required by the drivers need to be allocated by the user and communicated to the drivers. This
is also performed in the driver registration step.

In the rest of this chapter, the APBUART driver will be used as an example on peripheral registration. The same
procedures is used for the other drivers.

5.1. Manual registration

Manual registration does not require dynamic memory allocation or AMBA Plug&Play bus scanning. It can be
useful for resource constrained systems.

Registration of a peripheral can be performed with the function

 int apbuart_register(struct apbuart_devcfg *devcfg);

which takes a device configuration record as its parameter. For example:

 #include <drv/apbuart.h>

 struct apbuart_devcfg MYDEVCFG0 = {
 .regs = {
 .addr = 0x80000100,
 .interrupt = 2,
 },
 };

 int main(void) {
 struct apbuart_priv *dev;

 apbuart_register(&MYDEVCFG0);
 dev = apbuart_open(0);
 [...]
 }

It is also possible to register multiple peripherals at once using the function

 int apbuart_init(struct apbuart_devcfg *devcfgs[]);

which takes a NULL terminated array as parameter:

 #include <drv/apbuart.h>

 struct apbuart_devcfg MYDEVCFG[] = {
 { .regs = { .addr = 0x80000100, .interrupt = 2, }, },
 { .regs = { .addr = 0x80000200, .interrupt = 3, }, },
 };

 struct apbuart_devcfg *MYDEVCFGS[] = {
 &MYDEVCFG[0],
 &MYDEVCFG[1],
 NULL,
 };

 int main(void) {
 struct apbuart_priv *dev;

 apbuart_init(MYDEVCFGS);
 dev = apbuart_open(1);
 [...]
 }

In addition to specifying register base addresses and interrupt numbers, the above examples also allocate (static)
device private data. For more details, see the definition of the different struct [driver]_devcfg types.

5.2. System specific device registration tables

Device configuration tables have been prepared for the following systems:

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 16

Table 5.1. Device registration tables for manual registration

System Header files

GR716 gr716/

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 17

6. GRSPW Packet driver

6.1. Introduction

This section describes the GRSPW packet driver for Zephyr.

It is an advantage to understand the SpaceWire bus/protocols, GRSPW hardware and software driver design when
developing using the user interface in Section 6.3 and Section 6.4. The Section 6.2.1 describes the overall software
design of the driver.

The driver uses linked lists of packet buffers to receive and transmit SpaceWire packets. The packet driver imple-
ments an API which allows efficient custom data buffer handling providing zero-copy ability and multiple DMA
channel support. The link control handling has been separated from the DMA handling.

6.1.1. Hardware Support

The GRSPW cores user interface are documented in the GRIP Core User's manual. Below is a list of the major
hardware features it supports:

• GRSPW, GRSPW2 and GRSPW2_DMA (router AMBA port)
• Multiple DMA channels
• Link Control
• Port Control
• RMAP Control

6.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the Zephyr source
tree src/libdrv/src/.

Table 6.1. Source Location

Filename Description

include/drv/grspw_pkt.h GRSPW user interface definition

src/grspw/*.c GRSPW driver implementation

6.1.3. Driver registration

This driver uses the driver registration mechanism described in Chapter 5.

Table 6.2. Driver registration functions

Registration method Function

Register one device grspw_register()

Register many devices grspw_init()

6.1.4. Examples

Examples are available in the src/libdrv/examples/ directory in the Zephyr distribution.

6.1.5. Known driver limitations

The known limitations in the GRSPW Packet driver exists listed below:

• The statistics counters are not atomic, clearing at the same the interrupt handler is called could cause invalid
statistics, one must disable interrupt when reading/clearing.

6.2. Software design overview

6.2.1. Overview

The driver API has been split up in two major parts listed below:

• Device interface, see Section 6.3.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 18

• DMA channel interface, see Section 6.4.

GRSPW device parameters that affects the GRSPW core and all DMA channels are accessed over the device API
whereas DMA specific settings and buffer handling are accessed over the per DMA channel API. A GRSPW2
device may implement up to four DMA channels.

In order to access the driver the first thing is to open a GRSPW device using the device interface.

For controlling the device one must open a GRSPW device using 'id = grspw_open(dev_index)' and
call appropriate device control functions. Device operations naturally affects all DMA channels, for example when
the link is disabled all DMA activity pause. However there is no connection software wise between the device
functions and DMA function, except from that the grspw_close requires that all of its DMA channels have
been closed. Closing a device fails if DMA channels are still open.

Packets are transferred using DMA channels. To open a DMA channel one calls 'dma_id =
grspw_dma_open(id, dmachan_index)' and use the appropriate transmission function with the
dma_id to identify which DMA channel used.

6.2.2. Initialization

During early initialization when the operating system boots the driver performs some basic GRSPW device and
software initialization. The following steps are performed or not performed:

• GRSPW device and DMA channels I/O registers are initialized to a state where most are zero.
• DMA is stopped on all channels
• Link state and settings are not changed (RMAP may be active).
• RMAP settings untouched (RMAP may be active).
• Port select untouched (RMAP may be active).
• Time Codes are disabled and TC register cleared.
• IRQ generation disabled.
• Status Register cleared.
• Node address / DMA channels node address is untouched (RMAP may be active).
• Hardware capabilities are read.
• Device index determined.

6.2.3. Link control

The GRSPW link interface handles the communication on the SpaceWire network. It consists of a transmitter,
receiver, a FSM and FIFO interfaces. The current link state, status indicating past failures, parameters that affect
the link interface such as transmitter frequency for example is controlled using the GRSPW register interface.

The SpaceWire link is controlled using the software device interface. The driver initialization sequence during
boot does not affect the link parameters or state. The link is controlled separately from the DMA channels, even
though the link goes out from run-mode this does not affect the DMA interface. The DMA activity of all channels
are of course paused.

Function names prefix: grspw_link_*().

6.2.4. Time Code support

The GRSPW supports sending and receiving SpaceWire Time Codes. An interrupt can optionally be generated on
Time Code reception and the last Time Code can be read out from a GRSPW register.

Function names prefix: grspw_tc_*()

6.2.5. RMAP support

The GRSPW device has optional support for an RMAP target implemented in hardware. The target interface is
able to interpret RMAP protocol (protid=1) requests, take the necessary actions on the AMBA bus and generate
a RMAP response without the software's knowledge or interaction. The RMAP target can be disabled in order
to implement the RMAP protocol in software instead using the DMA operations. The RMAP CRC algorithm
optionally present in hardware can also be used for check summing the data payload.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 19

The device interface is used to get the RMAP features supported by the hardware and configuring the below
RMAP parameters:

• Probe if RMAP and RMAP CRC is supported by hardware
• RMAP enable/disable
• SpaceWire DESTKEY of RMAP packets

The SpaceWire node address, which also affects the RMAP target, is controlled from the address configuration
routines, see Section 6.2.7.

Function names prefix: grspw_rmap_*()

6.2.6. Port support

The GRSPW device has optional support for two ports (two connectors), where only one port can be active at a
time. The active SpaceWire port is either forced by the user or auto selected by the hardware depending on the
link state of the SpaceWire ports at a certain condition.

The device interface is used to get information about the GRSPW hardware port support, current set up and to
control how the active port is selected.

Function names prefix: grspw_port_*()

6.2.7. SpaceWire node address configuration

The GRSPW core supports assigning a SpaceWire node address or a range of addresses. The address affects the
received SpaceWire Packets, both to the RMAP target and to the DMA receiver. If a received packet does not
match the node address it is dropped and the GRSPW status indicates that one or more packets with invalid address
was received.

The GRSPW2 and GRSPW2_DMA cores that implements multiple DMA channels use the node address as a
way to determine which DMA channel a received packet shall appear at. A unique node address or range of node
addresses per DMA channel must be configured in this case.

It is also possible to enable promiscuous mode to enable all node addresses to be accepted into the first DMA
channel, this option does not affect the RMAP target node address decoding.

The GRSPW SpaceWire node address configuration is controlled using the device interface. A specific DMA
channel's node address is thus affected by the "global" device API and not controllable using the DMA channel
interface.

If supported by hardware the node address can be removed before DMA writes the packet to memory. This is a
configuration option per DMA channel using the DMA channel API.

Function names prefix: grspw_addr_*()

6.2.8. User DMA buffer handling

The driver is designed with zero-copy in mind. The user is responsible for setting up data buffers on its own . The
driver uses linked lists of packet buffers as input and output from/to the user. It makes it possible to handle multiple
packets on a single driver entry, which typically has a positive impact when transmitting small sized packets.

The API supports header and data buffers for every packet, and other packet specific transmission parameters such
as generate RMAP CRC and reception indicators such as if packet was truncated.

Since the driver never reads or writes to the header or data buffers the driver does not affect the CPU cache of the
DMA buffers, it is the user's responsibility to handle potential cache effects.

Note that the UT699 does not have D-cache snooping, this means that when reading received buffers D-cache
should either be invalidated or the load instructions should force cache miss when accessing DMA buffers
(LEON LDA instruction) .

Function names prefix: grspw_dma_*()

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 20

6.2.8.1. Buffer List help routines

The GRSPW packet driver internally uses linked lists routines. The linked list operations are found in the header
file and can be used by the user as well. The user application typically defines its own packet structures having
the same layout as struct grspw_pkt in the top and adding custom fields for the application buffer handling as
needed. For small implementations however the pkt_id field may be enough to implement application buffer
handling. The pkt_id field is never accessed by the driver, instead is an optional application data storage intended
for identifying a specific packet, which packet pool the packet buffer belongs to, or a higher level protocol id
information for example.

Function names prefix: grspw_list_*()

6.2.9. Driver DMA buffer handling

The driver represents packets with the struct grspw_pkt packet structure, see Table 6.32. They are arranged in
linked lists that are called queues by the driver. The order of the linked lists are always maintained to ensure that
the packet transmission order is represented correctly.

h e a d = &p 0

ta il = &p 2

n e xt = &p 1

fla g s

h le n

d le n

d a t a

h d r

n e xt = N ULL

fla g s

h le n

d le n

d a t a

h d r

cou n t = 3

n e xt = &p 2

fla g s

h le n

d le n

d a t a

h d r

Figure 6.1. Queue example - linked list of three grspw_pkt packets

6.2.9.1. DMA Queues

The driver uses one queue per DMA channel transfer direction, thus two queues per DMA channel. The number
of packets within a queue is maintained to optimize moving packets internally between queues and to the user
which also needs this information. The different queues are listed below.

• RX SCHED queue - packets that have been assigned a RX DMA descriptor.
• TX SCHED queue - packets that have been assigned a TX DMA descriptor.

Packet in the SCHED queues always are assigned to a DMA descriptor waiting for hardware to perform RX or
TX DMA operations.

The DMA descriptor table has a size limitation imposed by hardware. 64 TX or 128 RX descriptors can be defined
for one hardware descriptor table in memory. Naturally this also limits the number of packets that the SCHED
queues may contain at any single point in time. It is up to the user to control the input and output to them by
queuing and dequeueing from and to private queues.

The current number of packets in respective queue can be read by doing function calls using the DMA API, see
Section 6.4.7. The user can for example use this to determine to wait or continue with packet processing.

6.2.9.2. DMA Queue operations

The user can control how the RX SCHED and TX SCHED queues are populated, by providing and removing
packet buffers. The user can control how and when packets are moved from RX SCHED and TX SCHED queues

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 21

into user provided queues by manually trigger the move by calling reception and transmission routines as described
in Section 6.4.6 and Section 6.4.5.

For RX, the packets always flow in one direction from USER RX READY -> RX SCHED -> USER RX RECV.
Likewise the TX packets flow USER TX SEND -> TX SCHED -> USER TX SENT. The procedures triggering
queue packet moves are listed below and in Figure 6.2 and Figure 6.3. The interface of theses procedures are
described in the DMA channel API.

• USER -> RX SCHED – grspw_dma_rx_prepare, Section 6.4.6.
• RX SCHED -> USER – grspw_dma_rx_recv, Section 6.4.6.
• USER -> TX SCHED queue – grspw_dma_tx_send, Section 6.4.5.
• TX SCHED -> USER – grspw_dma_tx_reclaim, Section 6.4.5.

"RX PREPARE"
Use r in p u t e m p ty

p a cke t b u ffe r s

RX S CH ED
Qu e u e

&p 7

&p 8

&p 9

"RX RECV"
Use r r e ce ive

p a cke t b u ffe r s

Figure 6.2. RX queue packet flow and operations

"TX S EN D"
Use r in p u t

p a cke t b u ffe r s

TX S CH ED
Qu e u e

&p 7

&p 8

&p 9

"TX RECLAIM "
Use r r e t a ke

p a cke t b u ffe r s

Figure 6.3. TX queue packet flow and operations

Packets which the user has provided to the driver shall be considered owned by the driver until the user takes the
packets back again. In particular, the struct grspw_pkt fields should not be accessed by the user while the packet
buffers are assigned to the driver.

6.2.10. Polling mode and interrupts

All user DMA operations are non-blocking and the user is thus responsible for processing the DMA descriptor
tables at a user defined interval by calling reception and transmit routines of the driver. DMA interrupt generation
is controlled individually per packet. It is configured in the packet data structure.

The driver does not contain an interrupt service routine. The user can install an ISR by using the operating system.

6.2.11. Starting and stopping DMA

The driver has been designed to make it clear which functionality belongs to the device and DMA channel APIs.
The DMA API is affected by started and stopped mode, where in stopped mode means that DMA is not possible
and used to configure the DMA part of the driver. During started mode a DMA channel can accept incoming and
send packets. Each DMA channel controls its own state. Parts of the DMA API is not available in during stopped
mode and some during stopped mode to simplify the design. The device API is not affected by this.

Typically the DMA configuration is set and user buffers are initialized before DMA is started. The user can control
the link interface separately from the DMA channel before and during DMA starts.

When the DMA channel is stopped by calling grspw_dma_stop() the driver will:

• Stop DMA transfers and DMA interrupts.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 22

• Stop accepting new packets for transmission and reception. However the DMA functions will still be open for
the user to retrieve sent and unsent TX packet buffers and to retrieve received and unused RX packet buffers.

The DMA close routines requires that the DMA channel is stopped. Similarly, the device close routine makes sure
that all DMA channels are closed to be successful. This is to make sure that all user tasks has return and hardware
is in a good state. It is the user's responsibility to stop the DMA channel before closing.

DMA operational function names: grspw_dma_{start,stop}()

6.3. Device Interface

This section covers how the driver can be interfaced to an application to control the GRSPW hardware on device
level, such as link state and node addresses.

6.3.1. Opening and closing device

A GRSPW device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using grspw_dev_count. A particular device can be opened
using grspw_open and closed grspw_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. This procedure is thread-safe by protecting from other threads by using the GRSPW
driver's semaphore lock. The semaphore is used by all GRSPW devices on device opening, closing and DMA
channel opening and closing.

During opening of a GRSPW device the following steps are taken:

• GRSPW device I/O registers are initialized to a state where most are zero.
• Descriptor tables memory for all DMA channels are allocated from the heap or from a user assigned address

and cleared. The descriptor table length is always the maximum 0x400 Bytes for RX and TX.
• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the same device.

The example below prints the number of GRSPW devices to standard output. It then opens, prints the current link
settings and closes the first GRSPW device present in the system.

int print_spw_link_properties(void)
{
 void *device;
 int count;
 uint32_t linkcfg, clkdiv;

 count = grspw_dev_count();
 printf("%d GRSPW devices present\n", count);

 device = grspw_open(0);
 if (!device)
 return -1; /* Failure */

 linkcfg = grspw_get_linkcfg(device);
 if (linkcfg & LINKOPTS_AUTOSTART) {
 printf("GRSPW0: Link is in auto-start after start-up\n");
 }
 clkdiv = grspw_get_clkdiv(device);
 printf("GRSPW0: Clock divisor reset value is %d\n", clkdiv);

 grspw_close(device);
 return 0; /* success */
}

Table 6.3. grspw_dev_count function declaration

Proto int grspw_dev_count(void)

About Retrieve number of GRSPW devices registered to the driver.

Return int. Number of GRSPW devices registered to driver, zero if none.

Notes The number of GRSPW devices registered to the driver may or may not be equal to the number of de-
vices in the system

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 23

Table 6.4. grspw_open function declaration

Proto void *grspw_open(int dev_no)

About Open a GRSPW device

The GRSPW device is identified by index. Index value (dev_no) must be equal to or greater than ze-
ro, and smaller than value returned by grspw_dev_count. The returned value is used as input ar-
gument to all functions operating on the device. It is not possible to open an already opened device in-
dex.

dev_no [IN] IntegerParam

Device identification number.

Pointer. Status and driver's internal device identification.

NULL Failed to open device. Fails if device is already open, if dev_no is out of range, or if
driver failed to install its ISR.

Return

Pointer GRSPW device handle to use as input parameter to all device API functions for the
opened device.

Table 6.5. grspw_close function declaration

Proto int grspw_close(void *d)

About Close a GRSPW device

All DMA channels are also stopped and closed automatically, similar to calling grspw_dma_stop
and grspw_dma_close for all channels.

d [IN] pointerParam

Device handle returned by grspw_open.

int.

Value Description

DRV_OK Successfully closed device.

Return

others Device closed, but failed to unregister interrupt handler.

6.3.2. Hardware capabilities

The features and capabilities present in hardware might not be symmetric in a system with several GRSPW devices.
For example the two first GRSPW devices on the GR712RC implements RMAP whereas the others does not. The
driver can read out the hardware capabilities and present it to the user. The set of functionality are determined
at design time. In some system where two or more systems are connected together it is likely to have different
capabilities.

The capabilities are read out from the GRSPW I/O registers and written to the user in an easier accessible way.
See below function declarations for details.

Depending on device capabilities, parts of the driver API may be inactivated due to missing hardware support.
See respective section for details.

The function grspw_rmap_support and grspw_port_count retrieves a subset of the hardware ca-
pabilities. They are described in respective section.

Table 6.6. grspw_hw_support function declaration

Proto void grspw_hw_support(void *d, struct grspw_hw_sup *hw)

About Get GRSPW hardware capabilities

Write hardware capabilities of GRSPW device to user parameter hw.

Param d [IN] pointer

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 24

Device handle returned by grspw_open.

hw [OUT] pointerParam

Address to where the driver will write the hardware capabilities. Pointer must to memory and be valid.

Return None.

The grspw_hw_sup data structure is described by the declaration and table below. It is used to describe the GRSPW
hardware capabilities.

/* Hardware support in GRSPW core */
struct grspw_hw_sup {
 int8_t rmap; /* If RMAP in HW is available */
 int8_t rmap_crc; /* If RMAP CRC is available */
 int8_t rx_unalign; /* RX unaligned (byte boundary) access allowed*/
 int8_t nports; /* Number of Ports (1 or 2) */
 int8_t ndma_chans; /* Number of DMA Channels (1..4) */
 int hw_version; /* GRSPW Hardware Version */
 int8_t irq; /* SpW Distributed Interrupt available if 1 */
};

Table 6.7. grspw_hw_sup data structure declaration

0 RMAP target functionality is not implemented in hardware.rmap

1 RMAP target functionality is implemented in hardware.

rmap_crc Non-zero if RMAP CRC is available in hardware.

rx_unalign Non-zero if hardware can perform RX unalibned (byte boundary) DMA accesses.

nports Number of SpaceWire ports in hardware. Values: 1 or 2.

ndma_chans Number of DMA channels in hardware. Values: 1, 2, 3 or 4.

27..16 The 12-bits indicates GRLIB AMBA Plug & Play device ID of APB device. Indicates
if GRSPW, GRSPW2 or GRSPW2_DMA.

hw_version

4..0 The 5 LSB bits indicates GRLIB AMBA Plug & Play device version of APB device.
Indicates subversion of GRSPW or GRSPW2.

irq Non-zero if SpaceWire distributed interrupt functionality is implemented in hardware.

6.3.3. Link Control

The SpaceWire link is controlled and configured using the device API functions described below. The link control
functionality is described in Section 6.2.3.

In system where the GRSPW controller is connected directly to a GRSPW SpaceWire router, the link interface
is configured in the corresponding router driver.

Table 6.8. grspw_get_linkcfg function declaration

Proto uint32_t grspw_get_linkcfg(void *d)

About Get link configuration

The function returns the link configuration, which can be masked with the LINKOPTS_* defines.

d [IN] pointerParam

Device handle returned by grspw_open.

uint32_t. Link configuration read from I/O registers

Bits Description

0 Link is enabled. Mask: LINKOPTS_ENABLE/LINKOPTS_DISABLE

1 Link is started. Mask: LINKOPTS_START

2 Link is in autostart mode. Mask: LINKOPTS_AUTOSTART

Return

9 Interrupt generation on link error is enabled. Mask: LINKOPTS_ERRIRQ

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 25

Table 6.9. grspw_set_linkcfg function declaration

Proto int grspw_set_linkcfg(void *d, uint32_t cfg)

About Set link configuration

The function sets the link configuration using the with the LINKOPTS_* defines.

d [IN] pointerParam

Device handle returned by grspw_open.

cfg [IN] uint32_t

Link configuration to set from I/O registers

Bits Description

0 Link enable. Mask: LINKOPTS_ENABLE/LINKOPTS_DISABLE

1 Link started. Mask: LINKOPTS_START

2 Link in autostart mode. Mask: LINKOPTS_AUTOSTART

Param

9 Enable interrupt generation on link error. Mask: LINKOPTS_ERRIRQ

Return int. The function always returns DRV_OK.

Table 6.10. grspw_get_clkdiv function declaration

Proto uint32_t grspw_get_clkdiv(void *d)

About Get clock divisor

The function reads and returns the clock divisor register, masked with GRSPW_CLKDIV_MASK.
Start clock and run clock can be masked individually by using GRSPW_CLKDIV_START and
GRSPW_CLKDIV_RUN. The referred defines are available in the file include/regs/gr-
spw-regs.h.

d [IN] pointerParam

Device handle returned by grspw_open.

uint32_t. Clock divisor read from I/O registers

Bits Description

15..8 Clock divisor used during startup

Return

7..0 Clock divisor used in RUN state

Table 6.11. grspw_set_clkdiv function declaration

Proto int grspw_set_clkdiv(void *d, uint32_t cfg)

About Set clock divisor

The function sets the clock divisor register with value cfg masked with GRSPW_CLKDIV_MASK in
include/regs/grspw-regs.h.

d [IN] pointerParam

Device handle returned by grspw_open.

clkdiv [IN] uint32_t

Clock devisor value to write to I/O registers.

Bits Description

15..8 Clock divisor used during startup

Param

7..0 Clock divisor used in RUN state

Return int. The function always returns DRV_OK.

Table 6.12. grspw_link_state function declaration

Proto spw_link_state_t grspw_link_state(void *d)

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 26

About Get current SpaceWire link state.

d [IN] pointerParam

Device identifier returned by grspw_open.

enum spw_link_state_t. SpaceWire link state according to SpaceWire standard FSM state ma-
chine numbering. The possible return values are listed below. The values are defined by enum
spw_link_state_t and shall be prefixed with SPW_LS_.

Value Description.

ERRRST Error reset.

ERRWAIT Error Wait state.

READY Error Wait state.

CONNECTING Connecting state.

STARTED Stated state.

Return

RUN Run state - link and DMA is fully operational.

Table 6.13. grspw_get_status function declaration

Proto uint32_t grspw_get_status(void *d)

About Get status register value

d [IN] pointerParam

Device handle returned by grspw_open.

Return uint32_t.

Current value of the GRSPW Status Register.

Register definitions for the GRSPW Status Register are available in the file include/regs/gr-
spw-regs.h. The relevant defines are prefixed with GRSPW_STS_.

Table 6.14. grspw_clear_status function declaration

Proto void grspw_clear_status(void *d, uint32_t status)

About Clear bits in the status register

d [IN] pointerParam

Device handle returned by grspw_open.

status [IN] uint32_tParam

Mask of bits to clear in the GRSPW Status Register.

Register definitions for the GRSPW Status Register are available in the file include/regs/gr-
spw-regs.h. The relevant defines are prefixed with GRSPW_STS_.

Return None.

6.3.4. Node address configuration

This part for the device API controls the node address configuration of the RMAP target and DMA channels. The
node address configuration functionality is described in Section 6.2.7. The data structures and functions involved
in controlling the node address configuration are listed below.

struct grspw_addr_config {
 /* Ignore address field and put all received packets to first
 * DMA channel.
 */
 int8_t promiscuous;

 /* Default Node Address and Mask */
 uint8_t def_addr;
 uint8_t def_mask;
 /* DMA Channel custom Node Address and Mask */
 struct {

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 27

 int8_t node_en; /* Enable Separate Addr */
 uint8_t node_addr; /* Node address */
 uint8_t node_mask; /* Node address mask */
 } dma_nacfg[4];
};

Table 6.15. grspw_addr_config data structure declaration

promiscu-
ous

Enable (1) or disable (0) promiscous mode. The GRSPW will ignore the address field and put all
received packets to first DMA channel. See hardware manual for. This field is also used to by the
driver indicate if the settings should be written and read, or only read. See function description.

def_addr GRSPW default node address.

def_mask GRSPW default node address mask.

DMA channel node address array configuration, see below field description. DMA channel N is
described by dma_nacfg[N].

Field Description

node_en Enable (1) or disable (1) separate node address for DMA channel N (determined by
array index).

node_addr Node address for DMA channel N (determined by array index).

dma_nacfg

node_mask Node address mask for DMA channel N (determined by array index).

Table 6.16. grspw_addr_ctrl function declaration

Proto void grspw_addr_ctrl(void *d, const struct grspw_addr_config *cfg)

About Set node address configuration

The GRSPW device is either configured to have one single node address or a range of address-
es by masking. The cfg input memory layout is described by the grspw_addr_config data struc-
ture in Table 6.15. When using multiple DMA channels one must assign each DMA channel a
unique node address or a unique range by masking. Each DMA channel is represented by the input
dma_nacfg[N].

d [IN] pointerParam

Device handle returned by grspw_open.

cfg [IN] pointerParam

Address configuration to set.

Return None.

6.3.5. Time-control codes

SpaceWire Time Code handling is controlled and configured using the device API functions described below. The
Time Code functionality is described in Section 6.2.4.

Table 6.17. grspw_get_tccfg function declaration

Proto uint32_t grspw_get_tccfg(void *d)

About Get time-code configuration

The function reads and returns the time-code configration from GRSPW control register.

d [IN] pointerParam

Device handle returned by grspw_open.

uint32_t. Time-code configuration read from I/O registers. The return value can be evaluated against
the following masks:

Mask Description

TCOPTS_EN_RX Enable time-code receptions

Return

TCOPTS_EN_TX Enable time-code transmissions

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 28

TCOPTS_EN_RXIRQ Generate interrupt when a valid time-code is received.

Table 6.18. grspw_set_tccfg function declaration

Proto void grspw_set_tccfg(void *d, uint32_t cfg)

About Set time-code configuration

The function sets the time-code configuration in GRSPW control register.

d [IN] pointerParam

Device handle returned by grspw_open.

cfg [IN] uint32_t

Time-code configuration to write in I/O registers. The following masks can be used at configuration:

Mask Description

TCOPTS_EN_RX Enable time-code receptions

TCOPTS_EN_TX Enable time-code transmissions

Param

TCOPTS_EN_RXIRQ Generate interrupt when a valid time-code is received.

Return None.

Table 6.19. grspw_get_tc function declaration

Proto uint32_t grspw_get_tc(void *d)

About Get time register value

The function reads and returns the GRSPW time register value.

d [IN] pointerParam

Device handle returned by grspw_open.

uint32_t. Time register read from I/O registers. The return value can be evaluated against the follow-
ing masks:

Mask Description

TCTRL_MASK Time control flags of time register

Return

TIMECNT_MASK Time counter of time register

6.3.6. Port Control

The SpaceWire port selection configuration, hardware support and current hardware status can be accessed using
the device API functions described below. The SpaceWire port support functionality is described in Section 6.2.3.

In cases where only one SpaceWire port is implemented this part of the API can safely be ignored. The functions
still deliver consistent information and error code failures when forcing Port1, however provides no real function-
ality.

Table 6.20. grspw_port_ctrl function declaration

Proto int grspw_port_ctrl(void *d, int *port)

About Always read and optionally set port control settings of GRSPW device. The configuration determines
how the hardware selects which SpaceWire port that is used. This is an optional feature in hardware to
support one or two SpaceWire ports. An error is returned if operation not supported by hardware.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

port [IO] pointer to bit-maskParam

The port configuration is first written if port does not point to -1. The port configuration is always
read from the I/O registers and stored in the port address.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 29

Value Description

-1 The current port configuration is read and stored into the port address.

0 Force to use Port0.

1 Force to use Port1.

> 1 Hardware auto select between Port0 or Port1.

Value. Description

0 Request successful.

Return

-1 Request failed. Port1 is not implemented in hardware.

Table 6.21. grspw_port_count function declaration

Proto int grspw_port_count(void *d)

About Reads and returns number of ports that hardware supports.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

int. Number of ports implemented in hardware.

Value Description

1 One SpaceWire port is implemented in hardware. In this case grspw_port_ctrl function
has no effect and grspw_port_active always returns 0.

Return

2 Two SpaceWire ports are implemented in hardware.

Table 6.22. grspw_port_active function declaration

Proto int grspw_port_active(void *d)

About Reads and returns the currently actively used SpaceWire port.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

int. Currently active SpaceWire port

Value Description

0 SpaceWire port0 is active.

Return

1 SpaceWire port1 is active.

6.3.7. RMAP Control

The device API described below is used to configure the hardware supported RMAP target. The RMAP support
is described in Section 6.2.5.

Availability of RMAP support can be determined by using the function grspw_hw_support.

When RMAP CRC is implemented in hardware it can be used to generate and append a CRC on a per packet
basis. It is controlled by the DMA packet flags. Header and data CRC can be generated individually. See
Table 6.32 for more information.

Table 6.23. grspw_rmap_set_ctrl function declaration

Proto int grspw_rmap_set_ctrl(void *d, uint32_t options)

About Set RMAP configuration

d [IN] pointerParam

Device handle returned by grspw_open.

Param options [IN] uint32_t

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 30

RMAP control options to set in I/O registers. The following bit masks, prefixed with RMAPOPTS_
shall be used.

Bit Description

EN_RMAP Enable (1) or Disable (0) RMAP target handling in hardware.

EN_BUF Enable (0) or Disable (1) RMAP buffer. Disabling ensures that all RMAP requests are
processed in the order they arrive.

Return int. The function always returns DRV_OK.

Table 6.24. grspw_rmap_set_destkey function declaration

Proto int grspw_rmap_set_destkey(void *d, uint32_t destkey)

About Set RMAP destination key

d [IN] pointerParam

Device handle returned by grspw_open.

destkey [IN] uint32_tParam

Destination key to set. The value shall be AND:ed with the define GRSPW_DK_DESTKEY available
in the file include/regs/grspw-regs.h.

Return int. The function always returns DRV_OK.

6.3.8. Interrupt handling

No interrupt service routine is installed by the GRSPW driver. The user can install and uninstall an ISR by using
the Operating System Abstraction Layer functions osal_isr_register and osal_isr_unregister. At
least one GRSPW interrupt source must be enabled in the driver for interrupts to be generated. Possible interrupt
sources are time-code tick-out, link-error, and DMA interrupts.

The functions grspw_dma_tx_count and grspw_dma_rx_count can be used from interrupt context to
determine how many TX/RX packets are (at least) available to the user. grspw_get_status can be used to
determine whether a new time count value (Tick Out) is available. Section 6.6 lists the API functions allowed to
be called from ISR context.

6.4. DMA interface

This section covers how the driver can be interfaced to an application to send and transmit SpaceWire packets
using the GRSPW hardware.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel. The device channel zero is always
present.

6.4.1. Opening and closing DMA channels

The first step before any SpaceWire packets can be transferred is to open a DMA channel to be used for trans-
mission. As described in the device API Section 6.3.1 the GRSPW device the DMA channel belongs to must be
opened and passed onto the DMA channel open routines.

The number of DMA channels of a GRSPW device can obtained by calling grspw_hw_support.

An opened DMA channel can not be reopened unless the channel is closed first. When opening a channel the
channel is marked opened by the driver. This procedure is thread-safe by protecting from other threads by using
the operating system abstraction layer. Protection is used by all GRSPW devices on device opening, closing and
DMA channel opening and closing.

During opening of a GRSPW DMA channel the following steps are taken:

• DMA channel I/O registers are initialized to a state where most are zero. The channel state is set to stopped.
• Resources used for the DMA channel implementation itself are allocated and initialized.
• The channel is marked opened to protect the caller from other users of the DMA channel.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 31

Below is a partial example of how the first GRSPW device's first DMA channel is opened, link is started and a
packet can be received.

int spw_receive_one_packet(void)
{
 void *device;
 void *dma0;
 int count;
 uint32_t linkcfg, clkdiv;
 spw_link_state_t state;
 struct grspw_list lst;

 device = grspw_open(0);
 if (!device)
 return -1; /* Failure */

 /* Start Link */
 linkcfg = LINKOPTS_ENABLE | LINKOPTS_START; /* Start Link */
 grspw_set_linkcfg(device, linkcfg);
 clkdiv = (9 << 8) | 9; /* Clock Divisor factor of 10 */
 grspw_set_clkdiv(device, clkdiv);

 /* wait until link is in run-state */
 do {
 state = grspw_link_state(device);
 } while (state != SPW_LS_RUN);

 /* Open DMA channel */
 dma0 = grspw_dma_open(device, 0);
 if (!dma0) {
 grspw_close(device);
 return -2;
 }

 /* Initialize and activate DMA */
 if (DRV_OK != grspw_dma_start(dma0)) {
 grspw_dma_close(dma0);
 grspw_close(device);
 return -3;
 }

 /* ... */

 /* Prepare driver with RX buffers */
 grspw_dma_rx_prepare(dma0, 1, &preinited_rx_unused_buf_list0);

 /* Start sending a number of SpaceWire packets */
 grspw_dma_tx_send(dma0, 1, &preinited_tx_send_buf_list);

 /* Receive at least one packet */
 do {
 /* Try to receive as many packets as possible */
 count = grspw_dma_rx_recv(dma0, &lst);
 } while (0 == count);

 if (-1 == count) {
 printf("GRSPW0.DMA0: Receive error\n");
 } else {
 printf("GRSPW0.DMA0: Received %d packets\n", count);
 }

 /* ... */

 grspw_dma_close(dma0);
 grspw_close(device);
 return 0; /* success */
}

Table 6.25. grspw_dma_open function declaration

Proto void *grspw_dma_open(void *d, int chan_no)

About Opens a DMA channel of a previously opened GRSPW device. The GRSPW device is identified by
its device handle d and the DMA channel is identified by index chan_no.

The function allocates buffers as necessary using dynamic memory allocation (malloc().

The returned value is used as input argument to all functions operating on the DMA channel.

d [IN] pointerParam

Device handle returned by grspw_open.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 32

chan_no [IN] IntegerParam

DMA channel identification number. DMA channels are indexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero.

Pointer. Status and driver's internal device identification.

Value Description

NULL Indicates failure to DMA channel. Fails if DMA channel does not exists, DMA channel al-
ready has been opened or that DMA channel resource allocation or initialization failes.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, identifies which DMA channel.

Notes May block until other GRSPW device operations complete.

Table 6.26. grspw_dma_close function declaration

Proto int grspw_dma_close(void *c)

About Closes a previously opened DMA channel. The specificed DMA channel is stopped and closed. This
will result in the same functionality as calling grspw_dma_stop to stop on-going DMA transfers
and then free DMA channel resources.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

int. Return code as indicated below.

Value Description

DRV_OK Success.

Return

DRV_NOTOPEN DMA channel c was not open.

6.4.1.1. Static buffer allocation

The function grspw_dma_open uses dynamic memory for allocating DMA buffers. An alternative is to use
grspw_dma_open_userbuf, which allows the user to provide the buffers instead. Note that the corresponding
function for closing the DMA channel is grspw_dma_close_userbuf in this case.

Table 6.27. grspw_dma_open_userbuf function declaration

Proto void *grspw_dma_open_userbuf(void *d, int chan_no, struct grspw_ring
*rx_ring, struct grspw_ring *tx_ring, struct grspw_rxbd *rx_bds,
struct grspw_txbd *tx_bds)

About Opens a DMA channel of a previously opened GRSPW device. The GRSPW device is identified by
its device handle d and the DMA channel is identified by index chan_no.

The function requires the caller to provide buffers for the driver to use (rx_ring tx_ring
rx_bds tx_bds). These memory areas shall not be referenced by the user as long as the
DMA channel is opened. The areas can be reused when the channel has been closed with
grspw_dma_close_userbuf.

The returned value is used as input argument to all functions operating on the DMA channel.

d [IN] pointerParam

Device handle returned by grspw_open.

chan_no [IN] IntegerParam

DMA channel identification number. DMA channels are indexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero.

rx_ring [IN] PointerParam

RX buffer ring area. Size shall be GRSPW_RXBD_NR * sizeof (struct grspw_ring),
aligned to 32-bit word.

Param tx_ring [IN] Pointer

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 33

TX buffer ring area. Size shall be GRSPW_TXBD_NR * sizeof (struct grspw_ring),
aligned to 32-bit word.

rx_bds [IN] PointerParam

RX DMA buffer descriptor table area. Must be 1 KiB, and aligned to 1 KiB address boundary.

tx_bds [IN] PointerParam

TX DMA buffer descriptor table area. Must be 1 KiB, and aligned to 1 KiB address boundary.

Pointer. Status and driver's internal device identification.

Value Description

NULL Indicates failure to DMA channel. Fails if DMA channel does not exists, DMA channel al-
ready has been opened or that DMA channel resource allocation or initialization failes.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, identifies which DMA channel.

Notes May block until other GRSPW device operations complete.

Table 6.28. grspw_dma_close_userbuf function declaration

Proto int grspw_dma_close_userbuf(void *c)

About Closes a previously opened DMA channel. The specificed DMA channel is stopped and closed. This
will result in the same functionality as calling grspw_dma_stop to stop on-going DMA transfers
and then free DMA channel resources.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open_userbuf.

int. Return code as indicated below.

Value Description

DRV_OK Success.

Return

DRV_NOTOPEN DMA channel c was not open.

6.4.2. Starting and stopping DMA operation

The start and stop operational modes are described in Section 6.2.11. The functions described below are used to
change the operational mode of a DMA channels. A summary of which DMA API functions are affected are listed
in Table 6.29, see function description for details on limitations.

Table 6.29. functions available in the two operational modes

Function Stopped Started

grspw_dma_open N/A N/A

grspw_dma_close Yes Yes

grspw_dma_start Yes No

grspw_dma_stop No Yes

grspw_dma_rx_recv Yes, with limitations, see
Section 6.4.6

Yes

grspw_dma_rx_prepare Yes, with limitations, see
Section 6.4.6

Yes

grspw_dma_rx_flush Yes No

grspw_dma_tx_send Yes, with limitations, see
Section 6.4.5

Yes

grspw_dma_tx_reclaim Yes, with limitations, see
Section 6.4.5

Yes

grspw_dma_tx_flush Yes No

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 34

Function Stopped Started

grspw_dma_config Yes No

grspw_dma_config_read Yes Yes

grspw_dma_stats_read Yes Yes

grspw_dma_stats_clr Yes Yes

Table 6.30. grspw_dma_start function declaration

Proto int grspw_dma_start(void *c)

About Starts DMA operational mode for the DMA channel indicated by the argument. After this step it is
possible to send and receive SpaceWire packets. If the DMA channel is already in started mode, no
action will be taken.

The start routine clears and initializes the following:

• DMA descriptor rings.
• DMA queues.
• Statistic counters.
• I/O registers to match DMA configuration previously set with grspw_dma_config
• Interrupt
• DMA Status
• Enables the receiver

Even though the receiver is enabled the user is required to prepare empty receive buffers after this
point, see grspw_dma_rx_prepare. The transmitter is enabled when the user provides send
buffers that ends up in the TX SCHED queue, see grspw_dma_tx_send.

d [IN] pointerParam

Device handle returned by grspw_open.

Return int. DRV_STARTED if channel was already started, else DRV_OK.

Table 6.31. grspw_dma_stop function declaration

Proto void grspw_dma_stop(void *c)

About Stops DMA operational mode for the DMA channel indicated by the argument. The transmitter will
abort ongoing transfers and the receiver disabled. Packets in the RX SCHED queue will remain in this
queue. The RXPKT_FLAG_RX packet flag is used to signal if the packet contains received data or
not. Similarly, the TXPKT_FLAG_TX packet flag marks if the packet was actually transferred or not.

d [IN] pointerParam

Device identifier returned by grspw_open.

Return None.

Notes The user may want to flush the RX/TX SCHED queues with functions grspw_dma_rx_flush and
grspw_dma_tx_flush after stopping to get unprocessed packets back.

6.4.3. Packet buffer description

The GRSPW packet driver describes packets for both RX and TX using a common memory layout defined by the
data structure grspw_pkt. It is described in detail below.

There are differences in which fields and bits are used between RX and TX operations. The bits used in the flags
field are defined different. When sending packets the user can optionally provide two different buffers, the header
and data. The header can maximally be 256Bytes due to hardware limitations and the data supports 24-bit length
fields. For RX operations hdr and hlen are not used. Instead all data received is put into the data area.

On some systems, the data buffer pointer must be 32-bit word aligned for reception.

struct grspw_pkt {

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 35

 struct grspw_pkt *next; /* Next packet in list. NULL if last packet */
 uintptr_t pkt_id; /* User assigned ID (not touched by driver) */
 void *data; /* 4-byte or byte aligned depends on HW */
 void *hdr; /* 4-byte or byte aligned depends on HW (only TX) */
 uint32_t dlen; /* Length of Data Buffer */
 uint16_t flags; /* RX/TX Options and status */
 uint8_t hlen; /* Length of Header Buffer (only TX) */
};

Table 6.32. grspw_pkt data structure declaration

next The packet structure can be part of a linked list. This field is used to point out the next packet in the
list. Set to NULL if this packet is the last in the list or a single packet.

pkt_id User assigned ID. This field is never touched by the driver. It can be used to store a pointer or other
data to help implement the user buffer handling.

data Data Buffer Address. DMA will read from this. The address must be 4-byte or byte aligned depending
on hardware.

hdr Header Buffer Address. DMA will read hlen bytes from this. The address must be 4-byte or byte
aligned depending on hardware. This field is not used by RX operation.

dlen Data payload lenght. The number of bytes hardware DMA read or written from/to the address indicat-
ed by the data pointer. On RX this is the complete packet data received.

RX/TX transmission options and flags indicating resulting status. The bits described below is to be
prefixed with TXPKT_FLAG_ or RXPKT_FLAG_ in order to match the TX or RX options defini-
tionas declared by the driver's header file.

Bits TX Description (prefixed TXPKT_FLAG_)

NOCRC_MASK Indicates to driver how many bytes shuld not be part of the header CRC calcula-
tion. 0 to 15 bytes can be omitted. Use NOCRC_LENN to select a specific lenght.

IE Enable (1) or Disable (0) IRQ generation on packet transmission completed.

HCRC Enable (1) or disable (0) Header CRC generation (if CRC is available in hard-
ware). Header CRC will be appended (one byte at end of header).

DCRC Enable (1) or disable (0) Data CRC generation (if CRC is available in hardware).
Data CRC will be appended (one byte at end of packet).

TX Is set by the driver to indicate that the packet was transmitted. This does no signal
a successful transmission, but that transmission was attempted, the LINKERR bit
needs to be checked for error indication.

LINKERR Set if a link error was exibited during transmission of this packet.

Bits RX Description (prefixed RXPKT_FLAG_)

IE Enable (1) or Disable (0) IRQ generation on packet reception completed.

TRUNK Set if packet was truncated.

DCRC Set if data CRC error detected (only valid if RMAP CRC is enabled).

HCRC Set if header CRC error detected (only valid if RMAP CRC is enabled).

EEOP Set if an End-of-Packet error occured during reception of this packet.

flags

RX Marks if packet was recevied or not.

hlen Header length. The number of bytes hardware will transfer using DMA from the address indicated by
the hdr pointer. This field is not used by RX operation.

6.4.4. Packet buffer lists

The DMA transfer operations take packet lists as input parameters. A packet list is a linked list with elements of
type struct grspw_pkt. The public driver interface header file includes functions for manipulating lists, prefixed
with grspw_list_*().

The following list is a summary of some of the available list manipulation functions.

• grspw_list_clr initializes a list.
• grspw_list_is_empty determines if a list is empty.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 36

• grspw_list_append appends a packet to the end of a list.
• grspw_list_append_list appends packets from one list to the end of another list.

6.4.5. Sending packets

Packets are sent by adding packets to the TX SCHED queue where they will be assigned a DMA descriptor and
scheduled for transmission. After transmission has completed the packet buffers can be retrieved to view the
transmission status and to be able to reuse the packet buffers for new transfers. During the time the packet is in
the driver it must not be accessed by the user.

Transmission of SpaceWire packets are described in Section 6.2.1.

In the below example Figure 6.4 three SpaceWire packets are scheduled for transmission. The count should be set
to three. The second packet is programmed to generate an interrupt when transmission finished, GRSPW hardware
will also generate a header CRC using the RMAP CRC algorithm resulting in a 16 bytes long SpaceWire packet.

p kt s (in p u t)

h e a d = &p 0

ta il = &p 2 n e xt = &p 1

fla g s = 0

h le n = 0

d le n = 5

d a t a = &d 0

h d r = N ULL

n e xt = N ULL

fla g s = 0

h le n = 0

d le n = 4

d a t a = &d 2

h d r = N ULL

n e xt = &p 2

fla g s =
F LAG_IE |

F LAG_H CRC

h le n = 7

d le n = 8

d a t a = &d 1

h d r = &h 1

DATA0 PAYLOAD

a b c d e

H EADER1 (w ith ou t CRC)

a b c d e f g

DATA1 PAYLOAD

a b c d e f g h

DATA2 PAYLOAD

a b c d

Figure 6.4. TX packet description pkts input to grspw_tx_dma_send

The below tables describe the functions involved in initiating and completing transmissions.

Table 6.33. grspw_dma_tx_send function declaration

Proto int grspw_dma_tx_send(void *c, struct grspw_list *pkts)

About Schedule list of packets for transmission at some point in future.

The GRSPW transmitter is enabled when packets are added to the TX SCHED queue. (US-
ER->SCHED)

The fastest solution in retrieving sent TX packets and sending new frames is to call:

1. grspw_dma_tx_reclaim(opts=0)
2. grspw_dma_tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag must not be set in the packet structure.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [IN] pointerParam

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head points to the first packet and tail points to the last.

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 6.32. Note that TXPKT_FLAG_TX of the flags field must not be set.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 37

int. See return codes below

Value Description

-1 Error: DMA channel is not in started mode.

Return

>=0 Successfully added pkts to TX SCHED list.

Notes This function performs no operation when the DMA channel is stopped.

Table 6.34. grspw_dma_tx_reclaim function declaration

Proto int grspw_dma_tx_reclaim(void *c, struct grspw_list *pkts)

About Reclaim TX packet buffers that has previously been scheduled for transmission with
grspw_dma_tx_send.

The packets in the SCHED queue which have been transmitted are moved to the pkts packet list.
The user pkts list is not cleared by the function. When the move has been completed the packet can
safely be reused again by the user. The packet structures have been updated with transmission status
to indicate transfer failures of individual packets.

The typical solution for retrieving sent TX packets and sending new frames is to call:

1. grspw_dma_tx_reclaim()
2. grspw_dma_tx_send()

NOTE: the TXPKT_FLAG_TX flag indicates if the packet was transmitted.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [OUT] pointerParam

Sent TX packets will be taken from the SCHED queue and added to the pkts queue. The user queue
pkts is not cleared.

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 6.32. Note that TXPKT_FLAG_TX of the flags field indicates if the packet was sent of not.
In case of DMA being stopped one can use this flag to see if the packet was transmitted or not. The
TXPKT_FLAG_LINKERR indicates if a link error occurred during transmission of the packet, re-
gardless the TXPKT_FLAG_TX is set to indicate packet transmission attempt.

int. See return codes below

Value Description

-1 Error: DMA channel is not in started mode.

0 No packet reclaimed (SCHED list contains no sent packets).

Return

>0 Number of packets successfully reclaimed to user list.

Notes This function can operate in stopped mode. This is useful when a link goes down and the DMA activi-
ty is stopped by user or by driver automatically.

6.4.6. Receiving packets

Packets are received by adding empty/free packets to the RX SCHED queue where they will be assigned a DMA
descriptor and scheduled for reception. After a packet is received into the buffer(s) the packet buffer(s) can be
retrieved to view the reception status and to be able to reuse the packet buffers for new transfers. During the time
the packet is in the driver it must not be accessed by the user.

Reception of SpaceWire packets are described in Section 6.2.1.

In the Figure 6.5 example three SpaceWire packets are received. The count parameters is set to three by the
driver to reflect the number of packets. The first packet exhibited an early end-of-packet during reception which
also resulted in header and data CRC error. All header pointers and header lengths have been set to zero by the
user since they are no used, however the values in those fields does not affect the RX operations. The RX flag is
set to indicate that DMA transfer was performed.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 38

p kt s (in p u t)

h e a d = &p 0

ta il = &p 2 n e xt = &p 1

fla g s =
F LAG_RX |

F LAG_EEOP |
F LAG_DCRC |
F LAG_H CRC

h le n = 0

d le n = 5

d a t a = &d 0

h d r = N ULL

n e xt = N ULL

fla g s =
F LAG_RX

h le n = 0

d le n = 4

d a t a = &d 2

h d r = N ULL

n e xt = &p 2

fla g s =
F LAG_RX

h le n = 0

d le n = 8

d a t a = &d 1

h d r = N ULL

DATA0 PAYLOAD

a b c d e

DATA1 PAYLOAD

a b c d e f g h

DATA2 PAYLOAD

a b c d

Figure 6.5. RX packet output from grspw_dma_rx_recv

The below tables describe the functions involved in initiating and completing transmissions.

Table 6.35. grspw_dma_rx_prepare function declaration

Proto int grspw_dma_rx_prepare(void *c, struct grspw_list *pkts)

About Add RX packet buffers for future reception.

The received packets can later be read out with grspw_dma_rx_recv. The packets in pkts list
are put to the SCHED queue of the driver (USER->SCHED).

The typical solution for retreiving received RX packets and preparing new packet buffers for future
receive, is to call:

1. grspw_dma_rx_recv(&recvlist)
2. grspw_dma_rx_prepare(&freelist)

NOTE: the RXPKT_FLAG_RX flag must not be set in the packet structure.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [IN] pointerParam

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head points to the first packet and tail points to the last.

The layout and content of the packet is defined by the grspw_pkt data structure described in Ta-
ble 6.32. Note that RXPKT_FLAG_RX of the flags field must not be set.

int. See return codes below

Value Description

-1 Error: DMA channel is not in started mode.

0 No packets added (SCHED list is full).

Return

>0 Number of packets successfully added to RX SCHED queue.

Notes This function performs no operation when the DMA channel is stopped.

Table 6.36. grspw_dma_rx_recv function declaration

Proto int grspw_dma_rx_recv(void *c, struct grspw_list *pkts)

About Get received RX packet buffers which have previously been scheduled for reception with
grspw_dma_rx_prepare.

The packets in the RX SCHED queue which have been received are moved to the pkts packet list
(SCHED->USER). When the move has been completed the packet(s) can safely be reused again by
the user. The packet structures have been updated with reception status to indicate transfer failures of

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 39

individual packets and received packet length. The header pointer and length fields are not touched by
the driver, all data ends up in the data area.

NOTE: the RXPKT_FLAG_RX flag indicates if a packet was received, thus if the data field contains
new valid data or not.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [OUT] pointerParam

Received RX packets will be taken from the SCHED queue and added to the pkts queue. The user
queue pkts is not cleared.

The layout and content of the packet is defined by the grspw_pkt data structure described in Ta-
ble 6.32. Note that RXPKT_FLAG_RX of the flags field indicates if the packet was received or
not. In case of DMA being stopped one can use this flag to see if the packet was received or not. The
TRUNK, DCRC, HCRC and EEOP flags indicates if an error occured during transmission of the
packet, regardless the RXPKT_FLAG_RX is set to indicate packet reception attempt.

int. See return codes below

Value Description

-1 Error: DMA channel is not in started mode.

0 No packet received (SCHED list contains no received packets).

Return

>0 Number of received packets added to user list.

Notes This function can be called when the DMA channel is in stopped mode. This is useful when a link
goes down and the DMA activity is stopped by user or by driver automatically.

6.4.7. Transmission queue status

The current number of packets processed by hardware but not yet reclaimed/received by the driver can be queried
using the functions described below. These numbers give a hint on how many packets will be reclaimed by a call
to grspw_dma_tx_reclaim or received by grspw_dma_rx_recv.

Table 6.37. grspw_dma_tx_count function declaration

Proto int grspw_dma_tx_count(void *c)

About Get number of packets transmitted by hardware but not yet reclaimed by the driver.
This is determined by looking at the TX descriptor pointer register. The number represents how many
of the send packets that actually have been transmitted by hardware but not reclaimed by the driver
yet.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

Return int. The number of packets transmitted by hardware but not yet reclaimed by the driver.

Notes This function can be called from interrupt context.

Table 6.38. grspw_dma_rx_count function declaration

Proto int grspw_dma_rx_count(void *c)

About Get number of packets received by hardware but not yet retrieved by the driver.
This is determined by looking at the RX descriptor pointer register. The number represents how many
of the prepared packets that actually have been received by hardware but not handled by the driver
yet.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

Return int. The number of packets received by hardware but not yet retrieved by the driver.

Notes This function can be called from interrupt context.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 40

6.4.8. Queue flushing

When a DMA channel is stopped after being in started state, it may contain scheduled unsent TX pack-
ets and scheduled unreceived RX packets. These packets can be given back to the user with the functions
grspw_dma_tx_flush and grspw_dma_rx_flush.

Table 6.39. grspw_dma_tx_flush function declaration

Proto int grspw_dma_tx_flush(void *c, struct grspw_list *pkts)

About Flush TX packets from driver

Like grspw_dma_tx_reclaim, but also move scheduled unsent packets to user list. This func-
tion can only be called when DMA channel is in stopped mode. Return value is the sum of sent pack-
ets and unsent packets. The TXPKT_FLAG_TX packet flag indicates, for each packet, if it was sent or
not.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [OUT] pointerParam

The list will be initialized to contain the SpaceWire packets moved from the SCHED queue to the
packet list. The grspw_list structure will be initialized so that head points to the first packet, tail
points to the last and the last packet (tail) next pointer is NULL.

Number of packets. See return codes below

Value Description

-1 Error: DMA channel is in started mode.

Return

others Number of sent and unsent packets added to user list.

Notes This function can only be called in DMA channel stopped mode.

Table 6.40. grspw_dma_rx_flush function declaration

Proto int grspw_dma_rx_flush(void *c, struct grspw_list *pkts)

About Flush RX packets from driver

Like grspw_dma_rx_recv, but also move scheduled unreceived packets to user list. This function
can only be called when DMA channel is in stopped mode. Returns sum of recevied packets and unre-
ceived packets. The RXPKT_FLAG_RX packet flag indicates if the packet was received or not.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

pkts [OUT] pointerParam

The list will be initialized to contain the SpaceWire packets moved from the SCHED queue to the
packet list. The grspw_list structure will be initialized so that head points to the first packet, tail
points to the last and the last packet (tail) next pointer is NULL.

Number of packts. See return codes below

Value Description

-1 Error: DMA channel is in started mode.

Return

others Number of received and unreceived packets added to user list.

Notes This function can only be called in DMA channel stopped mode.

6.4.9. Statistics

The driver counts statistics at certain events. The driver's DMA channel counters can be read out using the DMA
API. Packet transmission statistics, packet transmission errors and packet queue statistics can be obtained.

struct grspw_dma_stats {
 /* Descriptor Statistics */

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 41

 int tx_pkts; /* Number of Transmitted packets */
 int tx_err_link; /* Number of Transmitted packets with Link Error*/
 int rx_pkts; /* Number of Received packets */
 int rx_err_trunk; /* Number of Received Truncated packets */
 int rx_err_endpkt; /* Number of Received packets with bad ending */
};

Table 6.41. grspw_dma_stats data structure declaration

tx_pkts Number of transmitted packets with link errors.

tx_err_link Number of transmitted packets with link errors.

rx_pkts Number of received packets.

rx_err_trunk Number of received Truncated packets.

rx_err_endpkt Number of received packets with bad ending.

Table 6.42. grspw_dma_stats_read function declaration

Proto void grspw_dma_stats_read(void *c, struct grspw_dma_stats *sts)

About Reads the current driver statistics collected from earlier events by a DMA channel and DMA channel
usage. The statistics are stored to the address given by the second argument. The layout and content of
the statistics are defined by the grspw_dma_stats data structure is described in Table 6.41.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chonized with each other. This could be caused if the function is interrupted by a the GRSPW inter-
rupt or other tasks performing driver operations on the same DMA channel.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

sts [OUT] pointerParam

A snapshot of the current driver statistics are copied to this user provided buffer.

The layout and content of the statistics are defined by the grspw_dma_stats data structure is described
in Table 6.41.

Return None.

Table 6.43. grspw_dma_stats_clr function declaration

Proto void grspw_dma_stats_clr(void *c)

About Resets a DMA channel's statistic counters. The channel counters are set to zero.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

Return None.

6.4.10. DMA channel configuration

Various aspects of DMA transfers can be configured using the functions described in this section. The configu-
ration affects:

• DMA transfer options, no-spill, strip address/PID.
• Receive max packet length.

struct grspw_dma_config {
 int flags; /* DMA config flags, see DMAFLAG_* options */
 int rxmaxlen; /* RX Max Packet Length */
};

Table 6.44. grspw_dma_config data structure declaration

RX/TX DMA transmission options See below.flags

Bits Description (prefixed DMAFLAG_)

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 42

NO_SPILL Enable (1) or Disable (0) packet spilling, flow control.

STRIP_ADR Enable (1) or Disable (0) stripping node address byte from DMA write
transfers (packet reception). See hardware support to determine if present in
hardware. See hardware documenation about DMA CTRL SA bit.

STRIP_PID Enable (1) or disable (0) stripping PID byte from DMA write transfers
(packet reception).(if CRC is available in hardware). See hardware sup-
port to determine if present in hardware. See hardware documenation about
DMA CTRL SP bit.

rxmaxlen Max packet reception length. Longer packets with will be truncated see
RXPKT_FLAG_TRUNK flag in packet structure.

If the function grspw_dma_config is not called after the user has opened the DMA channel with
grspw_dma_open, then the configuration will have default values:

• Packet spilling is enabled (NO_SPILL=0).
• Node address byte stripping is disabled (STRIP_ADR=0).
• PID byte stripping is disabled (STRIP_PID=0).
• Maximum packet reception length is 4096 bytes (rxmaxlen=4096).

If the DMA channel is stopped the last configuration set with grspw_dma_config is used the next time the
channel is started with grspw_dma_start.

Table 6.45. grspw_dma_config function declaration

Proto int grspw_dma_config(void *c, struct grspw_dma_config *cfg)

About Set the DMA channel configuration options as described by the input arguments.

It is only possible the change the configuration on stopped DMA channels, otherwise an error code is
returned.

The hardware registers are not written directly. The settings take effect when the DMA channel is
started calling grspw_dma_start.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

cfg [IN] pointerParam

Address to where the driver will read the DMA channel configuration from. The configuration options
are described in Table 6.44.

int. Return code as indicated below.

Value Description

DRV_OK Success.

Return

DRV_FAIL Failure due to invalid input arguments or DMA has already been start-
ed.

Table 6.46. grspw_dma_config_read function declaration

Proto void grspw_dma_config_read(void *c, struct grspw_dma_config *cfg)

About Copies the DMA channel configuration to user defined memory area.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

sts [OUT] pointerParam

The driver DMA channel configuration options are copied to this user provided buffer.

The layout and content of the statistics are defined by the grpsw_dma_config data structure is de-
scribed in Table 6.44.

Return int. Return code as indicated below.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 43

Value Description

DRV_OK Success.

DRV_FAIL Failure due to invalid input argument.

6.4.11. DMA channel status

Status information unique to a DMA channel is exported by the drivers DMA channel status interface. It reads
and manipulates status bits available in the GRSPW DMA control register.

The following status information is available:

• Bus errors caused by the receive DMA channel (GRSPW_DMA_STATUS_RA).
• Bus errors caused by the transmit DMA channel (GRSPW_DMA_STATUS_TA).
• A packets has been received (GRSPW_DMA_STATUS_PR).
• A packets has been sent (GRSPW_DMA_STATUS_PS).

Table 6.47. grspw_dma_get_status function declaration

Proto uint32_t grspw_dma_get_status(void *c)

About Get DMA channel status

The function reads and returns status from the GRSPW DMA control register. Status bits in the regis-
ter are not cleared. Use function grspw_dma_clear_status to clear the status bits.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

uint32_t.

Mask of DMA channel status bits read from GRSPW DMA control register.

The return value shall be evaluated against the following bit masks:

Mask Description

GRSPW_DMA_STATUS_RA RX AHB Error

GRSPW_DMA_STATUS_TA TX AHB Error

GRSPW_DMA_STATUS_PR Packet received

Return

GRSPW_DMA_STATUS_PS Packet sent

Table 6.48. grspw_dma_clear_status function declaration

Proto void grspw_dma_clear_status(void *c, uint32_t status)

About Clear DMA channel status

The function clears the status bits in GRSPW DMA control register corresponding to
the bits set in the status parameter. Current status can be retrieved with the function
grspw_dma_get_status.

c [IN] pointerParam

DMA channel handle returned by grspw_dma_open.

status [IN] uint32_tParam

Mask of DMA channel status bits to clear in GRSPW DMA control register.

The bit masks are the same as the masks for grspw_dma_get_status return value.

Return None.

6.5. API reference

This section lists all functions and data structures of the GRSPW driver API, and in which section(s) they are
described.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 44

6.5.1. Data structures

The data structures used together with the Device and/or DMA API are summarized in the table below.

Table 6.49. Data structures reference

Data structure name Section

struct grspw_pkt 6.4.3

struct grspw_addr_config 6.3.4

struct grspw_hw_sup 6.3.2

struct grspw_dma_stats 6.4.9

struct grspw_dma_config 6.4.10

6.5.2. Device functions

The GRSPW device API. The functions listed in the table below operates on the GRSPW common registers and
driver set up. Changes here typically affects all DMA channels and link properties .

Table 6.50. Device function reference

Prototype Section

int grspw_dev_count(void) 6.3.1

void *grspw_open(int dev_no) 6.3.1

int grspw_close(void *d) 6.3.1

void grspw_addr_ctrl(void *d, struct grspw_addr_config *cfg) 6.3.4,

spw_link_state_t grspw_link_state(void *d) 6.3.3,

uint32_t grspw_get_linkcfg(void *d) 6.3.3,

int grspw_set_linkcfg(void *d, uint32_t cfg) 6.3.3,

uint32_t grspw_get_clkdiv(void *d) 6.3.3,

int grspw_set_clkdiv(void *d, uint32_t clkdiv) 6.3.3,

uint32_t grspw_get_status(void *d) 6.3.3,

void grspw_clear_status(void *d, uint32_t status) 6.3.3,

uint32_t grspw_get_tccfg(void *d) 6.3.5,

void grspw_set_tccfg(void *d, uint32_t cfg) 6.3.5,

uint32_t grspw_get_tc(void *d) 6.3.5,

6.5.3. DMA functions

The GRSPW DMA channel API. The functions listed in the table below operates on one GRSPW DMA channel
and its driver set up. This interface is used to send and receive SpaceWire packets.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel.

Table 6.51. DMA channel function reference

Prototype Section

void *grspw_dma_open(void *d, int chan_no) 6.4.1,
6.3.1

void grspw_dma_close(void *c) 6.4.1,
6.3.1

void *grspw_dma_open_userbuf(void *d, int chan_no, struct
grspw_ring *rx_ring, struct grspw_ring *tx_ring, struct grspw_rxbd
*rx_bds, struct grspw_txbd *tx_bds)

6.4.1,
6.3.1

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 45

Prototype Section

void grspw_dma_close_userbuf(void *c) 6.4.1,
6.3.1

int grspw_dma_start(void *c) 6.4.2,

void grspw_dma_stop(void *c) 6.4.2,

int grspw_dma_rx_recv(void *c, struct grspw_list *pkts) 6.4.6,

int grspw_dma_rx_prepare(void *c, struct grspw_list *pkts) 6.4.6,

int grspw_dma_rx_flush(void *c, struct grspw_list *pkts) 6.4.8,

int grspw_dma_tx_send(void *c, struct grspw_list *pkts) 6.4.5,

int grspw_dma_tx_reclaim(void *c, struct grspw_list *pkts) 6.4.5,

int grspw_dma_tx_flush(void *c, struct grspw_list *pkts) 6.4.8,

void grspw_dma_stats_read(void *c, struct grspw_dma_stats *sts) 6.4.9

void grspw_dma_stats_clear(void *c) 6.4.9

int grspw_dma_config(void *c, struct grspw_dma_config *cfg) 6.4.10

int grspw_dma_config_read(void *c, struct grspw_dma_config *cfg) 6.4.10

uint32_t grspw_dma_get_status(void *c) 6.4.11

void grspw_dma_clear_status(void *c, uint32_t status) 6.4.11

6.6. Restrictions

To process interrupt events, the user ISR should typically wake up a task which performs the driver API functions
necessary. The following GRSPW Packet driver functions are allowed to be called from an ISR:

• grspw_get_status
• grspw_link_state
• grspw_dma_rx_count
• grspw_dma_tx_count
• grspw_dev_count
• grspw_clear_status
• grspw_get_clkdiv
• grspw_get_linkcfg
• grspw_get_tc
• grspw_get_tccfg
• grspw_dma_get_status
• grspw_dma_clear_status

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 46

7. GRCAN CAN driver

7.1. Introduction

This section describes the driver used to control the GRLIB GRCAN and GRCANFD devices for CAN DMA
operation.

7.1.1. User Interface

This section covers how the driver can be interfaced to an application to control both the GRCAN and GRCANFD
hardware.

Controlling the driver and device is done with functions provided by the driver prefixed with grcan_. GR-
CANFD specific functions are prefixed with grcanfd_. All driver functions take a device handle returned by
grcan_open as the first parameter. All supported commands and their data structures are defined in the CAN
driver's header file drv/grcan.h.

All driver functions are non-blocking.

7.1.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 5.

Table 7.1. Driver registration functions

Registration method Function

Register one device grcan_register()

Register many devices grcan_init()

7.1.3. Examples

Examples are available in the src/libdrv/examples/ directory in the Zephyr distribution.

7.1.4. Known driver limitations

• The DMA buffers must be CPU accessible and within the same address space. No address translation is
performed by the driver.

7.2. Opening and closing device

A GRCAN device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using grcan_dev_count. A particular device can be opened
using grcan_open and closed grcan_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by all GRCAN devices on opening and closing.

During opening of a GRCAN device the following steps are taken:

• GRCAN device I/O registers are initialized, including masking all interrupts.
• The core is disabled (to allow configuration).
• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the same device.

The example below prints the number of GRCAN devices to screen then opens and closes the first GRCAN device
present in the system.

int print_grcan_devices(void)
{
 struct grcan_priv *device;
 int count;

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 47

 count = grcan_dev_count();
 printf("%d GRCAN device(s) present\n", count);

 device = grcan_open(0);
 if (!device) {
 return -1; /* Failure */
 }
 if (grcan_canfd_capable(device)) {
 printf("Device is CANFD capable!\n");
 }
 grcan_close(device);
 return 0; /* success */
}

Table 7.2. grcan_dev_count function declaration

Proto int grcan_dev_count(void)

About Retrieve number of GRCAN devices registered to the driver.

Return int. Number of GRCAN devices registered in system, zero if none.

Table 7.3. grcan_open function declaration

Proto struct grcan_priv *grcan_open(int dev_no)

About Opens a GRCAN device. The GRCAN device is identified by index. The returned value is used as in-
put argument to all functions operating on the device.

The function allocates DMA buffers as necessary using dynamic memory allocation (malloc()).

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by grcan_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

Table 7.4. grcan_close function declaration

Proto int grcan_close(struct grcan_priv *d)

About Closes a previously opened device.

d [IN] pointerParam

Device identifier. Returned from grcan_open.

Return int. This function always returns 0 (success)

Table 7.5. grcan_canfd_capable function declaration

Proto int grcan_canfd_capable(struct grcan_priv *priv);

About Checks if the given device is CANFD capable.

priv [IN] PointerParam

Device identifier. Returned by grcan_open.

Return int. Non-zer is device is CANFD capable, zero if not.

7.2.1. Static buffer allocation

The function grcan_open uses dynamic memory for allocating DMA buffers. An alternative is to use
grcan_open_userbuf, which allows the user to provide the buffers instead. Note that the corresponding
function for closing the DMA channel is grcan_close_userbuf in this case.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 48

Table 7.6. grcan_open_userbuf function declaration

Proto struct grcan_priv *grcan_open_userbuf(int dev_no, void *rxbuf, int
rxbuf_size, void *txbuf, int txbuf_size)

About Opens a GRCAN device. The GRCAN device is identified by index. The returned value is used as in-
put argument to all functions operating on the device.

The function requires the caller to provide DMA buffers for the driver to use (rxbuf and txbuf).
These memory areas shall not be referenced by the user as long as the driver channel is opened. The
areas can be reused when the driver has been closed with grcan_close_userbuf.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by grcan_dev_count.

rxbuf [IN] PointerParam

RX DMA buffer address. Must be aligned to 1 KiB address boundary.

rxbuf_size [IN] IntegerParam

RX DMA buffer size in bytes. Must be a multiple of 64.

txbuf [IN] PointerParam

TX DMA buffer address. Must be aligned to 1 KiB address boundary.

txbuf_size [IN] IntegerParam

TX DMA buffer size in bytes. Must be a multiple of 64.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

Table 7.7. grcan_close_userbuf function declaration

Proto int grcan_close_userbuf(struct grcan_priv *d)

About Closes a previously opened device.

d [IN] pointerParam

Device identifier. Returned from grcan_open_userbuf.

Return int. This function always returns 0 (success)

7.3. Operation mode

The driver always operates in one of four modes: STATE_STARTED, STATE_STOPPED, STATE_BUSOFF or
STATE_AHBERR. In STATE_STOPPED mode, the DMA is disabled and the user is allowed to configure the
device and driver. In STATE_STARTED mode, the receive and transmit DMA can be active and only a limited
number of configuration operations are possible.

The driver enters STATE_BUSOFF mode if a bus-off condition is detected and STATE_AHBERR if an AHB error
is caused by the GRCAN DMA. When any of these two modes are entered, the user should call grcan_stop()
followed by grcan_start() to put the driver in STATE_STARTED again.

Transitions between started and stopped mode are normally caused by the users interaction with the driver API
functions. In some situations, such CAN bus-off or DMA AHB error condition, the driver itself makes the transition
from started to stopped.

7.3.1. Starting and stopping

The grcan_start() function places the CAN core in STATE_STARTED mode. Configuration set by previous
driver function calls are committed to hardware before started mode enters. It is necessary to enter started mode to

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 49

be able to receive and transmit messages on the CAN bus. The grcan_start() function call will fail if receive
or transmit buffers are not correctly allocated or if the CAN core is already is in started mode.

The function grcan_stop() makes the CAN core leave the previous mode and enter STATE_STOPPED
mode. After calling this function, further calls to grcan_read()/ grcanfd_read() or grcan_write()
/grcanfd_write() will fail. It is necessary to enter stopped mode to change operating parameters of the CAN
core such as the baud rate and for the driver to safely change configuration such as FIFO buffer lengths. The
function will fail if the CAN core already is in stopped mode.

Function grcan_get_state() is used to determine the driver operation mode.

Table 7.8. grcan_get_state function declaration

Proto int grcan_get_state(struct grcan_priv *d)

About Get current GRCAN software state

If STATE_BUSOFF or STATE_AHBERR is returned then the function grcan_stop() shall be
called before continue using the driver.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

int. Status

Value Description

STATE_STOPPED Stopped

STATE_STARTED Started

STATE_BUSOFF Bus-off has been detected

STATE_AHBERR AHB error has been detected

Return

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

7.4. Configuration

The CAN core and driver are configured using function calls. Return values for most functions are 0 for success
and non-zero on failure.

The function grcan_set_silent() sets the SILENT bit in the configuration register of the CAN hardware
the next time the driver is started. If the SILENT bit is set the CAN core operates in listen only mode where
grcan_write()/ grcanfd_write() calls fail and grcan_read()/grcanfd_read() calls proceed.
This function fails and returns nonzero if called in started mode.

grcan_set_abort() sets the ABORT bit in the configuration register of the CAN hardware. The ABORT bit is
used to cause the hardware to stop the receiver and transmitter when an AMBA AHB error is detected by hardware.
This function fails and returns nonzero if called in started mode.

7.4.1. Channel selection

grcan_set_selection() selects active channel used during communication. The function takes a second
argument, a pointer to a grcan_selection data structure described below. This function fails and returns nonzero
if called in started mode.

The grcan_selection data structure is used to select active channel. Each channel has one transceiver that can be
activated or deactivated using this data structure. The hardware can however be configured active low or active
high making it impossible for the driver to know how to set the configuration register in order to select a predefined
channel.

struct grcan_selection {
 int selection;
 int enable0;
 int enable1;
};

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 50

Table 7.9. grcan_selection member description

Member Description

selection Select receiver input and transmitter output.

enable0 Set value of output 1 enable

enable1 Set value of output 1 enable

7.4.2. GRCAN Timing parameters

grcan_set_btrs() sets the timing registers manually. See the CAN hardware documentation for a detailed
description of the timing parameters. The function takes a pointer to a grcan_timing data structure containing all
available timing parameters. The grcan_timing data structure is described below. This function fails and returns
nonzero if called in started mode.

The grcan_timing data structure is used when setting GRCAN timing configuration registers manually. The pa-
rameters are used when hardware generates the baud rate and sampling points.

struct grcan_timing {
 unsigned char scaler;
 unsigned char ps1;
 unsigned char ps2;
 unsigned int rsj;
 unsigned char bpr;
};

Table 7.10. grcan_timing member description

Member Description

scaler Prescaler

ps1 Phase segment 1

ps2 Phase segment 2

rsj Resynchronization jumps, 1..4

bpr
Value Baud rate

0 system clock / (scaler+1) / 1

1 system clock / (scaler+1) / 2

2 system clock / (scaler+1) / 4

3 system clock / (scaler+1) / 8

The function grcan_set_speed() can be used to set the CAN bus frequency. It takes a parameter in Hertz
and calculates the appropriate timing register parameters. If the timing register values could not be calculated,
then a non-zero value is returned.

7.4.3. GRCANFD Timing parameters

grcanfd_set_btrs() sets the timing registers manually. See the CAN hardware documentation for a detailed
description of the timing parameters. The function takes a pointer to two grcanfd_timing data structure containing
all available timing parameters. One for nominal bit-rate and one for fd bitrate. The grcanfd_timing data structure
is described below. This function fails and returns nonzero if called in started mode.

The grcanfd_timing data structure is used when setting GRCAN timing configuration registers manually. The
parameters are used when hardware generates the baud rate and sampling points.

struct grcanfd_timing {
 unsigned char scaler;
 unsigned char ps1;
 unsigned char ps2;
 unsigned char sjw;
 unsigned char resv_zero;
};

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 51

Table 7.11. grcanfd_timing member description

Member Description

scaler Prescaler

ps1 Phase segment 1

ps2 Phase segment 2

rsw Synchronization Jump Width

resv_zero Reserved.

The function grcanfd_set_speed() can be used to set the CAN bus frequency. It takes two parameters in
Hertz, nominal and FD, and calculates the appropriate timing register parameters. If the timing register values
could not be calculated, then a non-zero value is returned.

7.5. Receive filters

7.5.1. Data structures

The grcan_filter structure is used when changing acceptance filter of the CAN receiver and the SYNC Rx/Tx Filter
using the functions grcan_set_afilter and grcan_set_sfilter. This data structure is used differently
for different driver functions.

struct grcan_filter {
 unsigned long long mask;
 unsigned long long code;
};

Table 7.12. grcan_filter member description

Member Description

mask Selects what bits in code will be used or not. A set bit is interpreted as don't care.

code Specifies the pattern to match, only the unmasked bits are used in the filter.

7.5.2. Acceptance filter

grcan_set_afilter() sets acceptance filter which is matched for each message received. Let the second
argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass the filter.
Messages matching the condition below are passed and possible to read from user space:

(id XOR code) AND mask = 0

grcan_set_afilter() can be called in any mode and never fails.

7.5.3. Sync filter

grcan_set_sfilter() sets Rx/Tx SYNC filter which is matched by receiver for each message received. Let
the second argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass
the filter. Messages matching the condition below are treated as SYNC messages:

(id XOR code) AND mask = 0

grcan_set_sfilter() can be called in any mode and never fails.

7.6. Driver statistics

grcan_get_stats() copies the driver's internal counters to a user provided data area. The format of the data
written is described below (grcan_stats). The function will fail if the user pointer is NULL.

grcan_clr_stats() clears the driver's collected statistics. This function never fails.

The grcan_stats data structure contains various statistics gathered by the CAN hardware.

struct grcan_stats {
 unsigned int rxsync_cnt;

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 52

 unsigned int txsync_cnt;
 unsigned int ahberr_cnt;
 unsigned int ints;
 unsigned int busoff_cnt;
};

Table 7.13. grcan_stats member description

Member Description

rxsync_cnt Number of received SYNC messages (matching SYNC filter)

txsync_cnt Number of transmitted SYNC messages (matching SYNC filter)

ahberr_cnt Number of DMA AHB errors

ints Number of times the interrupt handler has been invoked.

busoff_cnt Number of bus-off conditions

7.7. Device status

grcan_get_status() stores the current status of the CAN core to the location pointed to by the second
argument. This function is typically used to determine the error state of the CAN core. The 32-bit status word can
be matched against the bit masks in the table below.

Table 7.14. Device status word bit masks

Mask Description

GRCAN_STAT_PASS Error-passive condition

GRCAN_STAT_OFF Bus-off condition

GRCAN_STAT_OR Overrun during reception

GRCAN_STAT_AHBERR AMBA AHB error

GRCAN_STAT_ACTIVE Transmission ongoing

GRCAN_STAT_RXERRCNT Reception error counter, 8-bit

GRCAN_STAT_TXERRCNT Transmission error counter, 8-bit

grcan_get_status() fails if the user pointer is NULL.

7.8. CAN bus transfers

7.8.1. Data structures

The struct grcan_canmsg type is used for GRCAN when transmitting and receiving CAN messages. For GR-
CANFD the struct grcan_canfdmsg type is used instead. The structure describes the drivers view of a CAN mes-
sage. See the transmission and reception section for more information.

struct grcan_canmsg {
 char extended;
 char rtr;
 char unused;
 unsigned char len;
 unsigned char data[8];
 unsigned int id;
};

Table 7.15. struct grcan_canfdmsg member description

Member Description

extended Indicates whether the CAN message has 29 or 11 bits ID tag. Extended or Stan-
dard frame.

rtr Remote Transmission Request bit.

len Length of data.

data CAN message data, data[0] is the most significant byte – the first byte.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 53

Member Description

id The ID field of the CAN message. An extended frame has 29 bits whereas a stan-
dard frame has only 11-bits. The most significant bits are not used.

struct grcan_canfdmsg {
 uint8_t extended;
 uint8_t rtr;
 uint8_t fdopts;
 uint8_t len;
 uint32_t id;
 union {
 uint64_t dwords[8];
 uint8_t bytes[64];
 } data;
};

Table 7.16. struct grcan_canmsg member description

Member Description

extended Indicates whether the CAN message has 29 or 11 bits ID tag. Extended or Stan-
dard frame.

rtr Remote Transmission Request bit.

fdopts FD options. Bit1: 1=Switch bit rate. bit2: 1=FD frame.

len Length of data.

id The ID field of the CAN message. An extended frame has 29 bits whereas a stan-
dard frame has only 11-bits. The most significant bits are not used.

data CAN message data, data[0] is the most significant byte/word – the first byte

7.8.2. Transmission

Messages are transmitted using the grcan_write() function for GRCAN cores and grcanfd_write()
for GRCANFD cores. It is possible to transmit multiple CAN messages in one call. An example transmission is
shown below:

result = grcan_write(d, &tx_msgs[0], msgcnt);

On success the number of CAN messages transmitted is returned and on failure a GRCAN_RET_ value is returned.
The parameter tx_msgs points to the beginning of a struct grcan_canmsg structure which includes data, length
and transmission parameters. The last function parameter specifies the total number of CAN messages to be trans-
mitted. For grcanfd_write() the parameter tx_msgs points to the beginning of a struct grcan_canfdmsg
instead.

The transmit operation is non-blocking: grcan_write()/grcanfd_write() will return immediately with
a return value indicating the number CAN messages scheduled.

Each message has an individual set of parameters controlled by the struct grcan_canmsg or struct grcan_canfdmsg
type.

The user is responsible for checking the number of messages actually sent when in non-blocking mode. A 3
message transmission requests may end up in only 2 transmitted messages for example.

Table 7.17. grcan_write function declaration

Proto int grcan_write(struct grcan_priv *d, struct grcan_canmsg *msg,
size_t count)

About Transmit CAN messages

Multiple CAN messages can be transmitted in one call.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 54

msg [IN] PointerParam

First CAN messages to transmit

count [IN] IntegerParam

Total number of CAN messages to transmit.

int. Status

Value Description

>=0 Number of CAN messages transmitted. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter is less than one or the msg pa-
rameter is NULL.

GRCAN_RET_NOTSTARTED Driver is not in started mode or device is configured as silent. Noth-
ing done.

GRCAN_RET_BUSOFF A write was interrupted by a bus-off error. Device has left started
mode.

Return

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

Table 7.18. grcanfd_write function declaration

Proto int grcanfd_write(struct grcan_priv *d, struct grcan_canfdmsg *msg,
size_t count)

About Transmit CAN-FD messages

Multiple CAN messages can be transmitted in one call.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

msg [IN] PointerParam

First CAN messages to transmit

count [IN] IntegerParam

Total number of CAN messages to transmit.

int. Status

Value Description

>=0 Number of CAN messages transmitted. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter is less than one or the msg pa-
rameter is NULL.

GRCAN_RET_NOTSTARTED Driver is not in started mode or device is configured as silent. Noth-
ing done.

GRCAN_RET_BUSOFF A write was interrupted by a bus-off error. Device has left started
mode.

Return

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

7.8.3. Reception

CAN messages are received using the grcan_read() function for GRCAN and grcanfd_read() for GR-
CANFD. An example is shown below:

 enum { NUM_MSG = 5 };
 struct grcan_canmsg rx_msgs[NUM_MSG];

 len = grcan_read(d, &rx_msgs[0], NUM_MSG);

The requested number of CAN messages to be read is given in the third argument and messages are stored in
rx_msgs.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 55

The actual number of CAN messages received is returned by the function on success. The function will fail and
return a GRCAN_RET_ value if a NULL buffer pointer is passed, buffer length is invalid or if the CAN core is
not started.

The receive operation is non-blocking: the function will return immediately with the number of messages received.
If no message was available then 0 is returned.

Table 7.19. grcan_read function declaration

Proto int grcan_read(struct grcan_priv *d, struct grcan_canmsg *msg,
size_t count)

About Receive CAN messages

Multiple CAN messages can be received in one call.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

msg [IN] PointerParam

Buffer for received messages

count [IN] IntegerParam

Number of CAN messages to receive.

int. Status

Value Description

>=0 Number of CAN messages received. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter is less than one or the msg pa-
rameter is NULL.

GRCAN_RET_NOTSTARTED Driver is not in started mode. Nothing done.

GRCAN_RET_BUSOFF A read was interrupted by a bus-off error. Device has left started
mode.

Return

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB Error.

Table 7.20. grcanfd_read function declaration

Proto int grcanfd_read(struct grcan_priv *d, struct grcan_canfdmsg *msg,
size_t count)

About Receive CAN-FD messages

Multiple CAN messages can be received in one call.

d [IN] PointerParam

Device identifier. Returned by grcan_open.

msg [IN] PointerParam

Buffer for received messages

count [IN] IntegerParam

Number of CAN messages to receive.

int. Status

Value Description

>=0 Number of CAN messages received. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter is less than one or the msg pa-
rameter is NULL.

Return

GRCAN_RET_NOTSTARTED Driver is not in started mode. Nothing done.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 56

GRCAN_RET_BUSOFF A read was interrupted by a bus-off error. Device has left started
mode.

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB Error.

7.8.4. Bus-off recovery

If either grcan_write()/grcanfd_write() or grcan_read()/grcanfd_read() returns
GRCAN_RET_BUSOFF, then a bus-off condition was detected and the driver has entered STATE_BUSOFF mode.
To continue using the driver, the user shall call grcan_stop() followed by grcan_start() to re-enter
started mode.

7.8.5. AHB error recovery

Similar to the bus-off condition, an AHB error condition can be caused by the GRCAN DMA. The driver will
enter STATE_AHBERR and the recovery procedure is the same as for bus-off.

7.9. Interrupt API

The GRCAN driver has its own interrupt service routine which may be engaged when the driver is in the started
state. The main purpose of this ISR is to perform error-handling and to make sure the driver has an up-to-date view
of bus errors. It also handles error conditions, statistics and sometimes transitions the driver out from the started
the state. Actual CAN message RX and TX is done with DMA and is not controlled by the ISR.

The function grcan_set_isr() can be used to install a custom function which is called from the GRCAN driver ISR.
A call to the callback will be done from the ISR context. Note that GRCAN driver functions should not be called
from this callback since it may conflict with concurrent calls in non-interrupt context.

Table 7.21. grcan_set_isr function declaration

Proto void grcan_set_isr(struct grcan_priv *d, int (*isr)(struct
grcan_priv *priv, void *data), void *data)

About Set user Interrupt Service Routine (ISR) callback function

The isr parameter is the user callback function to be called from the GRCAN ISR.

Only one callback can be registered at a time. A second call to grcan_set_isr replaces the previ-
ously registered callback.

If isr is NULL, then no user callback will be called from the driver ISR.

Parameter priv of the callback is the driver device handle.

The data parameter is passed to the user callback isr. It may be NULL.

d [IN] pointerParam

Device handle returned by grcan_open.

isr [IN] pointerParam

User callback function as described above. If isr is NULL then the callback is uninstalled, but the
GRCAN ISR is still active.

data [IN] pointerParam

Data to pass to the user callback. It may be NULL.

Return None.

The GRCAN driver functions are in general not re-entrant for the same device context (struct grcan_priv). That is
a driver design choice to avoid extensive locking to protect driver software state.

7.9.1. Interrupt generation

CAN RX and TX interrupts are not generated by default. The user can control generation of RX and TX interrupts
using the functions grcan_txint and grcan_rxint.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 57

Table 7.22. grcan_txint function declaration

Proto int grcan_txint(struct grcan_priv *d, int n)

About Generate TX interrupt

The parameter n specifies which events generate CAN TX interrupts:

• 0: never (default)
• 1: every CAN message transmitted
• -1: When all messages have been transmitted

d [IN] PointerParam

Device identifier. Returned by grcan_open.

n [IN] IntegerParam

Specifies condition for generating TX interrupt.

Return int. 0

Table 7.23. grcan_rxint function declaration

Proto int grcan_rxint(struct grcan_priv *d, int n)

About Generate RX interrupt

The parameter n specifies which events generate CAN RX interrupts:

• 0: never (default)
• 1: every CAN message transmitted
• -1: When RX buffer is full

d [IN] PointerParam

Device identifier. Returned by grcan_open.

n [IN] IntegerParam

Specifies condition for generating RX interrupt.

Return int. 0

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 58

8. SPI driver

8.1. Introduction

This section describes the driver used to control the GRLIB SPICTRL device for SPI master operation.

8.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 5.

Table 8.1. Driver registration functions

Registration method Function

Register one device spi_register()

Register many devices spi_init()

8.3. Opening and closing device

A SPICTRL device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using spi_dev_count. A particular device can be opened
using spi_open and closed spi_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by all SPICTRL devices on opening and closing.

During opening of a SPICTRL device the following steps are taken:

• SPICTRL device I/O registers are initialized, including clearing the event register and masking all interrupts.
• The core is disabled (to allow configuration).
• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the same device.

Table 8.2. spi_dev_count function declaration

Proto int spi_dev_count(void)

About Retrieve number of SPICTRL devices registered to the driver.

Return int. Number of SPICTRL devices registered in system, zero if none.

Table 8.3. spi_open function declaration

Proto struct spi_priv *spi_open(int dev_no)

About Opens a SPICTRL device. The SPICTRL device is identified by index. The returned value is used as
input argument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the order registered to the driver. Must be equal
to or greater than zero, and smaller than that returned by spi_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device is already open, or invalid dev_no pa-
rameter.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which SPICTRL device.

Table 8.4. spi_close function declaration

Proto int spi_close(struct spi_priv *priv)

About Closes a previously opened device.

Param d [IN] pointer

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 59

Device identifier. Returned from spi_open.

int.

Value Description

Return

DRV_OK Successfully closed device.

8.4. Status service

SPI controller event status can be read by calling the spi_get_event function. It returns a copy of the SPI
controller event register which can be used for determining if a transfer has completed or if more data shall be
written to or read. Bits in the event register can be cleared by calling spi_clear_event.

Table 8.5. spi_get_event function declaration

Proto uint32_t spi_get_event(struct spi_priv *priv)

About Get event register value

Bits in the event register can be cleared by calling spi_clear_event.

d [IN] pointerParam

Device handle returned by spi_open.

Return uint32_t.

Current value of the SPI event register.

Register definitions for the SPICTRL event register are available in the file include/regs/
spictrl-regs.h. The relevant defines are prefixed with SPICTRL_EVENT_.

Table 8.6. spi_clear_event function declaration

Proto void spi_clear_event(struct spi_priv *priv, uint32_t event)

About Clear bits in the event register

d [IN] pointerParam

Device handle returned by spi_open.

event [IN] uint32_tParam

Mask of bits to clear in the SPI event register.

Register definitions for the SPICTRL event register are available in the file include/regs/
spictrl-regs.h. The relevant defines are prefixed with SPICTRL_EVENT_.

Return None.

8.5. Transfer Configuration

The SPI driver allows for configuring the SPI controller settings between transfers. This is useful when multiple
SPI slaves are attached to the same SPICTRL device, and the slaves have different timing and transfer require-
ments. In this case, one configuration record can be associated with each slave device.

Interrupts can be enabled for transfers by configuring the SPI controller event mask register via the configuration
service. This allows for user notification of when the transmit queue is empty or when the receive queue is non-
empty.

The driver supports reconfiguration of the SPI controller at any time between calls to spi_stop and
spi_start.

struct spi_config {
 unsigned int freq; /* SPI clock frequency, Hz */
 int mode; /* SPI mode */
 enum spi_wordlen wordlen; /* SPI Word length */
 int intmask; /* SPI controller interrupt mask */
 int msb_first; /* If true then send MSb first, else LSb. */
 int sync; /* Synchronous TX/RX mode */
 uint32_t aslave; /* Automatic slave select, active high mask */

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 60

 int clock_gap; /* MODE.CG */
 int tac; /* Toggle automatic slave select during clock gap */
 int aseldel; /* Automatic slave select delay */
 int igsel; /* Ignore SPISEL input */
};

Table 8.7. spi_config data structure declaration

freq The SPI clock frequency in Hz. Used to calculate values for the hardware registers controlling
SPICLK.

mode SPI mode 0, 1, 2, or 3

Word length. Must be one of the following values:

Value Description

SPI_WORDLEN_4 4 bit word length

SPI_WORDLEN_5 5 bit word length

SPI_WORDLEN_6 6 bit word length

SPI_WORDLEN_7 7 bit word length

SPI_WORDLEN_8 8 bit word length

SPI_WORDLEN_9 9 bit word length

SPI_WORDLEN_10 10 bit word length

SPI_WORDLEN_11 11 bit word length

SPI_WORDLEN_12 12 bit word length

SPI_WORDLEN_13 13 bit word length

SPI_WORDLEN_14 14 bit word length

SPI_WORDLEN_15 15 bit word length

SPI_WORDLEN_16 16 bit word length

wordlen

SPI_WORDLEN_32 32 bit word length

intmask Interrupt mask.

This field is written to the SPI controller Mask register when spi_config is called.

Register definitions for the SPI controller Mask register are available in the file in-
clude/regs/spictrl-regs.h. The relevant defines are prefixed with SPICTRL_MASK_.

msb_first If true then send MSb first, else LSb. This controls the SPI controller Mode register bit named Re-
verse data (REV).

Synchronous TX/RX mode.

Value Description

0 Allow RX to overrun.

sync

1 Prevent RX from overrunning.

Automatic slave select, active high mask

Value Description

0 Disable automatic slave select.

aslave

mask This value is written, inverted, to the SPI controller automatic slave select
register. In addition, automatic slave select (ASEL) will be enabled in the
SPI controller mode register.

clock_gap Number of SCK clock cycles to insert between consecutive words. A value between 0 and 31.

Toggle automatic slave select during clock gap

Value Description

0 Set MODE.TAC='0'

tac

1 Set MODE.TAC='1'

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 61

aseldel Automatic slave select delay.

A value in the range 0..3 which is written to MODE.ASELDEL.

Ignore SPISEL input

Value Description

0 Set MODE.IGSEL='0'

igsel

1 Set MODE.IGSEL='1'

Table 8.8. spi_config function declaration

Proto int spi_config(struct spi_priv *priv, struct spi_config *cfg)

About Set transfer configuration in hardware.

The cfg input layout is described by the spi_config data structure in Table 8.7.

d [IN] pointerParam

Device identifier. Returned from spi_open.

cfg [IN] pointerParam

Address to where the driver will read the transfer configuration from. (See Table 8.7.)

int.

Value Description

DRV_OK Successfully configured device.

DRV_FAIL Invalid word length or frequency field in cfg. Device not configured.

Return

DRV_STARTED Device is in started mode. Device not configured.

A default configuration is available in the symbol SPI_CONFIG_DEFAULT:

 extern const struct spi_config SPI_CONFIG_DEFAULT;

It can be used to derive default parameters.

8.6. Transfer Interface

Two functions are available for performing SPI transfers. The spi_write32 function writes words to the hard-
ware transmit queue, and spi_read32 reads words from the hardware receive queue. These functions never
block and may return before the requested number of words have been processed. The transfer parameters set by
the last call to spi_config are used.

For the user to determine status of the transfer queues during transfers, the spi_status service can be used to
read out the event register. Transmit queue status is obtained by observing the Not full (NF) and Last character
(LT) flags. Likewise, existence of receive data is determined by testing bits Not empty (NE). In addition, the bit
Transfer in progress (TIP) can be used to determine if a transfer has completed.

For high performance transfers, or large transfers, using a custom interrupt service routine can come in handy. It
can be responsible for supplying the transmit queue with data and for reading out received data to a user receive
buffer. When the transfer is considered complete, the user may be informed by for example unblocking it with a
semaphore or an event. As the driver usage varies heavily with the application and the connected SPI slaves, no
default interrupt service routine is provided by the SPI driver.

If the user has activated interrupts at configuration, the user must install an interrupt handler prior to calling
spi_write32 and spi_read32.

Before the transfer functions can be used, the core must be configured with spi_config and enabled with
spi_start. At end of transfers, the spi_stop function can be called to disabled the SPI core. Disabling the
core is only needed if it shall be reconfigured.

The example below opens, configures and enables the first SPICTRL device. Then 8 words are written and 8
words are read.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 62

 int spi_transfers(void)
 {
 struct spi_priv *device;
 int i;
 int ret;
 struct spi_config cfg;
 uint32_t txbuf[8];
 uint32_t rxbuf[8];

 ret = spi_dev_count();
 printf("%d SPICTRL devices present\n", ret);

 device = spi_open(0);
 if (!device) {
 return -1; /* Failure */
 }

 /* Base config on sane default */
 cfg = SPI_CONFIG_DEFAULT;
 cfg.freq = 125 * 1000;
 cfg.mode = 1;
 cfg.wordlen = SPI_WORDLEN_8;
 ret = spi_config(device, &cfg);
 if (DRV_OK != ret) {
 return -1;
 }

 spi_start();
 i = 0;
 do {
 i += spi_write32(device, &txbuf[i], 8-i);
 } while (i<8);
 i = 0;
 do {
 i += spi_read32(device, &rxbuf[i], 8-i);
 } while (i<8);
 spi_stop();

 spi_close(device);
 return 0; /* success */
 }

Table 8.9. spi_start function declaration

Proto int spi_start(struct spi_priv *priv)

About Start SPI device. The SPICTRL core is enabled.

d [IN] pointerParam

Device handle returned by spi_open.

int.

Value Description

DRV_OK Device was started by the function call.

Return

DRV_STARTED Device already in started mode. Nothing performed.

Table 8.10. spi_stop function declaration

Proto int spi_stop(struct spi_priv *priv)

About Stop SPI device. The SPICTRL core is disabled.

d [IN] pointerParam

Device handle returned by spi_open.

int.

Value Description

Return

DRV_OK Success

Table 8.11. spi_write32 function declaration

Proto int spi_write32(struct spi_priv *priv, const uint32_t *txbuf, int
count)

About Write words to SPICTRL transmit queue.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 63

The function tries to write count words of the configured word length to the transmit queue. Trans-
mission data is indicated by txbuf. Each word is represented by an uint32_t, regardless of config-
ured word length. Words in txbuf shall be represented with its LSB at bit 0.

If txbuf is NULL then zero valued bits will be shifted out on MOSI. The function returns as soon as
the transmit queue is full or the requested number of words have been installed.

This function never blocks.

Transfer properties are set with the the function spi_config.

d [IN] pointerParam

Device handle returned by spi_open.

txbuf [IN] pointerParam

Transmit data. If txbuf is NULL then zero valued words are shifted out.

count [IN] IntegerParam

Number of words to transmit

Return int. Number of words written to transmit queue, zero if none.

Table 8.12. spi_read32 function declaration

Proto int spi_read32(struct spi_priv *priv, uint32_t *rxbuf, int count)

About Read words from SPICTRL receive queue.

The function tries to read count words of the configured word length from the receive queue. Re-
ceived data is written to the location rxbuf. Each word is represented by an uint32_t, regardless of
configured word length. Words stored in rxbuf are represented with its LSB at bit 0.

If rxbuf is NULL then the MISO bits are not stored. The function returns as soon as the receive
queue is empty or the requested number of words have been read.

This function never blocks.

Transfer properties are set with the the function spi_config.

d [IN] pointerParam

Device handle returned by spi_open.

rxbuf [OUT] pointerParam

Received data. Can be NULL to ignore shifted in data.

count [IN] IntegerParam

Number of words to receive

Return int. Number of words read from receive queue, zero if none.

8.7. Synchronous TX/RX mode

The SPI configuration option cfg.sync is used to determine the behaviour when an spi_write32 operation
would cause the SPI receive queue to become full. The sync option is set and remembered when the SPI driver
is configured using spi_config.

When cfg.sync=0, calls to spi_write32 will write words to the SPI transmit queue as long as there is
room in the SPI transmit queue. The receive queue may overrun. It is up to the driver user to empty the SPI
receive queue. Typically this involves user knowledge of how many SPI words are outstanding and restricts calling
spi_write32 to when it will not cause the receive queue to overrun. One scenario is when the SPI slave is an
output device, only capable of receiving commands but never sends anything back to the SPI master.

If cfg.sync=1, then calls to spi_write32 will only write words to the SPI transmit queue when it is guar-
anteed that the receive queue will not overrun. This relaxes the restrictions on how calls to spi_write32 and

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 64

spi_read32 can be combined. It means that the user does not have to maintain the number of outstanding words
and the receive queue will never overrun.

For both settings of the cfg.sync option, the spi_write32 function writes at most count words to the
transmit queue and returns the number of words actually written. The difference is when spi_write32 is al-
lowed to write to the queue.

8.8. Slave select

When performing SPI transfers, the user may want to select and deselect SPI slaves. This can be done with the the
function spi_slave_select. Another option is to use a dedicated GPIO signal.

Table 8.13. spi_slave_select function declaration

Proto int spi_slave_select(struct spi_priv *priv, uint32_t mask)

About Select SPI slave

This function writes the inverted value of slavemask parameter to the SPICTRL SLVSEL register.
This function shall not be called when a transfer is in progress.

d [IN] pointerParam

Device identifier. Returned from spi_open.

mask [IN] uint32_tParam

Slave mask

int.

Value Description

DRV_OK Success

DRV_NOIMPL Slave select not available in SPICTRL or mask out of range.

Return

DRV_WOULDBLOCK Transfer in progress

The driver functions spi_read32() and spi_write32() do not automatically perform slave select.

8.9. Restrictions

The SPI driver is designed to operate each opened device in one task only. One or more SPI devices can be opened
and operated by one task, but multiple tasks can not operate on the same SPI device.

The following functions are always allowed to be called from any task:

• spi_dev_count
• spi_open

The following functions are allowed to be called from an ISR.

• spi_get_event
• spi_clear_event

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 65

9. AHB Status Register driver

9.1. Introduction

This section describes the driver used to control the AHBSTAT device, commonly known as the AHB status
register.

9.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 5.

Table 9.1. Driver registration functions

Registration method Function

Register one device ahbstat_register()

Register many devices ahbstat_init()

9.3. Opening and closing device

An AHBSTAT device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using ahbstat_dev_count. A particular device can be
opened using ahbstat_open and closed ahbstat_close. The functions are described below.

When opened, the device can not be reopened unless the device is closed first. When opening the device it is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by the AHBSTAT device on opening and closing.

During opening of an AHBSTAT device the following steps are taken:

• AHB status register is initialized to start monitoring AMBA AHB bus transactions and correctable errors.
• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the device.

Table 9.2. ahbstat_dev_count function declaration

Proto int ahbstat_dev_count(void)

About Retrieve number of AHBSTAT devices registered to the driver.

Return int. Number of AHBSTAT devices registered to driver, zero if none.

Table 9.3. ahbstat_open function declaration

Proto struct ahbstat_priv *ahbstat_open(int dev_no)

About Opens an AHBSTAT device. The AHBSTAT device is identified by index. The returned value is used
as input argument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the order registered to the driver. Must be equal
or greater than zero, and smaller than that returned by ahbstat_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device is already open, or invalid dev_no pa-
rameter.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies the AHBSTAT device.

Notes The AHBSTAT ISR is not installed by ahbstat_open.

Table 9.4. ahbstat_close function declaration

Proto int ahbstat_close(struct ahbstat_priv *d)

About Closes a previously opened device.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 66

If the AHB statu register interrupt service routine has been installed, it will be uninstalled by the close
operation.

d [IN] pointerParam

Device handle returned by ahbstat_open.

int.

Value Description

DRV_OK Successfully closed device.

Return

others Device closed, but failed to unregister interrupt handler.

9.4. Register interface

The AHB status registers base address can be retrieved using the ahbstat_get_regs function. Registers and
bit definitions are provided in the C header file drv/regs/ahbstat.h. Individual bits are described in the
GRLIB IP Core User's Manual (GRIP).

Table 9.5. ahbstat_get_regs function declaration

Proto volatile struct ahbstat_regs *ahbstat_get_regs(struct ahbstat_priv
*d)

About Get AHBSTAT registers base address

Register definitions for AHBSTAT are provided by the header file drv/regs/ahbstat.h.

d [IN] pointerParam

Device handle returned by ahbstat_open.

Return Pointer. Address of AHBSTAT register area.

9.5. Interrupt service routine

An interrupt service routine is provided by the driver which is installed by calling the driver function
ahbstat_set_user. The user can provide a callback function which is called by the interrupt routine, using
function. When a user callback is installed, the drivers interrupt routine will re-enable bus monitoring only if
the user callback returns 0. If the user callback returns a value other than 0, then the callback itself should re-
enable AHBSTAT monitoring by clearing the NE bit. The callback is called with a custom argument as selected
by ahbstat_set_user.

The example below defines and enables an ISR callback which rewrites the failing location in case of correctable
error.

#include <drv/ahbstat.h>
#include <drv/regs/ahbstat.h>

volatile int user_ncerr = 0;

int user(
 volatile struct ahbstat_regs *regs,
 uint32_t status,
 uint32_t failing_address,
 void *userdata
)
{
 if (!(status & AHBSTAT_STS_CE)) {
 /* Not correctable so this callback can't handle it. */
 return 0;
 }
 int *ncerr;
 ncerr = (int *) userdata;
 (*ncerr)++;

 volatile uint32_t *data = (volatile uint32_t *) failing_address;
 uint32_t tmp;

 /* Read and write back */
 tmp = *data;
 *data = tmp;

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 67

 /* Reenable AHBSTAT probing */
 regs->status = 0;

 /* Returns 1 to prevent driver ISR to reenable AHBSTAT probing */
 return 1;
}

int user_example(void)
{
 const int DEVNO = 0;
 struct ahbstat_priv *device;
 int ret;

 device = ahbstat_open(DEVNO);
 if (NULL == device) {
 return -1; /* Failure */
 }

 ret = ahbstat_set_user(device, user, (void *) &user_ncerr);
 if (DRV_OK != ret) {
 return -2; /* Failure */
 }

 /* Force correctable errors etc... */
 [...]

 printf("Number of correctable errors detected and corrected: %d\n", user_ncerr);

 ret = ahbstat_close(device);
 if (DRV_OK != ret) {
 return -3; /* Failure */
 }
 return 0; /* success */
}

Table 9.6. ahbstat_set_user function declaration

Proto int ahbstat_set_user(struct ahbstat_priv *d, int (*userhan-
dler)(volatile struct ahbstat_regs *regs, uint32_t status, uint32_t
failing_address, void *userarg), void *userarg)

About Install the AHBSTAT ISR and set ISR user callback function.

The userhandler parameter is the user callback function to be called from the AHBSTAT ISR.
The callback is called by the AHBSTAT ISR only if the has checked that the NE status bit is 1.

Only one callback can be registered at a time. A second call to ahbstat_set_user replaces the
previously registered callback.

If userhandler is NULL, then the AHBSTAT ISR is uninstalled.

Parameter regs of the callback is the register base address of the AHBSTAT core.

Parameter status of the callback is an unmodified copy of the AHBSTAT status register at entry to
drivers interrupt routine.

The failing_address parameter of the callback is a copy of the AHBSTAT failing address regis-
ter at entry to the interrupt routine.

If the callback returns 0, then the driver interrupt routine will reenable AHBSTAT by clearing the sta-
tus register. Otherwise the status register is not touched by the interrupt routine after callback returns.

The userarg parameter is passed to the user callback userhandler. It may be NULL.

d [IN] pointerParam

Device handle returned by ahbstat_open.

userhandler [IN] pointerParam

User callback function as described above. If userhandler is NULL then the callback is unin-
stalled, but the AHBSTAT ISR is still active.

userdata [IN] pointerParam

Data to pass to the user callback. It may be NULL.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 68

Return int. DRV_OK on success, else != DRV_OK if ISR install failed.

Notes The AHBSTAT ISR can not be uninstalled once installed. However, the user handler can be disabled
by calling ahbstat_set_user with userhandler set to NULL.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 69

10. Clock gating unit driver

10.1. Introduction

This section describes the driver used to control the GRLIB clock gating unit, also known as CLKGATE or GR-
CLKGATE.

10.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 5.

Table 10.1. Driver registration functions

Registration method Function

Register one device clkgate_register()

Register many devices clkgate_init()

10.3. Opening and closing device

An device must first be opened before any operations can be performed using the driver. The number of devices
registered to the driver can be retrieved using clkgate_dev_count. A particular device can be opened using
clkgate_open and closed clkgate_close. The functions are described below.

When opened, the device can not be reopened unless the device is closed first. When opening the device it is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by the driver on opening and closing.

During opening of a clock gating unit, the following steps are performed:

• Internal data structures are initialized.
• The device is marked opened to protect the caller from other users of the device.

Table 10.2. clkgate_dev_count function declaration

Proto int clkgate_dev_count(void)

About Retrieve number of clock gating devices registered to the driver.

Return int. Number of devices registered to driver, zero if none.

Table 10.3. clkgate_open function declaration

Proto struct clkgate_priv *clkgate_open(int dev_no)

About Opens an clock gating unit device, identified by index. The returned value is used as input argument
to all functions operating on the device.

This function does not change any device state.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the order registered to the driver. Must be equal
or greater than zero, and smaller than that returned by clkgate_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device is already open, or invalid dev_no pa-
rameter.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies the clock gating unit.

Table 10.4. clkgate_close function declaration

Proto int clkgate_close(struct clkgate_priv *d)

About Closes a previously opened device.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 70

This function does not change any device state.

d [IN] pointerParam

Device handle returned by clkgate_open.

int.

Value Description

DRV_OK Successfully closed device.

Return

others Device closed, but failed to unregister interrupt handler.

10.4. Operation

Each core supported by the clock gating unit can be individually clock gated or enabled by the function
clkgate_gate and clkgate_enable. The sequences performed by these functions are identical to the gate
and enable procedures described in component User's Manual, Clock Gating Unit section.

Core to bit mappings are defined in the C header file drv/regs/clkgate_bits.h with names prefixed by
CLKGATE_<component>_. Any number of the defines can be use (OR:ed) together when calling the driver
functions.

A core which is enabled with clkgate_enable will also be reset.

The driver does not arbitrate for the device. Protecting the driver from concurrent calls can be done on application
level if needed.

The example below, applicable to GR740, gates all cores and then enables the SpaceWire subsystem and the
second GRETH core.

#include <drv/clkgate.h>

int clkgate_example(struct clkgate_priv *d)
{
 int ret;

 /* Gate all cores. */
 ret = clkgate_gate(d, CLKGATE_GR740_ALL);
 if (DRV_OK != ret) {
 return ret;
 }

 /* Enable and reset SpaceWire, GRETH1 */
 ret = clkgate_enable(d, CLKGATE_GR740_GRSPW2 | CLKGATE_GR740_GRETH);
 if (DRV_OK != ret) {
 return ret;
 }

 return 0; /* success */
}

Table 10.5. clkgate_gate function declaration

Proto int clkgate_gate(struct clkgate_priv *d, uint32_t coremask)

About Gate the clock for selected cores.

Cores to gate are selected with the coremask parameter with values CLKGATE_* as de-
fined in the file include/clkgate.h. Multiple cores can be gated at the same time by
OR:ing these values together. To gate all component cores supporting clock gating, the mask
CLKGATE_<component>_ALL can be used.

The cores identified as coremask will be held in reset with its input clock disabled.

d [IN] pointerParam

Device handle returned by clkgate_open.

coremask [IN] uint32_tParam

Bitmask representing the cores to operate on. (Values are CLKGATE_*.)

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 71

Return int. DRV_OK

Table 10.6. clkgate_enable function declaration

Proto int clkgate_enable(struct clkgate_priv *d, uint32_t coremask)

About Enable the clock and reset selected cores.

Cores to enable are selected with the coremask parameter with values CLKGATE_* as defined in
the file include/clkgate.h. Multiple cores can be enabled at the same time by OR:ing these
values together.

d [IN] pointerParam

Device handle returned by clkgate_open.

coremask [IN] uint32_tParam

Bitmask representing the cores to operate on. (Values are CLKGATE_*.)

Return int. DRV_OK

10.5. Core reset

A core can be reset by calling clkgate_gate() followed by clkgate_enable() with the same core-
mask parameter. For example:

void clkgate_reset(struct clkgate_priv *priv, uint32_t coremask)
{
 clkgate_gate(priv, coremask);
 clkgate_enable(priv, coremask);
}

10.6. Probe clock gating status

A function is available to read the current state of the clock gating unit registers. It provides the caller with infor-
mation on which cores are gated and which are enabled.

Table 10.7. clkgate_status function declaration

Proto int clkgate_status(struct clkgate_priv *d, uint32_t *enabled,
uint32_t *disabled)

About Get enable status of cores

The function determines enabled and disbled state by reading the clock gating unit registers.

d [IN] pointerParam

Device identifier. Returned from clkgate_open.

enabled [IN] PointerParam

Output mask of cores which are enabled.

disabled [IN] PointerParam

Output mask of cores which are disabled.

Return uint32_t. The register content (before newval value is written).

10.7. CPU override

The driver provides an interface to control the clock gating unit CPU/FPU override register, available in some
implementations.

Table 10.8. clkgate_override function declaration

Proto uint32_t clkgate_override(struct clkgate_priv *d, int set, uint32_t
newval)

About Get/set CPU/FPU override register

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 72

The function returns and optionally sets the value of the register. If set is 0 then nothing will be writ-
ten to the register, else the register is set to the value of the newval parameter.

d [IN] pointerParam

Device identifier. Returned from clkgate_open.

set [IN] Integer

Determines if register shall be updated with newval.

0 Do not write register.

Param

1 Write value of newval to register.

newval [IN] IntegerParam

New value

Return uint32_t. The register content (before newval value is written).

Notes The CPU/FPU override functionality is not available in all implementations. See the component
datasheet for more information.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 73

11. GR1553B Driver

11.1. Introduction

This document describes the device drivers specific to the GRLIB GR1553B core. The Remote Terminal(RT), Bus
Monitor (BM and Bus Controller (BC) functionality are supported by the driver. Device discovery and resource
sharing are commonly controlled by the GR1553B driver described in this chapter. Each 1553 mode is supported
by a separate driver, the drivers are documented in separate chapters.

This section gives an brief introduction to the GRLIB GR1553B device allocation driver used internally by the
BC, BM and RT device drivers. This driver controls the GR1553B device regardless of interfaces supported (BC,
RT and/or BM). The device can be located at an on-chip AMBA or an AMBA-over-PCI bus. The driver provides
an interface for the BC, RT and BM drivers.

Since the different interfaces (BC, BM and RT) are accessed from the same register interface on one core, the
APB device must be shared among the BC, BM and RT drivers. The GR1553B driver provides an easy function
interface that allows the APB device to be shared safely between the BC, BM and RT device drivers.

Any combination of interface functionality is supported, but the RT and BC functionality cannot be used simul-
taneously (limited by hardware).

The interface towards to the BC, BM and RT drivers is used internally by the device drivers and is not documented
here. See respective driver for an interface description.

11.1.1. Considerations and limitations

Note that the following items must be taken into consideration when using the GR1553B drivers:

• The driver uses only Physical addressing, i.e it does not do MMU translation or memory mapping for the
user. The user is responsible for mapping DMA memory buffers provided to the 1553 drivers 1:1.

• Physical buffers addresses (assigned by user) must be located at non-cacheable areas or D-Cache
snooping must be present in hardware. If D-cache snooping is not present the user must edit the
GR1553*_READ_MEM() macros in respective driver.

• SMP locking (spin-locks) has not been implemented, it does however not mean that SMP mode can not be
used. The CPU handling the IRQ (CPU0 unless configured otherwise) must be the CPU and only CPU using
the driver API. Only one CPU can use respective driver API at a time.

The above restrictions should not cause any problems for the AT697 + GR-RASTA-IO (RASTA-101) systems
or similar.

11.1.2. GR1553B Hardware

The GRLIB GR1553B core may support up to three modes depending on configuration, Bus Controller (BC),
Remote Terminal (RT) or Bus Monitor (BM). The BC and RT functionality may not be used simultaneously, but
the BM may be used together with BC or RT or separately. All three modes are supported by the driver.

Interrupts generated from BC, BM and RT result in the same system interrupt, interrupts are shared.

11.1.3. Software driver

The driver provides an interface used internally by the BC, BM and RT device drivers, see respective driver for
an interface declaration. The driver sources and definitions are listed in the table below, the path is given relative
to the toolchains root directory.

Table 11.1. Source Location

Filename Description

src/libdrv/src/gr1553b/gr1553b.c GR1553B Driver source

src/libdrv/src/include/gr1553b.h GR1553B Driver interface declaration

11.1.4. Driver Registration

This driver uses the driver registration mechanism described in Chapter 5.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 74

Table 11.2. Driver registration functions

Registration method Function

Register one device gr1553b_register()

Register many devices gr1553b_init()

The registration of the driver is crucial for the user to be able to access the driver application programming inter-
faces. The drivers use a classic C-language API.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 75

12. GR1553B Bus Controller Driver

12.1. Introduction

This section describes the GRLIB GR1553B Bus Controller (BC) device driver interface. The driver relies on the
GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

12.1.1. GR1553B Bus Controller Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BC functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the BC, interrupts are shared between
the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to share hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see Chapter 11.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

12.1.2. Software driver

The BC driver is split in two parts, one where the driver access the hardware device and one part where the
descriptors are managed. The two parts are described in two separate sections below.

Transfer and conditional descriptors are collected into a descriptor list. A descriptor list consists of a set of Major
Frames, which consist of a set of Minor Frames which in turn consists of up to 32 descriptors (also called Slots).
The composition of Major/Minor Frames and slots is configured by the user, and is highly dependent of application.

The Major/Minor/Slot construction can be seen as a tree, the tree does not have to be symmetrically, i.e. Major
frames may contain different numbers of Minor Frames and Minor Frames may contain different numbers of Slot.

GR1553B BC descriptor lists are generated by the list API available in gr1553bc_list.h.

The driver provides the following services:

• Start, Stop, Pause and Resume descriptor list execution
• Synchronous and asynchronous descriptor list management
• Interrupt handling
• BC status
• Major/Minor Frame and Slot (descriptor) model of communication
• Current Descriptor (Major/Minor/Slot) Execution Indication
• Software External Trigger generation, used mainly for debugging or custom time synchronization
• Major/Minor Frame and Slot/Message ID
• Minor Frame time slot management

The driver sources and definitions are listed in the table below, the path is given relative to the extracted distribution
archive.

Table 12.1. BC driver Source location

Filename Description

src/libdrv/src/gr1553b/gr1553bc.c GR1553B BC Driver source

src/libdrv/src/include/gr1553bc.h GR1553B BC Driver interface declaration

src/libdrv/src/include/gr1553bc_list.h GR1553B BC List handling interface declaration

12.1.3. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 11.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 76

12.2. BC Device Handling

The BC device driver's main purpose is to start, stop, pause and resume the execution of descriptor lists. Lists are
described in the Descriptor List section. In this section services related to direct access of BC hardware registers
and Interrupt are described. The function API is declared in gr1553bc.h.

12.2.1. Device API

The device API consists of the functions in the table below.

Table 12.2. Device API function prototypes

Prototype Description
void *gr1553bc_open(int minor) Open a BC device by minor number. Private handle re-

turned used in all other device API functions.

void gr1553bc_close(void *bc) Close a previous opened BC device.

int gr1553bc_start(void *bc,
 struct gr1553bc_list *list,
 struct gr1553bc_list *list_async)

Schedule a synchronous and/or a asynchronous BC
descriptor Lists for execution. This will unmask BC
interrupts and start executing the first descriptor in
respective List. This function can be called multiple
times.

int gr1553bc_pause(void *bc) Pause the synchronous List execution.

int gr1553bc_restart(void *bc) Restart the synchronous List execution.

int gr1553bc_stop(void *bc, int options) Stop Synchronous and/or asynchronous list.

int gr1553bc_indication(void *bc, int async,
 int *mid)

Get the current BC hardware execution position (MID)
of the synchronous or asynchronous list.

void gr1553bc_status(void *bc,
 struct gr1553bc_status *status)

Get the BC hardware status and time.

void gr1553bc_ext_trig(void *bc, int trig) Trigger an external trigger by writing to the BC action
register.

int gr1553bc_irq_setup(void *bc,
 bcirq_func_t func, void *data)

Generic interrupt handler configuration. Handler will
be called in interrupt context on errors and interrupts
generated by transfer descriptors.

12.2.1.1. Data Structures

The gr1553bc_status data structure contains the BC hardware status sampled by the function
gr1553bc_status().

struct gr1553bc_status {
 unsigned int status;
 unsigned int time;
};

Table 12.3. gr1553bc_status member descriptions

Member Description

status BC status register

time BC Timer register

12.2.1.2. gr1553bc_open

Opens a GR1553B BC device by device instance index. The minor number relates to the order in which a GR1553B
BC device is found in the Plug&Play information. A GR1553B core which lacks BC functionality does not affect
the minor number.

If a BC device is successfully opened a pointer is returned. The pointer is used internally by the GR1553B BC
driver, it is used as the input parameter bc to all other device API functions.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 77

If the driver failed to open the device, NULL is returned.

12.2.1.3. gr1553bc_close

Closes a previously opened BC device. This action will stop the BC hardware from processing descriptors/lists,
disable BC interrupts, and free dynamically memory allocated by the driver.

12.2.1.4. gr1553bc_start

Calling this function starts the BC execution of the synchronous list and/or the asynchronous list. At least one list
pointer must be non-zero to affect BC operation. The BC communication is enabled depends on list, and Interrupts
are enabled.

This function can be called multiple times. If a list (of the same type) is already executing it will be replaced
with the new list.

12.2.1.5. gr1553bc_pause

Pause the synchronous list. It may be resumed by gr1553bc_resume(). See hardware documentation.

12.2.1.6. gr1553bc_resume

Resume the synchronous list, must have been previously paused by gr1553bc_pause(). See hardware doc-
umentation.

12.2.1.7. gr1553bc_stop

Stop synchronous and/or asynchronous list execution. The second argument is a 2-bit bit-mask which determines
the lists to stop, see table below for a description.

Table 12.4. gr1553bc_stop second argument

Member Description

Bit 0 Set to one to stop the synchronous list.

Bit 1 Set to one to stop the asynchronous list.

12.2.1.8. gr1553bc_indication

Retrieves the current Major/Minor/Slot (MID) position executing into the location indicated by mid. The async
argument determines which type of list is queried, the Synchronous (async=0) list or the Asynchronous
(async=1).

Note that since the List API internally adds descriptors the indication may seem to be out of bounds.

12.2.1.9. gr1553bc_status

This function retrieves the current BC hardware status. Second argument determine where the hardware status
is stored, the layout of the data stored follows the gr1553bc_status data structure. The data structure is
described in Table 12.3.

12.2.1.10. gr1553bc_ext_trig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
external trigger is normally generated by some kind of Time Master. A message slot may be programmed to wait for
an external trigger before being executed, this feature allows the user to accurate send time synchronize messages
to RTs. However, during debugging or when software needs to control the time synchronization behaviour the
external trigger pulse can be generated from the BC core itself by writing the BC Action register.

This function sets the external trigger memory to one by writing the BC action register.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 78

12.2.1.11. gr1553bc_irq_setup

Install a generic handler for BC device interrupts. The handler will be called on Errors (DMA errors etc.) resulting
in interrupts or transfer descriptors resulting in interrupts. The handler is not called when an IRQ is generated by
a condition descriptor. Condition descriptors have their own custom handler.

Condition descriptors are inserted into the list by user, each condition may have a custom function and data as-
signed to it, see gr1553bc_slot_irq_prepare(). Interrupts generated by condition descriptors are not
handled by this function.

The third argument is custom data which will be given to the handler on interrupt.

12.3. Descriptor List Handling

The BC device driver can schedule synchronous and asynchronous lists of descriptors. The list contains a descriptor
table and a software description to make certain operations possible, for example translate descriptor address into
descriptor number (MID).

The BC stops execution of a list when a END-OF-LIST (EOL) marker is found. Lists may be configured to jump
to the start of the list (the first descriptor) by inserting an unconditional jump descriptor. Once a descriptor list is
setup the hardware may process the list without the need of software intervention. Time distribution may also be
handled completely in hardware, by setting the "Wait for External Trigger" flag in a transfer descriptor the BC
will wait until the external trigger is received or proceed directly if already received. See hardware manual.

12.3.1. Overview

This section describes the Descriptor List Application Programming Interface (API). It provides functionality to
create and manage BC descriptor lists.

A list is built up by the following building blocks:

• Major Frame (Consists of N Minor Frames)
• Minor Frame (Consists of up to 32 1553 Slots)
• Slot (Transfer/Condition BC descriptor), also called Message Slot

The user can configure lists with different number of Major Frames, Minor Frames and slots within a Minor Frame.
The List manages a strait descriptor table and a Major/Minor/Slot tree in order to easily find it's way through all
descriptor created.

Each Minor frame consist of up to 32 slot and two extra slots for time management and descriptor find operations,
see figure below. In the figure there are three Minor frames with three different number of slots 32, 8 and 4. The
List manage time slot allocation per Minor frame, for example a minor frame may be programmed to take 8ms
and when the user allocate a message slot within that Minor frame the time specified will be subtracted from the
8ms, and when the message slot is freed the time will be returned to the Minor frame again.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 79

Figure 12.1. Three consecutive Minor Frames

A specific Slot [Major, Minor, Slot] is identified using a MID (Message-ID). The MID consist of three numbers
Major Frame number, Minor Frame number and Slot Number. The MID is a way for the user to avoid using
descriptor pointers to talk with the list API. For example a condition Slot that should jump to a message Slot can
be created by knowing "MID and Jump-To-MID". When allocating a Slot (with or without time) in a List the user
may specify a certain Slot or a Minor frame, when a Minor frame is given then the API will find the first free Slot
as early in the Minor Frame as possible and return it to the user.

A MID can also be used to identify a certain Major Frame by setting the Minor Frame and Slot number to 0xff.
A Minor Frame can be identified by setting Slot Number to 0xff.

A MID can be created using the macros in the table below.

Table 12.5. Macros for creating MID

MACRO Name Description

GR1553BC_ID(major,minor,slot) ID of a SLOT

GR1553BC_MINOR_ID(major,minor) ID of a MINOR (Slot=0xff)

GR1553BC_MAJOR_ID(major) ID of a Major (Minor=0xff,Slot=0xff)

12.3.2. Example: steps for creating a list

The typical approach when creating lists and executing it:

• gr1553bc_list_alloc(&list, MAJOR_CNT)
• gr1553bc_list_config(list, &listcfg)
• Create all Major Frames and Minor frame, for each major frame:

1. gr1553bc_major_alloc_skel(&major, &major_minor_cfg)
2. gr1553bc_list_set_major(list, &major, MAJOR_NUM)

• Link last and first Major Frames together:
1. gr1553bc_list_set_major(&major7, &major0)

• gr1553bc_list_table_alloc() (Allocate Descriptor Table)
• gr1553bc_list_table_build() (Build Descriptor Table from Majors/Minors)
• Allocate and initialize Descriptors predefined before starting:

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 80

1. gr1553bc_slot_alloc(list, &MID, TIME_REQUIRED, ..)
2. gr1553bc_slot_transfer(MID, ..)

• START BC HARDWARE BY SCHEDULING ABOVE LIST
• Application operate on executing List

12.3.3. Major Frame

Consists of multiple Minor frames. A Major frame may be connected/linked with another Major frame, this will
result in a Jump Slot from last Minor frame in the first Major to the first Minor in the second Major.

12.3.4. Minor Frame

Consists of up to 32 Message Slots. The services available for Minor Frames are Time-Management and Slot
allocation.

Time-Management is optional and can be enabled per Minor frame. A Minor frame can be assigned a time in
microseconds. The BC will not continue to the next Minor frame until the time specified has passed, the time
includes the 1553 bus transfers. See the BC hardware documentation. Time is managed by adding an extra Dummy
Message Slot with the time assigned to the Minor Frame. Every time a message Slot is allocated (with a certain
time: Slot-Time) the Slot-Time will be subtracted from the assigned time of the Minor Frame's Dummy Message
Slot. Thus, the sum of the Message Slots will always sum up to the assigned time of the Minor Frame, as configured
by the user. When a Message Slot is freed, the Dummy Message Slot's Slot-Time is incremented with the freed
Slot-Time. See figure below for an example where 6 Message Slots has been allocated Slot-Time in a 1 ms Time-
Managed Minor Frame. Note that in the example the Slot-Time for Slot 2 is set to zero in order for Slot 3 to
execute directly after Slot 2.

Figure 12.2. Time-Managed Minor Frame of 1ms

The total time of all Minor Frames in a Major Frame determines how long time the Major Frame is to be executed.

Slot allocation can be performed in two ways. A Message Slot can be allocated by identifying a specific free Slot
(MID identifies a Slot) or by letting the API allocate the first free Slot in the Minor Frame (MID identifies a Minor
Frame by setting Slot-ID to 0xff).

12.3.5. Slot (Descriptor)

The GR1553B BC core supports two Slot (Descriptor) Types:

• Transfer descriptor (also called Message Slot)
• Condition descriptor (Jump, unconditional-IRQ)

See the hardware manual for a detail description of a descriptor (Slot).

The BC Core is unaware of lists, it steps through executing each descriptor as the encountered, in a sequential
order. Conditions resulting in jumps gives the user the ability to create more complex arrangements of buffer
descriptors (BD) which is called lists here.

Transfer Descriptors (TBD) may have a time slot assigned, the BC core will wait until the time has expired before
executing the next descriptor. Time slots are managed by Minor frames in the list. See Minor Frame section. A
Message Slot generating a data transmission on the 1553 bus must have a valid data pointer, pointing to a location
from which the BC will read or write data.

A Slot is allocated using the gr1553bc_slot_alloc() function, and configured by calling one of the function
described in the table below. A Slot may be reconfigured later. Note that a conditional descriptor does not have a
time slot, allocating a time for a conditional times slot will lead to an incorrect total time of the Minor Frame.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 81

Table 12.6. Slot configuration

Function Name Description

gr1553bc_slot_irq_prepare Unconditional IRQ slot

gr1553bc_slot_jump Unconditional jump

gr1553bc_slot_exttrig Dummy transfer, wait for EXTERNAL-TRIGGER

gr1553bc_slot_transfer Transfer descriptor

gr1553bc_slot_empty Create Dummy Transfer descriptor

gr1553bc_slot_raw Custom Descriptor handling

Existing configured Slots can be manipulated with the following functions.

Table 12.7. Slot manipulation

Function Name Description

gr1553bc_slot_dummy Set existing Transfer descriptor to Dummy. No 1553
bus transfer will be performed.

gr1553bc_slot_update Update Data Pointer and/or Status of a TBD

12.3.6. Changing a scheduled BC list (during BC-runtime)

Changing a descriptor that is being executed by the BC may result in a race between hardware and software. One
of the problems is that a descriptor contains multiple words, which can not be written simultaneously by the CPU.
To avoid the problem one can use the INDICATION service to avoid modifying a descriptor currently in use by the
BC core. The indication service tells the user which Major/Minor/ Slot is currently being executed by hardware,
from that information an knowing the list layout and time slots the user may safely select which slot to modify
or wait until hardware is finished.

In most cases one can do descriptor initialization in several steps to avoid race conditions. By initializing (allocating
and configuring) a Slot before starting the execution of the list, one may change parts of the descriptor which
are ignored by the hardware. Below is an example approach that will avoid potential races between software and
hardware:

1. Initialize Descriptor as Dummy and allocated time (often done before starting/ scheduling list)
2. The list is started, as a result descriptors in the list are executed by the BC
3. Modify transfer options and data-pointers, but maintain the Dummy bit.
4. Clear the Dummy bit in one atomic data store.

12.3.7. Custom Memory Setup

For designs where dynamically memory is not an option, or the driver is used on an AMBA-over-PCI bus (where
malloc() does not work), the API allows the user to provide custom addresses for the descriptor table and object
descriptions (lists, major frames, minor frames).

Being able to configure a custom descriptor table may for example be used to save space or put the descriptor table
in on-chip memory. The descriptor table is setup using the function gr1553bc_list_table_alloc(list,
CUSTOM_ADDRESS).

Object descriptions are normally allocated during initialization procedure by providing the API with an object
configuration, for example a Major Frame configuration enables the API to dynamically allocate the software
description of the Major Frame and with all it's Minor frames. Custom object allocation requires internal under-
standing of the List management parts of the driver, it is not described in this document.

12.3.8. Interrupt handling

There are different types of interrupts, Error IRQs, transfer IRQs and conditional IRQs. Error and transfer Interrupts
are handled by the general callback function of the device driver. Conditional descriptors that cause Interrupts
may be associated with a custom interrupt routine and argument.

Transfer Descriptors can be programmed to generate interrupt, and condition descriptors can be programmed to
generate interrupt unconditionally (there exists other conditional types as well). When a Transfer descriptor causes

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 82

interrupt the general ISR callback of the BC driver is called to let the user handle the interrupt. Transfers descriptor
IRQ is enabled by configuring the descriptor.

When a condition descriptor causes an interrupt a custom IRQ handler is called (if assigned) with a custom argu-
ment and the descriptor address. The descriptor address my be used to look up the MID of the descriptor. The
API provides functions for placing unconditional IRQ points anywhere in the list. Below is an pseudo example
of adding an unconditional IRQ point to a list:

void funcSetup()
{
 int MID;

 /* Allocate Slot for IRQ Point */
 gr1553bc_slot_alloc(&MID, TIME=0, ..);

 /* Prepare unconditional IRQ at allocated SLOT */
 gr1553bc_slot_irq_prepare(MID, funcISR, data);

 /* Enabling the IRQ may be done later during list
 * execution */
 gr1553bc_slot_irq_enable(MID);
}
void funcISR(*bd, *data)
{
 /* HANDLE ONE OR MULTIPLE DESCRIPTORS
 *(MULTIPLE IN THIS EXAMPLE): */
 int MID;

 /* Lookup MID from descriptor address */
 gr1553bc_mid_from_bd(bd, &MID, NULL);

 /* Print MID which caused the Interrupt */
 printk("IRQ ON %06x\n", MID);
}

12.3.9. List API

Table 12.8. List API function prototypes

Prototype Description
int gr1553bc_list_init(
 struct gr1553bc_list **list,
 int max_major)

Initialize a List description structure. First step in creating a descrip-
tor list. This functions does not allocate any memory

int gr1553bc_list_alloc(
 struct gr1553bc_list **list,
 int max_major)

Allocate and initialize a List description structure. First step in creat-
ing a descriptor list.

void gr1553bc_list_free(
 struct gr1553bc_list *list)

Free a List previously allocated using
gr1553bc_list_alloc().

int gr1553bc_list_config(
 struct gr1553bc_list *list,
 struct gr1553bc_list_cfg *cfg,
 void *bc)

Configure List parameters and associate it with a BC device that will
execute the list later on. List parameters are used when generating
descriptors.

void gr1553bc_list_link_major(
 struct gr1553bc_major *major,
 struct gr1553bc_major *next)

Links two Major frames together, the Major frame indicated by next
will be executed after the Major frame indicated by major. A uncon-
ditional jump is inserted to implement the linking.

int gr1553bc_list_set_major(
 struct gr1553bc_list *list,
 struct gr1553bc_major *major,
 int no)

Assign a Major Frame a Major Frame number in a list. This will link
Major (no-1) and Major (no+1) with the Major frame, the linking
can be changed by calling gr1553bc_list_link_major() af-
ter all major frames have been assigned a number.

int gr1553bc_minor_table_size(
 struct gr1553bc_minor *minor)

Calculate the size required in the descriptor table by one minor
frame.

int gr1553bc_list_table_size(
 struct gr1553bc_list *list)

Calculate the size required for the complete descriptor list.

int gr1553bc_list_table_init(
 struct gr1553bc_list *list,
 void *bdtab_custom)

Initialize a descriptor list. The bdtab_custom argument can be
used to assign a custom address of the descriptor list. This function
does not allocate any memory.

int gr1553bc_list_table_alloc(
 struct gr1553bc_list *list,
 void *bdtab_custom)

Allocate and initialize a descriptor list. The bdtab_custom argu-
ment can be used to assign a custom address of the descriptor list.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 83

Prototype Description
void gr1553bc_list_table_free(
 struct gr1553bc_list *list)

Free descriptor list memory previously allocated by
gr1553bc_list_table_alloc().

int gr1553bc_list_table_build(
 struct gr1553bc_list *list)

Build all descriptors in a descriptor list. Unused descriptors will be
initialized as empty dummy descriptors. After this call descriptors
can be initialized by user.

int gr1553bc_major_init_skel(
 struct gr1553bc_major **major,
 struct gr1553bc_major_cfg *cfg)

Initialize a software description skeleton of a Major Frame and it's
Minor Frames. This function does not allocate any memory.

int gr1553bc_major_alloc_skel(
 struct gr1553bc_major **major,
 struct gr1553bc_major_cfg *cfg)

Allocate and initialize a software description skeleton of a Major
Frame and it's Minor Frames.

int gr1553bc_list_freetime(
 struct gr1553bc_list *list,
 int mid)

Get total unused slot time of a Minor Frame. Only available if time
management has been enabled for the Minor Frame.

int gr1553bc_slot_alloc(
 struct gr1553bc_list *list,
 int *mid,
 int timeslot,
 union gr1553bc_bd **bd)

Allocate a Slot from a Minor Frame. The Slot location is identified
by MID. If the MID identifies a Minor frame the first free slot is al-
located within the minor frame.

int gr1553bc_slot_free(
 struct gr1553bc_list *list,
 int mid)

Return a previously allocated Slot to a Minor Frame. The slot-time is
also returned.

int gr1553bc_mid_from_bd(
 union gr1553bc_bd *bd,
 int *mid,
 int *async)

Get Slot/Message ID from descriptor address.

union gr1553bc_bd *gr1553bc_slot_bd(
 struct gr1553bc_list *list,
 int mid)

Get descriptor address from MID.

int gr1553bc_slot_irq_prepare(
 struct gr1553bc_list *list,
 int mid,
 bcirq_func_t func,
 void *data)

Prepare a condition Slot for generating interrupt. Interrupt is dis-
abled. A custom callback function and data is assigned to Slot.

int gr1553bc_slot_irq_enable(
 struct gr1553bc_list *list,
 int mid)

Enable interrupt of a previously interrupt-prepared Slot.

int gr1553bc_slot_irq_disable(
 struct gr1553bc_list *list,
 int mid)

Disable interrupt of a previously interrupt-prepared Slot.

int gr1553bc_slot_jump(
 struct gr1553bc_list *list,
 int mid,
 uint32_t condition,
 int to_mid)

Initialize an allocated Slot, the descriptor is initialized as a condi-
tional Jump Slot. The conditional is controlled by the third argu-
ment. The Slot jumped to is determined by the fourth argument.

int gr1553bc_slot_exttrig(
 struct gr1553bc_list *list,
 int mid)

Create a dummy transfer with the "Wait for external trigger" bit set.

int gr1553bc_slot_transfer(
 struct gr1553bc_list *list,
 int mid,
 int options,
 int tt,
 uint16_t *dptr)

Create a transfer descriptor.

int gr1553bc_slot_dummy(
 struct gr1553bc_list *list,
 int mid,
 unsigned int *dummy)

Manipulate the DUMMY bit of a transfer descriptor. Can be used to
enable or disable a transfer descriptor.

int gr1553bc_slot_empty(
 struct gr1553bc_list *list,
 int mid)

Create an empty transfer descriptor, with the DUMMY bit set. The
time- slot previously allocated is preserved.

int gr1553bc_slot_update(
 struct gr1553bc_list *list,
 int mid,
 uint16_t *dptr,
 unsigned int *stat)

Update a transfer descriptors data pointer and/or status field.

int gr1553bc_slot_raw(
 struct gr1553bc_list *list,
 int mid,
 unsigned int flags,
 uint32_t word0,

Custom descriptor initialization. Note that a bad initialization may
break the BC driver.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 84

Prototype Description
 uint32_t word1,
 uint32_t word2,
 uint32_t word3)

void gr1553bc_show_list(
 struct gr1553bc_list *list,
 int options)

Print information about a descriptor list to standard out. Used for de-
bugging.

12.3.9.1. Data structures

The gr1553bc_major_cfg data structure hold the configuration parameters of a Major frame and all it's Minor
frames. The gr1553bc_minor_cfg data structure contain the configuration parameters of one Minor Frame.

struct gr1553bc_minor_cfg {
 int slot_cnt;
 int timeslot;
};

struct gr1553bc_major_cfg {
 int minor_cnt;
 struct gr1553bc_minor_cfg minor_cfgs[1];
};

Table 12.9. gr1553bc_minor_cfg member descriptions.

Member Description

slot_cnt Number of Slots in Minor Frame

timeslot Total time-slot of Minor Frame [us]

Table 12.10. gr1553bc_major_cfg member descriptions.

Member Description

minor_cnt Number of Minor Frames in Major Frame.

minor_cfgs Array of Minor Frame configurations. The length of the array is determined
by minor_cnt.

The gr1553bc_list_cfg data structure hold the configuration parameters of a descriptor List. The Major and
Minor Frames are configured separately. The configuration parameters are used when generating descriptor.

struct gr1553bc_list_cfg {
 unsigned char rt_timeout[31];
 unsigned char bc_timeout;
 int tropt_irq_on_err;
 int tropt_pause_on_err;
 int async_list;
};

Table 12.11. gr1553bc_list_cfg member descriptions.

Member Description

rt_timeout Number of us timeout tolerance per RT address. The BC has a resolution of
4us.

bc_timeout Number of us timeout tolerance of broadcast transfers

tropt_irq_on_err Determines if transfer descriptors should generate IRQ on transfer errors

tropt_pause_on_err Determines if the list should be paused on transfer error

async_list Set to non-zero if asynchronous list

12.3.9.2. gr1553bc_list_init

Initialize a List structure (no descriptors) with a maximum number of Major frames supported. The first argument
is a pointer to where the newly allocated list pointer will be stored. The second argument determines the maximum
number of major frames the List will be able to support.

The list is initialized according to the default configuration.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 85

This function will not allocate any memory. Replace this function call with gr1553bc_list_alloc() if you want the
driver to allocate the memory.

If a NULL pointer is provided, a negative result will be returned.

12.3.9.3. gr1553bc_list_alloc

Dynamically allocate and initialize a List structure (no descriptors) with a maximum number of Major frames
supported. The first argument is a pointer to where the newly allocated list pointer will be stored. The second
argument determines the maximum number of major frames the List will be able to support.

The list is initialized according to the default configuration.

If the list allocation fails, a negative result will be returned.

12.3.9.4. gr1553bc_list_free

Free a List that has been previously allocated with gr1553bc_list_alloc().

12.3.9.5. gr1553bc_list_config

This function configures List parameters and associate the list with a BC device. The BC device may be used to
translate addresses from CPU address to addresses the GR1553B core understand, therefore the list must not be
scheduled on another BC device.

Some of the List parameters are used when generating descriptors, as global descriptor parameters. For example
all transfer descriptors to a specific RT result in the same time out settings.

The first argument points to a list that is configure. The second argument points to the configuration description,
the third argument identifies the BC device that the list will be scheduled on. The layout of the list configuration
is described in Table 12.11.

12.3.9.6. gr1553bc_list_link_major

At the end of a Major Frame a unconditional jump to the next Major Frame is inserted by the List API. The List
API assumes that a Major Frame should jump to the following Major Frame, however for the last Major Frame
the user must tell the API which frame to jump to. The user may also connect Major frames in a more complex
way, for example Major Frame 0 and 1 is executed only once so the last Major frame jumps to Major Frame 2.

The Major frame indicated by next will be executed after the Major frame indicated by major. A unconditional
jump is inserted to implement the linking.

12.3.9.7. gr1553bc_list_set_major

Major Frames are associated with a number, a Major Frame Number. This function creates an association between
a Frame and a Number, all Major Frames must be assigned a number within a List.

The function will link Major[no-1] and Major[no+1] with the Major frame, the linking can be changed by calling
gr1553bc_list_link_major() after all major frames have been assigned a number.

12.3.9.8. gr1553bc_minor_table_size

This function is used internally by the List API, however it can also be used in an application to calculate the space
required by descriptors of a Minor Frame.

The total size of all descriptors in one Minor Frame (in number of bytes) is returned. Descriptors added internally
by the List API are also counted.

12.3.9.9. gr1553bc_list_table_size

This function is used internally by the List API, however it can also be used in an application to calculate the total
space required by all descriptors of a List.

The total descriptor size of all Major/Minor Frames of the list (in number of bytes) is returned.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 86

12.3.9.10. gr1553bc_list_table_init

The List is initialized with the new descriptor table, i.e. the software's internal representation is initialized. The
descriptors themselves are not initialized.

The second argument bdtab_custom is the memory area. If NULL the function will fail, if non-zero the value
will be taken as the base descriptor address. If bit zero is set the address is assumed to be readable by the GR1553B
core, if bit zero is cleared the address is assumed to be readable by the CPU and translated for the GR1553B core.
Bit zero makes sense to use on a GR1553B core located on a AMBA-over-PCI bus.

This function will not allocate any memory. Replace this function call with gr1553bc_list_table_alloc() if you
want the driver to allocate the memory.

12.3.9.11. gr1553bc_list_table_alloc

This function allocates all descriptors needed by a List, either dynamically or by a user provided address. The List
is initialized with the new descriptor table, i.e. the software's internal representation is initialized. The descriptors
themselves are not initialized.

The second argument bdtab_custom determines the allocation method. If NULL the API will allocate memory
using malloc(), if non-zero the value will be taken as the base descriptor address. If bit zero is set the address
is assumed to be readable by the GR1553B core, if bit zero is cleared the address is assumed to be readable by
the CPU and translated for the GR1553B core. Bit zero makes sense to use on a GR1553B core located on a
AMBA-over-PCI bus.

12.3.9.12. gr1553bc_list_table_free

Free previously allocated descriptor table memory.

12.3.9.13. gr1553bc_list_table_build

This function builds all descriptors in a descriptor list. Unused descriptors will be initialized as empty dummy
descriptors. Jumps between Minor and Major Frames will be created according to user configuration.

After this call descriptors can be initialized by user.

12.3.9.14. gr1553bc_major_init_skel

Initialize a Major Frame and it's Minor Frames according to the configuration pointed to by the second argument.

This function will not allocate any memory. Replace this function call with gr155bc_major_alloc_skel() if you
want the driver to allocate the memory.

The configuration of the Major Frame is determined by the gr1553bc_major_cfg structure, described in Ta-
ble 12.10.

On success zero is returned, on failure a negative value is returned.

12.3.9.15. gr1553bc_major_alloc_skel

Allocate and initialize a Major Frame and it's Minor Frames according to the configuration pointed to by the
second argument.

The pointer to the allocated Major Frame is stored into the location pointed to by the major argument.

The configuration of the Major Frame is determined by the gr1553bc_major_cfg structure, described in Ta-
ble 12.10.

On success zero is returned, on failure a negative value is returned.

12.3.9.16. gr1553bc_list_freetime

Minor Frames can be configured to handle time slot allocation. This function returns the number of microseconds
that is left/unused. The second argument mid determines which Minor Frame.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 87

12.3.9.17. gr1553bc_slot_alloc

Allocate a Slot from a Minor Frame. The Slot location is identified by mid. If the MID identifies a Minor frame
the first free slot is allocated within the minor frame.

The resulting MID of the Slot is stored back to mid, the MID can be used in other function call when setting up
the Slot. The mid argument is thus of in and out type.

The third argument, timeslot, determines the time slot that should be allocated to the Slot. If time management
is not configured for the Minor Frame a time can still be assigned to the Slot. If the Slot should step to the next Slot
directly when finished (no assigned time-slot), the argument must be set to zero. If time management is enabled for
the Minor Frame and the requested time-slot is longer than the free time, the call will result in an error (negative
result).

The fourth and last argument can optionally be used to get the address of the descriptor used.

12.3.9.18. gr1553bc_slot_free

Return Slot and timeslot allocated from the Minor Frame.

12.3.9.19. gr1553bc_mid_from_bd

Looks up the Slot/Message ID (MID) from a descriptor address. This function may be useful in the interrupt
handler, where the address of the descriptor is given.

12.3.9.20. gr1553bc_slot_bd

Looks up descriptor address from MID.

12.3.9.21. gr1553bc_slot_irq_prepare

Prepares a condition descriptor to generate interrupt. Interrupt will not be enabled until
gr1553bc_slot_irq_enable() is called. The descriptor will be initialized as an unconditional jump to
the next descriptor. The Slot can be associated with a custom callback function and an argument. The callback
function and argument is stored in the unused fields of the descriptor.

Once enabled and interrupt is generated by the Slot, the callback routine will be called from interrupt context.

The function returns a negative result if failure, otherwise zero is returned.

12.3.9.22. gr1553bc_slot_irq_enable

Enables interrupt of a previously prepared unconditional jump Slot. The Slot is expected to be initialized with
gr1553bc_slot_irq_prepare(). The descriptor is changed to do a unconditional jump with interrupt.

The function returns a negative result if failure, otherwise zero is returned.

12.3.9.23. gr1553bc_slot_irq_disable

Disable unconditional IRQ point, the descriptor is changed to unconditional JUMP to the following descriptor,
without generating interrupt. After disabling the Slot it can be enabled again, or freed.

The function returns a negative result if failure, otherwise zero is returned.

12.3.9.24. gr1553bc_slot_jump

Initialize a Slot with a custom jump condition. The arguments are declared in the table below.

Table 12.12. gr1553bc_list_cfg member descriptions.

Argument Description

list List that the Slot is located at.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 88

Argument Description

mid Slot Identification.

condition Custom condition written to descriptor. See hardware documentation for
options.

to_mid Slot Identification of the Slot that the descriptor will be jumping to.

Returns zero on success.

12.3.9.25. gr1553bc_slot_exttrig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
external trigger is normally generated by some kind of Time Master. A message slot may be programmed to
wait for an external trigger before being executed, this feature allows the user to accurate send time synchronize
messages to RTs.

This function initializes a Slot to a dummy transfer with the "Wait for external trigger" bit set.

Returns zero on success.

12.3.9.26. gr1553bc_slot_transfer

Initializes a descriptor to a transfer descriptor. The descriptor is initialized according to the function arguments an
the global List configuration parameters. The settings that are controlled on a global level (and not by this function):

• IRQ after transfer error
• IRQ after transfer (not supported, insert separate IRQ slot after this)
• Pause schedule after transfer error
• Pause schedule after transfer (not supported)
• Slot time optional (set when MID allocated), otherwise 0
• (OPTIONAL) Dummy Bit, set using slot_empty() or ..._TT_DUMMY
• RT time out tolerance (managed per RT)

The arguments are declared in the table below.

Table 12.13. gr1553bc_slot_transfer argument descriptions.

Argument Description

list List that the Slot is located at

mid Slot Identification

options Options:

• Retry Mode
• Number of retires
• Bus selection (A or B)
• Dummy bit

tt Transfer options, see BC transfer type macros in header file:

• transfer type
• RT src/dst address
• RT subaddress
• word count
• mode code

dptr Descriptor Data Pointer. Used by Hardware to read or write data to the 1553 bus. If bit zero is
set the address is translated by the driver into an address which the hardware can access(may
be the case if BC device is located on an AMBA-over-PCI bus), if cleared it is assumed that
no translation is required(typical case)

Returns zero on success.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 89

12.3.9.27. gr1553bc_slot_dummy

Manipulate the DUMMY bit of a transfer descriptor. Can be used to enable or disable a transfer descriptor.

The dummy argument points to an area used as input and output, as input bit 31 is written to the dummy bit of the
descriptor, as output the old value of the descriptors dummy bit is written.

Returns zero on success.

12.3.9.28. gr1553bc_slot_empty

Create an empty transfer descriptor, with the DUMMY bit set. The time-slot previously allocated is preserved.

Returns zero on success.

12.3.9.29. gr1553bc_slot_update

This function will update a transfer descriptors status and/or update the data pointer.

If the dptr pointer is non-zero the Data Pointer word of the descriptor will be updated with the value of dptr.
If bit zero is set the driver will translate the data pointer address into an address accessible by the BC hardware.
Translation is an option only for AMBA-over-PCI.

If the stat pointer is non-zero the Status word of the descriptor will be updated according to the content of stat.
The old Status will be stored into stat. The lower 24-bits of the current Status word may be cleared, and the
dummy bit may be set:

bd->status = *stat & (bd->status 0xffffff) | (*stat & 0x80000000);

Note that the status word is not written (only read) when value pointed to by stat is zero.

Returns zero on success.

12.3.9.30. gr1553bc_slot_raw

Custom descriptor initialization. Note that a bad initialization may break the BC driver.

The arguments are declared in the table below.

Table 12.14. gr1553bc_slot_transfer argument descriptions.

Argument Description

list List that the Slot is located at

mid Slot Identification

flags Determine which words are updated. If bit N is set wordN is written into descriptor wordN, if
bit N is zero the descriptor wordN is not modified.

word0 32-bit Word written to descriptor address 0x00

word1 32-bit Word written to descriptor address 0x04

word2 32-bit Word written to descriptor address 0x08

word3 32-bit Word written to descriptor address 0x0C

Returns zero on success.

12.3.9.31. gr1553bc_show_list

Print information about a List to standard out. Each Major Frame's first descriptor for example is printed. This
function is used for debugging only.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 90

13. GR1553B Remote Terminal Driver

13.1. Introduction

This section describes the GRLIB GR1553B Remote Terminal (RT) device driver interface. The driver relies on
the GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

13.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and Remote Terminal
(RT) functionality. This driver supports the RT functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the RT interrupts are shared between
the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

13.1.2. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 11.

13.2. User Interface

13.2.1. Overview

The RT software driver provides access to the RT core and help with creating memory structures accessed by the
RT core. The driver provides the services list below,

• Basic RT functionality (RT address, Bus and RT Status, Enabling core, etc.)
• Event logging support
• Interrupt support (Global Errors, Data Transfers, Mode Code Transfer)
• DMA-Memory configuration
• Sub Address configuration
• Support for Mode Codes
• Transfer Descriptor List Management per RT sub address and transfer type (RX/TX)

The driver sources and definitions are listed in the table below, the path is given relative to the extracted distribution
archive.

Table 13.1. RT driver Source location

Filename Description

src/libdrv/src/gr1553b/gr1553rt.c GR1553B RT Driver source

src/libdrv/src/include/gr1553rt.h GR1553B RT Driver interface declaration

13.2.1.1. Accessing an RT device

In order to access an RT core, a specific core must be identified (the driver support multiple devices). The core
is opened by calling gr1553rt_open(), the open function allocates an RT device by calling the lower level
GR1553B driver and initializes the RT by stopping all activity and disabling interrupts. After an RT has been
opened it can be configured gr1553rt_config_init(), SA-table configured, descriptor lists assigned to
SA, interrupt callbacks registered, and finally communication started by calling gr1553rt_start(). Once the
RT is started interrupts may be generated, data may be transferred and the event log filled. The communication
can be stopped by calling gr1553rt_stop().

When the application no longer needs to access the RT core, the RT is closed by calling gr1553rt_close().

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 91

13.2.1.2. Introduction to the RT Memory areas

For the RT there are four different types of memory areas. The access to the areas is much different and involve
different latency requirements. The areas are:

• Sub Address (SA) Table
• Buffer Descriptors (BD)
• Data buffers referenced from descriptors (read or written)
• Event (EV) logging buffer

The memory types are described in separate sections below. Generally three of the areas (controlled by the driver)
can be dynamically allocated by the driver or assigned to a custom location by the user. Assigning a custom address
is typically useful when for example a low-latency memory is required, or the GR1553B core is located on an
AMBA-over- PCI bus where memory accesses over the PCI bus will not satisfy the latency requirements by the
1553 bus, instead a memory local to the RT core can be used to shorten the access time. Note that when providing
custom addresses the alignment requirement of the GR1553B core must be obeyed, which is different for different
areas and sizes. The memory areas are configured using the gr1553rt_config_init() function.

13.2.1.3. Sub Address Table

The RT core provides the user to program different responses per sub address and transfer type through the sub
address table (SA-table) located in memory. The RT core consult the SA-table for every 1553 data transfer com-
mand on the 1553 bus. The table includes options per sub address and transfer type and a pointer to the next
descriptor that let the user control the location of the data buffer used in the transaction. See hardware manual
for a complete description.

The SA-table is fixed size to 512 bytes.

Since the RT is required to respond to BC request within a certain time, it is vital that the RT has enough time
to look up user configuration of a transfer, i.e. read SA-table and descriptor and possibly the data buffer as well.
The driver provides a way to let the user give a custom address to the sub address table or dynamically allocate
it for the user. The default action is to let the driver dynamically allocate the SA-table, the SA-table will then be
located in the main memory of the CPU. For RT core's located on an AMBA-over- PCI bus, the default action is
not acceptable due to the latency requirement mentioned above.

The SA-table can be configured per SA by calling the gr1553rt_sa_setopts() function. The mask argu-
ment makes it possible to change individual bit in the SA configuration. This function must be called to enable
transfers from/to a sub address. See hardware manual for SA configuration options. Descriptor Lists are assigned
to a SA by calling gr1553rt_list_sa().

The indication service can be used to determine the descriptor used in the next transfer, see Section 13.2.1.8.

13.2.1.4. Descriptors

A GR1553B RT descriptor is located in memory and pointed to by the SA-table. The SA-table points out the
next descriptor used for a specific sub address and transfer type. The descriptor contains three input fields: Con-
trol/Status Word determines options for a specific transfer ans status of a completed transfer; Data buffer pointer,
16-bit aligned; Pointer to next descriptor within sub address and transfer type, or end-of-list marker.

All descriptors are located in the same range of memory, which the driver refers to as the BD memory. The
BD memory can by dynamically allocated (located in CPU main memory) by the driver or assigned to a custom
location by the user. From the BD memory descriptors for all sub addresses are allocated by the driver. The driver
works internally with 16-bit descriptor identifiers allowing 65k descriptor in total. A descriptor is allocated for a
specific descriptor List. Each descriptor takes 32 bytes of memory.

The user can build and initialize descriptors using the API function gr1553rt_bd_init() and update the
descriptor and/or view the status and time of a completed transfer.

Descriptors are managed by a data structure named gr1553rt_list. A List is the software representation of
a chain of descriptors for a specific sub address and transfer type. Thus, 60 lists in total (two lists per SA, SA0
and SA31 are for mode codes) per RT. The List simplifies the descriptor handling for the user by introducing
descriptor numbers (entry_no) used when referring to descriptors rather than the descriptor address. Up to 65k
descriptors are supported per List by the driver. A descriptor list is assigned to a SA and transfer type by calling
gr1553rt_list_sa().

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 92

When a List is created and configured a maximal number of descriptors are given, giving the API a possibility to
allocate the descriptors from the descriptor memory area configured.

Circular buffers can be created by a chain of descriptors where each descriptors data buffer is one element in the
circular buffer.

13.2.1.5. Data Buffers

Data buffers are not accessed by the driver at all, the address is only written to descriptor upon user request. It is
up to the user to provide the driver with valid addresses to data buffers of the required length.

Note that addresses given must be accessible by the hardware. If the RT core is located on a AMBA-over-PCI bus
for example, the address of a data buffer from the RT core's point of view is most probably not the same as the
address used by the CPU to access the buffer.

13.2.1.6. Event Logging

Transfer events (Transmission, Reception and Mode Codes) may be logged by the RT core into a memory area
for (later) processing. The events logged can be controlled by the user at a SA transfer type level and per mode
code through the Mode Code Control Register.

The driver API access the eventlog on two occasions, either when the user reads the eventlog buffer using the
gr1553rt_evlog_read() function or from the interrupt handler, see the interrupt section for more informa-
tion. The gr1553rt_evlog_read() function is called by the user to read the eventlog, it simply copies the
current logged entries to a user buffer. The user must empty the driver eventlog in time to avoid entries to be over-
written. A certain descriptor or SA may be logged to help the application implement communication protocols.

The eventlog is typically sized depending the frequency of the log input (logged transfers) and the frequency of the
log output (task reading the log). Every logged transfer is described with a 32-bit word, making it quite compact.

The memory of the eventlog does not require as tight latency requirement as the SA-table and descriptors. However
the user still is provided the ability to put the eventlog at a custom address, or letting the driver dynamically allocate
it. When providing a custom address the start address is given, the area must have room for the configured number
of entries and have the hardware required alignment.

Note that the alignment requirement of the eventlog varies depending on the eventlog length.

13.2.1.7. Interrupt service

The RT core can be programmed to interrupt the CPU on certain events, transfers and errors (SA-table and DMA).
The driver divides transfers into two different types of events, mode codes and data transfers. The three types of
events can be assigned custom callbacks called from the driver's interrupt service routine (ISR), and custom argu-
ment can be given. The callbacks are registered per RT device using the functions gr1553rt_irq_err(),
gr1553rt_irq_mc(), gr1553rt_irq_sa(). Note that the three different callbacks have different argu-
ments.

Error interrupts are discovered in the ISR by looking at the IRQ event register, they are handled first. After the
error interrupt has been handled by the user (user interaction is optional) the RT core is stopped by the driver.

Data transfers and Mode Code transfers are logged in the eventlog. When a transfer-triggered interrupt occurs the
ISR starts processing the event log from the first event that caused the IRQ (determined by hardware register)
calling the mode code or data transfer callback for each event in the log which has generated an IRQ (determined by
the IRQSR bit). Even though both the ISR and the eventlog read function r1553rt_evlog_read() processes
the eventlog, they are completely separate processes - one does not affect the other. It is up to the user to make
sure that events that generated interrupt are not double processed. The callback functions are called in the same
order as the event was generated.

Is is possible to configure different callback routines and/or arguments for different sub addresses (1..30) and
transfer types (RX/TX). Thus, 60 different callback handlers may be registered for data transfers.

13.2.1.8. Indication service

The indication service is typically used by the user to determine how many descriptors have been processed by
the hardware for a certain SA and transfer type. The gr1553rt_indication() function returns the next

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 93

descriptor number which will be used next transfer by the RT core. The indication function takes a sub address
and an RT device as input, By remembering which descriptor was processed last the caller can determine how
many and which descriptors have been accessed by the BC.

13.2.1.9. Mode Code support

The RT core a number of registers to control and interact with mode code commands. See hardware manual which
mode codes are available. Each mode code can be disabled or enabled. Enabled mode codes can be logged and in-
terrupt can be generated upon transmission events. The gr1553rt_config_init() function is used to con-
figure the aforementioned mode code options. Interrupt caused by mode code transmissions can be programmed
to call the user through an callback function, see the interrupt Section 13.2.1.7.

The mode codes "Synchronization with data", "Transmit Bit word" and "Transmit Vector word" can be interacted
with through a register interface. The register interface can be read with the gr1553rt_status() function
and selected (or all) bits of the bit word and vector word can be written using gr1553rt_set_vecword()
function.

Other mode codes can interacted with using the Bus Status Register of the RT core. The register
can be read using the gr1553rt_status() function and written selectable bit can be written using
gr1553rt_set_bussts().

13.2.1.10. RT Time

The RT core has an internal time counter with a configurable time resolution. The finest time resolution of the timer
counter is one microsecond. The resolution is configured using the gr1553rt_config_init() function. The
current time is read by calling the gr1553rt_status() function.

13.2.2. Application Programming Interface

The RT driver API consists of the functions in the table below.

Table 13.2. Data structures

Prototype Description
void *gr1553rt_open(int minor) Open an RT device by instance number. Returns a handle identifying

the specific RT device. The handle is given as input in most func-
tions of the API

void gr1553rt_close(void *rt) Close a previously opened RT device

int gr1553rt_config_init(
 void *rt,
 struct gr1553rt_cfg *cfg)

Configure the RT device driver

Configure the RT device driver and allo-
cate device memory

int gr1553rt_config_free(void *rt) Free allocated device memory

int gr1553rt_start(void *rt) Start RT communication, enables Interrupts

void gr1553rt_stop(void *rt) Stop RT communication, disables interrupts

void gr1553rt_status(
 void *rt,
 struct gr1553rt_status *status)

Get Time, Bus/RT Status and mode code status

int gr1553rt_indication(
 void *rt,
 int subadr,
 int *txeno,
 int *rxeno)

Get the next descriptor that will processed of an RT sub-address and
transfer type

int gr1553rt_evlog_read(
 void *rt,
 unsigned int *dst,
 int max)

Copy contents of event log to a user provided data buffer

void gr1553rt_set_vecword(
 void *rt,
 unsigned int mask,
 unsigned int words)

Set all or a selection of bits in the Vector word and Bit word used by
the "Transmit Bit word" and "Transmit Vector word" mode codes

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 94

Prototype Description
void gr1553rt_set_bussts(
 void *rt,
 unsigned int mask,
 unsigned int sts)

Modify a selection of bits in the RT Bus Status register

void gr1553rt_sa_setopts(
 void *rt,
 int subadr,
 unsigned int mask,
 unsigned int options)

Configures a sub address control word located in the SA-table.

void gr1553rt_list_sa(
 struct gr1553rt_list *list,
 int *subadr,
 int *tx)

Get the Sub address and transfer type of a scheduled list

void gr1553rt_sa_schedule(
 void *rt,
 int subadr,
 int tx,
 struct gr1553rt_list *list)

Schedule a RX or TX descriptor list on a sub address of a certain
transfer type

int gr1553rt_irq_err(
 void *rt,
 gr1553rt_irqerr_t func,
 void *data)

Assign an Error Interrupt handler callback routine and custom argu-
ment

int gr1553rt_irq_mc(
 void *rt,
 gr1553rt_irqmc_t func,
 void *data)

Assign a Mode Code Interrupt handler callback routine and custom
argument

int gr1553rt_irq_sa(
 void *rt,
 int subadr,
 int tx,
 gr1553rt_irq_t func,
 void *data)

Assign a Data Transfer Interrupt handler callback routine and custom
argument to a certain sub address and transfer type

int gr1553rt_list_init(
 void *rt,
 struct gr1553rt_list **plist,
 struct gr1553rt_list_cfg *cfg)

Initialize a descriptor List according to configuration. The List can
be used for RX/TX on any sub address.

int gr1553rt_list_alloc(
 void *rt,
 struct gr1553rt_list **plist,
 struct gr1553rt_list_cfg *cfg)

Initialize and allocate a descriptor List according to configuration.
The List can be used for RX/TX on any sub address.

int gr1553rt_bd_init(
 struct gr1553rt_list *list,
 unsigned short entry_no,
 unsigned int flags,
 uint16_t *dptr,
 unsigned short next)

Initialize a Descriptor in a List identified by number.

int gr1553rt_bd_update(
 struct gr1553rt_list *list,
 int entry_no,
 unsigned int *status,
 uint16_t **dptr)

Update the status and/or the data buffer pointer of a descriptor.

13.2.2.1. Data structures

The gr1553rt_cfg data structure is used to configure an RT device. The configuration parameters are described
in the table below.

struct gr1553rt_cfg {
 unsigned char rtaddress;
 unsigned int modecode;
 unsigned short time_res;
 void *satab_buffer;
 void *evlog_buffer;
 int evlog_size;
 int bd_count;
 void *bd_buffer;
 void *bd_sw_buffer;
};

Table 13.3. gr1553rt_cfg member descriptions

Member Description

rtaddress RT Address on 1553 bus [0..30]

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 95

Member Description

modecode Mode codes enable/disable/IRQ/EV-Log. Each mode code has a 2-bit configura-
tion field. Mode Code Control Register in hardware manual

time_res Time tag resolution in microseconds

satab_buffer Sub Address Table (SA-table) allocation setting. Can be dynamically allocated (zero) or
custom location (non-zero). If custom location of SA-table is given, the address must be
aligned to 10-bit (1KiB) boundary and at least 16*32 bytes.

evlog_buffer Eventlog DMA buffer allocation setting. Can be dynamically allocated (zero) or cus-
tom location (non-zero). If custom location of eventlog is given, the address must be of
evlog_size and aligned to evlog_size. See hardware manual.

evlog_size Length in bytes of Eventlog, must be a multiple of 2. If set to zero event log is disabled,
note that enabling logging in SA-table or descriptors will cause failure when eventlog is
disabled.

bd_count Number of descriptors for RT device. All descriptor lists share the descriptors. Maximum
is 65K descriptors.

bd_buffer Descriptor memory area allocation setting. Can be dynamically allocated (zero) or custom
location (non-zero). If custom location of descriptors is given, the address must be aligned
to 32 bytes and of (32 * bd_count) bytes size.

bd_sw_buffer Descriptor memory area allocation for internal usage. Can be dynamically allocated (zero)
or custom location (non-zero). If custom location of descriptors is given, the area must be
of (4 * bd_count) bytes size.

The gr1553rt_list_cfg data structure hold the configuration parameters of a descriptor List.

struct gr1553rt_list_cfg {
 unsigned int bd_cnt;
};

Table 13.4. gr1553rt_list_cfg member descriptions

Member Description

bd_cnt Number of descriptors in List

The current status of the RT core is stored in the gr1553rt_status data structure by the function
gr1553rt_status(). The fields are described below.

struct gr1553rt_status {
 unsigned int status;
 unsigned int bus_status;
 unsigned short synctime;
 unsigned short syncword;
 unsigned short time_res;
 unsigned short time;
};

Table 13.5. gr1553rt_status member descriptions

Member Description

status Current value of RT Status Register

bus_status Current value of RT Bus Status Register

synctime Time Tag when last synchronize with data was received

syncword Data of last mode code synchronize with data

time_res Time resolution in microseconds (set by config)

time Current Time Tag. (time_res * time) gives the number of microsec-
onds since last time overflow.

13.2.2.2. gr1553rt_open

Opens a GR1553B RT device identified by instance number, minor. The instance number is determined by the
order in which GR1553B cores with RT functionality are found, the order of the Plug & Play.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 96

A handle is returned identifying the opened RT device, the handle is used internally by the RT driver, it is used
as an input parameter rt to all other functions that manipulate the hardware.

Close and Stop an RT device identified by input argument rt previously returned by gr1553rt_open().

13.2.2.3. gr1553rt_close

Close and Stop an RT device identified by input argument rt previously returned by gr1553rt_open().

13.2.2.4. gr1553rt_config_init

Configure memory for an RT device. The configuration parameters are stored in the location pointed to by cfg.
The layout of the parameters must follow the gr1553rt_cfg data structure, described in Table 13.3.

This function will not allocate any memory. Replace this function call with gr1553rt_config_alloc() if you want
the driver to allocate memory. If any of the data pointers are NULL, then this function will return a negative result.
On success zero is returned.

13.2.2.5. gr1553rt_config_alloc

Configure and allocate memory for an RT device. The configuration parameters are stored in the location pointed
to by cfg. The layout of the parameters must follow the gr1553rt_cfg data structure, described in Table 13.3.

If memory allocation fails (in case of dynamic memory allocation) the function return a negative result, on success
zero is returned.

13.2.2.6. gr1553bm_config_free

Free allocated memory.

13.2.2.7. gr1553rt_start

Starts RT communication by enabling the core and enabling interrupts. The user must have configured the driver
(RT address, Mode Code, SA-table, lists, descriptors, etc.) before calling this function.

After the RT has been started the configuration function can not be called.

On success this function returns zero, on failure a negative result is returned.

13.2.2.8. gr1553rt_stop

Stops RT communication by disabling the core and disabling interrupts. Further 1553 commands to the RT will
be ignored.

13.2.2.9. gr1553rt_status

Read current status of the RT core. The status is written to the location pointed to by status in the format determined
by the gr1553rt_status structure described in Table 13.5.

13.2.2.10. gr1553rt_indication

Get the next descriptor that will be processed for a specific sub address. The descriptor number is looked up from
the descriptor address found the SA-table for the sub address specified by subadr argument.

The descriptor number of respective transfer type (RX/TX) will be written to the address given by txeno and/or
rxeno. If end-of-list has been reached, -1 is stored into txeno or rxeno.

If the request is successful zero is returned, otherwise a negative number is returned (bad sub address or descriptor).

13.2.2.11. gr1553rt_evlog_read

Copy up to max number of entries from eventlog into the address specified by dst. The actual number of entries
read is returned. It is important to read out the eventlog entries in time to avoid data loss, the eventlog can be sized
so that data loss can be avoided.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 97

Zero is returned when entries are available in the log, negative on failure.

13.2.2.12. gr1553rt_set_vecword

Set a selection of bits in the RT Vector and/or Bit word. The words are used when,

• Vector Word is used in response to "Transmit vector word" BC commands
• Bit Word is used in response to "Transmit bit word" BC commands

The argument mask determines which bits are written, and words determines the value of the bits written. The
lower 16-bits are the Vector Word, the higher 16-bits are the Bit Word.

13.2.2.13. gr1553rt_set_bussts

Set a selection of bits of the Bus Status Register. The bits written is determined by the mask bit-mask and the
values written is determined by sts. Operation:

 bus_status_reg = (bus_status_reg & ~mask) | (sts & mask)

13.2.2.14. gr1553rt_sa_setopts

Configure individual bits of the SA Control Word in the SA-table. One may for example Enable or Disable a SA
RX and/or TX. See hardware manual for SA-Table configuration options.

The mask argument is a bit-mask, it determines which bits are written and options determines the value written.

The subadr argument selects which sub address is configured.

Note that SA-table is all zero after configuration, every SA used must be configured using this function.

13.2.2.15. gr1553rt_list_sa

This function looks up the SA and the transfer type of the descriptor list given by list. The SA is stored into
subadr, the transfer type is written into tx (TX=1, RX=0).

13.2.2.16. gr1553rt_sa_schedule

This function associates a descriptor list with a sub address (given by subadr) and a transfer type (given by tx).
The first descriptor in the descriptor list is written to the SA-table entry of the SA.

13.2.2.17. gr1553rt_irq_err

his function registers an interrupt callback handler of the Error Interrupt. The handler func is called with the
argument data when a DMA error or SA-table access error occurs. The callback must follow the prototype of
gr1553rt_irqerr_t :

typedef void (*gr1553rt_irqerr_t)(int err, void *data);

Where err is the value of the GR1553B IRQ register at the time the error was detected, it can be used to determine
what kind of error occurred.

13.2.2.18. gr1553rt_irq_mc

This function registers an interrupt callback handler for Logged Mode Code transmission Interrupts. The han-
dler func is called with the argument data when a Mode Code transmission event occurs, note that inter-
rupts must be enabled per Mode Code using gr1553rt_config_init(). The callback must follow the prototype of
gr1553rt_irqmc_t:

typedef void (*gr1553rt_irqmc_t)(
 int mcode,
 unsigned int entry,
 void *data
);

Where mcode is the mode code causing the interrupt, entry is the raw event log entry.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 98

13.2.2.19. gr1553rt_irq_sa

Register an interrupt callback handler for data transfer triggered Interrupts, it is possible to assign a unique function
and/or data for every SA (given by subadr) and transfer type (given by tx). The handler func is called with the
argument data when a data transfer interrupt event occurs. Interrupts is configured on a descriptor or SA basis.
The callback routine must follow the prototype of gr1553rt_irq_t:

typedef void (*gr1553rt_irq_t)(
 struct gr1553rt_list *list,
 unsigned int entry,
 int bd_next,
 void *data
);

Where list indicates which descriptor list (Sub Address, transfer type) caused the interrupt event, entry is the
raw event log entry, bd_next is the next descriptor that will be processed by the RT for the next transfer of the
same sub address and transfer type.

13.2.2.20. gr1553rt_list_init

Configure a list structure according to configuration given in cfg, see the gr1553rt_list_cfg data structure
in Table 13.4. Assign the list to an RT device, however not to a sub address yet. The rt handle is stored within list.

This function will not allocate any memory. Replace this function call with gr1553rt_list_alloc() if you want the
driver to allocate the memory.

Note that descriptor are allocated from the RT device, so the RT device itself must be configured using
gr1553rt_config_init() before calling this function.

A negative number is returned on failure, on success zero is returned.

13.2.2.21. gr1553rt_list_alloc

Allocate and configure a list structure according to configuration given in cfg, see the gr1553rt_list_cfg
data structure in Table 13.4. Assign the list to an RT device, however not to a sub address yet. The rt handle
is stored within list.

The resulting descriptor list is written to the location indicated by the plist argument.

Note that descriptor are allocated from the RT device, so the RT device itself must be configured using
gr1553rt_config_alloc() before calling this function.

A negative number is returned on failure, on success zero is returned.

13.2.2.22. gr1553rt_bd_init

Initialize a descriptor entry in a list. This is typically done prior to scheduling the list. The descriptor and the next
descriptor is given by descriptor indexes relative to the list (entry_no and next), see table below for options
on next. Set bit 30 of the argument flags in order to set the IRQEN bit of the descriptors Control/Status Word.
The argument dptr is written to the descriptors Data Buffer Pointer Word.

Note that the data pointer is accessed by the GR1553B core and must therefore be a valid address for the core. This
is only an issue if the GR1553B core is located on a AMBA- over-PCI bus, the address may need to be translated
from CPU accessible address to hardware accessible address.

Table 13.6. gr1553rt_bd_init next argument description

Values of next Description

0xffff Indicate to hardware that this is the last entry in the list, the next descriptor
is set to end-of-list mark (0x3).

0xfffe Next descriptor (entry_no+1) or 0 is last descriptor in list.

other The index of the next descriptor.

A negative number is returned on failure, on success a zero is returned.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 99

13.2.2.23. gr1553rt_bd_update

Manipulate and read the Control/Status and Data Pointer words of a descriptor.

If status is non-zero, the Control/Status word is swapped with the content pointed to by status.

If dptr is non-zero, the Data Pointer word is swapped with the content pointed to by dptr.

A negative number is returned on failure, on success a zero is returned.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 100

14. GR1553B Bus Monitor Driver

14.1. Introduction

This section describes the GRLIB GR1553B Bus Monitor (BM) device driver interface. The driver relies on the
GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

14.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supports any combination of the Bus Controller (BC), Bus Monitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BM functionality of the hardware, it can be used simultaneously
with the RT or BC functionality, but not both simultaneously. When the BM is used together with the RT or BC
interrupts are shared between the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

14.1.2. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 11.

14.2. User Interface

14.2.1. Overview

The BM software driver provides access to the BM core and help with accessing the BM log memory buffer. The
driver provides the services list below,

• Basic BM functionality (Enabling/Disabling, etc.)
• Filtering options
• Interrupt support (DMA Error, Timer Overflow)
• 1553 Timer handling
• Read BM log

The driver sources and definitions are listed in the table below, the path is given relative to the extracted distribution
archive.

Table 14.1. BM driver Source location

Filename Description

src/libdrv/src/gr1553b/gr1553bm.c GR1553B BM Driver source

src/libdrv/src/include/gr1553bm.h GR1553B BM Driver interface declaration

14.2.1.1. Accessing a BM device

In order to access a BM core a specific core must be identified (the driver support multiple devices). The core
is opened by calling gr1553bm_open(), the open function allocates a BM device by calling the lower level
GR1553B driver and initializes the BM by stopping all activity and disabling interrupts. After a BM has been
opened it can be configured gr1553bm_config_init() and then started by calling gr1553bm_start().
Once the BM is started the log is filled by hardware and interrupts may be generated. The logging can be stopped
by calling gr1553bm_stop().

When the application no longer needs to access the BM driver services, the BM is closed by calling
gr1553bm_close().

14.2.1.2. BM Log memory

The BM log memory is written by the BM hardware when transfers matching the filters are detected. Each com-
mand, Status and Data 16-bit word takes 64-bits of space in the log, into the first 32-bits the current 24-bit 1553

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 101

timer is written and to the second 32-bit word status, word type, Bus and the 16-bit data is written. See hardware
manual.

The BM log DMA-area can be dynamically allocated by the driver or assigned to a custom location by the user.
Assigning a custom address is typically useful when the GR1553B core is located on an AMBA-over-PCI bus
where memory accesses over the PCI bus will not satisfy the latency requirements by the 1553 bus, instead a
memory local to the BM core can be used to shorten the access time. Note that when providing custom addresses
the 8-byte alignment requirement of the GR1553B BM core must be obeyed. The memory areas are configured
using the gr1553bm_config() function.

14.2.1.3. Accessing the BM Log memory

The BM Log is filled as transfers are detected on the 1553 bus, if the log is not emptied in time the log may
overflow and data loss will occur. The BM log can be accessed with the functions listed below.

• gr1553bm_available()
• gr1553bm_read()

A custom handler responsible for copying the BM log can be assigned in the configuration of the driver. The
custom routine can be used to optimize the BM log read, for example one may not perhaps not want to copy all
entries, search the log for a specific event or compress the log before storing to another location.

14.2.1.4. Time

Th BM core has a 24-bit time counter with a programmable resolution through the
gr1553bm_config_init() function. The finest resolution is a microsecond. The BM driver maintains a 64-
bit 1553 time. The time can be used by an application that needs to be able to log for a long time. The driver must
detect every overflow in order maintain the correct 64-bit time, the driver gives users two different approaches.
Either the timer overflow interrupt is used or the user must guarantee to call the gr1553bm_time() function
at least once before the second time overflow happens. The timer overflow interrupt can be enabled from the
gr1553bm_config_init() function.

The current 64-bit time can be read by calling gr1553bm_time().

The application can determine the 64-bit time of every log entry by emptying the complete log at least once per
timer overflow.

14.2.1.5. Filtering

The BM core has support for filtering 1553 transfers. The filter options can be controlled by fields in the config-
uration structure given to gr1553bm_config_init().

14.2.1.6. Interrupt service

The BM core can interrupt the CPU on DMA errors and on Timer overflow. The DMA error is unmasked by the
driver and the Timer overflow interrupt is configurable. For the DMA error interrupt a custom handler may be
installed through the gr1553bm_config_init() function. On DMA error the BM logging will automatically
be stopped by a call to gr1553bm_stop() from within the ISR of the driver.

14.2.2. Application Programming Interface

The BM driver API consists of the functions in the table below.

Table 14.2. function prototypes

Prototype Description
void *gr1553bm_open(int minor) Open a BM device by instance number. Returns a handle identifying the

specific BM device opened. The handle is given as input parameter bm in
all other functions of the API

void gr1553bm_close(void *bm) Close a previously opened BM device

int gr1553bm_config_init(
 void *bm,
 struct gr1553bm_cfg *cfg)

Configure the BM device driver BM log DMA-memory

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 102

Prototype Description
int gr1553bm_config_alloc(
 void *bm,
 struct gr1553bm_cfg *cfg)

Configure the BM device driver and allocate BM log DMA-memory

void gr1553bm_config_free(void *bm)Free allocated memory

int gr1553bm_start(void *bm) Start BM logging, enables Interrupts

void gr1553bm_stop(void *bm) Stop BM logging, disables interrupts

void gr1553bm_time(
 void *bm,
 uint64_t *time)

Get 1553 64-bit Time maintained by the driver. The lowest 24-bits are tak-
en directly from the BM timer register, the most significant 40-bits are tak-
en from a software counter.

int gr1553bm_available(
 void *bm,
 int *nentries)

The current number of entries in the log is stored into nentries.

int gr1553bm_read(
 void *bm,
 struct gr1553bm_entry *dst,
 int *max)

Copy contents a maximum number (max) of entries from the BM log to
a user provided data buffer (dst). The actual number of entries copied is
stored into max.

14.2.2.1. Data structures

The gr1553bm_cfg data structure is used to configure the BM device and driver. The configuration parameters
are described in the table below.

struct gr1553bm_config {
 uint8_t time_resolution;
 int time_ovf_irq;
 unsigned int filt_error_options;
 unsigned int filt_rtadr;
 unsigned int filt_subadr;
 unsigned int filt_mc;
 unsigned int buffer_size;
 void *buffer_custom;
 bmcopy_func_t copy_func;
 void *copy_func_arg;
 bmisr_func_t dma_error_isr;
 void *dma_error_arg;
};

Table 14.3. gr1553bm_config member descriptions.

Member Description

time_resolution 8-bit time resolution, the BM will update the time according to this setting. 0 will make
the time tag be of highest resolution (no division), 1 will make the BM increment the time
tag once for two time ticks (div with 2), etc.

time_ovf_irq Enable Time Overflow IRQ handling. Setting this to 1 makes the driver to update the 64-
bit time by it self, it will use time overflow IRQ to detect when the 64-bit time counter
must be incremented. If set to zero, the driver expect the user to call gr1553bm_time()
regularly, it must be called more often than the time overflows to avoid an incorrect time.

filt_error_options Bus error log options:

bit0,4-31 = reserved, set to zero Bit1 = Enables logging of Invalid mode code errors Bit2
= Enables logging of Unexpected Data errors Bit3 = Enables logging of Manchester/pari-
tyerrors

filt_rtadr RT Subaddress filtering bit mask, bit definition:

31: Enables logging of mode commands on subadr 31 1..30: BitN enables/disables log-
ging of RT subadr N 0: Enables logging of mode commands on subadr 0

filt_mc Mode code Filter, is written into "BM RT Mode code filter" register, please see hardware
manual for bit declarations.

buffer_size Size of buffer in bytes, must be aligned to 8-byte boundary.

buffer_custom Custom BM log buffer location, must be aligned to 8-byte and be of buffer_size length. If
NULL dynamic memory allocation is used.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 103

Member Description

copy_func Custom Copy function, may be used to implement a more effective/ custom way of copy-
ing the DMA buffer. For example the DMA log may need to processed at the same time
when copying.

copy_func_arg Optional Custom Data passed onto copy_func()

dma_error_isr Custom DMA error function, note that this function is called from Interrupt Context. Set
to NULL to disable this callback.

dma_error_arg COptional Custom Data passed on to dma_error_isr()

struct gr1553bm_entry {
 uint32_t time;
 uint32_t data;
};

Table 14.4. gr1553bm_entry member descriptions.

Member Description

time Time of word transfer entry. Bit31=1, bit 30..24=0, bit 23..0=time

data Transfer status and data word

Bits Description

31 Zero

30..20 Zero

19 0=BusA, 1=BusB

18..17 Word Status: 00=Ok, 01=Manch-
ester error, 10=Parity error

16 Word type: 0=Data, 1=Command/
Status

15..0 16-bit Data on detected on bus

14.2.2.2. gr1553bm_open

Opens a GR1553B BM device identified by instance number, minor. The instance number is determined by the
order in which GR1553B cores with BM functionality are found, the order of the Plug & Play.

A handle is returned identifying the opened BM device, the handle is used internally by the driver, it is used as an
input parameter bm to all other functions that manipulate the hardware.

This function initializes the BM hardware to a stopped/disable level.

14.2.2.3. gr1553bm_close

Close and Stop a BM device identified by input argument bm previously returned by gr1553bm_open().

14.2.2.4. gr1553bm_config_init

Configure the log DMA-memory for a BM device. The configuration parameters are stored in the location point-
ed to by cfg. The layout of the parameters must follow the gr1553bm_config data structure, described in
Table 14.3.

This function will not allocate any memory. Replace this function call with gr1553bm_config_alloc() if you want
the driver to allocate memory. If BM device is started or any of the data pointers are NULL, then this function
will return a negative result. On success zero is returned.

14.2.2.5. gr1553bm_config_alloc

Configure and allocate the log DMA-memory for a BM device. The configuration parameters are stored in the
location pointed to by cfg. The layout of the parameters must follow the gr1553bm_config data structure,
described in Table 14.3.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 104

If BM device is started or memory allocation fails (in case of dynamic memory allocation), then this function will
return a negative result. On success zero is returned.

14.2.2.6. gr1553bm_config_free

Free allocated memory.

14.2.2.7. gr1553bm_start

Starts 1553 logging by enabling the core and enabling interrupts. The user must have configured the driver (log
buffer, timer, filtering, etc.) before calling this function.

After the BM has been started the configuration function can not be called.

On success this function returns zero, on failure a negative result is returned.

14.2.2.8. gr1553bm_stop

Stops 1553 logging by disabling the core and disabling interrupts. Further 1553 transfers will be ignored.

14.2.2.9. gr1553bm_time

This function reads the driver's internal 64-bit 1553 Time. The low 24-bit time is acquired from BM hardware,
the MSB is taken from a software counter internal to the driver. The counter is incremented every time the Time
overflows by:

• using "Time overflow" IRQ if enabled in user configuration
• by checking "Time overflow" IRQ flag (IRQ is disabled), it is required that user calls this function before

the next timer overflow. The software can not distinguish between one or two timer overflows. This function
will check the overflow flag and increment the driver internal time if overflow has occurred since last call.

This function update software time counters and store the current time into the address indicated by the argument
time.

14.2.2.10. gr1553bm_available

Copy up to max number of entries from BM log into the address specified by dst. The actual number of entries
read is returned in the location of max (zero when no entries available). The max argument is thus in/out. It is
important to read out the log entries in time to avoid data loss, the log can be sized so that data loss can be avoided.

Zero is returned on success, on failure a negative number is returned.

14.2.2.11. gr1553bm_read

Copy up to max number of entries from BM log into the address specified by dst. The actual number of entries
read is returned in the location of max (zero when no entries available). The max argument is thus in/out. It is
important to read out the log entries in time to avoid data loss, the log can be sized so that data loss can be avoided.

Zero is returned on success, on failure a negative number is returned.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 105

15. GR716 memory protection unit driver

15.1. Introduction

This section describes the driver used to control the two memory protection units (MEMPROT) available in
GR716.

15.1.1. User Interface

This section covers how the driver can be interfaced to an application to control the MEMPROT hardware.

Controlling the driver and device is done with functions provided by the driver prefixed with memprot_. All
driver functions take a device handle returned by memprot_open as the first parameter. All supported functions
and their data structures are defined in the driver's header file drv/memprot.h.

15.1.2. Features

• Global enable and disable
• Per-segment configuration
• Automatic locking and unlocking

15.1.3. Limitations

The GR716 master-to-APB grant interface is not directly supported by the driver. Register structures definitions
are available in the header file.

15.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 5.

Table 15.1. Driver registration functions

Registration method Function

Register one device memprot_register()

Register many devices memprot_init()

15.3. Examples

Examples are available in the src/libdrv/examples directory in the Zephyr distribution.

15.4. Opening and closing device

A MEMPROT device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using memprot_dev_count. A particular device can be
opened using memprot_open and closed memprot_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by all MEMPROT devices on opening and closing. It is assumed that at most
one thread operates on one MEMPROT device at a time.

During opening of a MEMPROT device the following steps are taken:

• The device is marked opened to protect the caller from other users of the same device.
• Internal data structures are initialized.
• The device is locked using the PCR.PROT field.

The example below prints the number of MEMPROT devices to screen then opens and closes the first MEMPROT
device present in the system.

int print_memprot_devices(void)
{
 struct memprot_priv *device;
 int count;

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 106

 count = memprot_dev_count();
 printf("%d MEMPROT device(s) present\n", count);

 device = memprot_open(0);
 if (!device) {
 return -1; /* Failure */
 }

 memprot_close(device);
 return 0; /* success */
}

Table 15.2. memprot_dev_count function declaration

Proto int memprot_dev_count(void)

About Retrieve number of devices registered to the driver.

Return int. Number of devices registered in system, zero if none.

Table 15.3. memprot_open function declaration

Proto struct memprot_priv *memprot_open(int dev_no)

About Opens a MEMPROT device. The device is identified by index. The returned value is used as input ar-
gument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by memprot_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which MEMPROT device.

Table 15.4. memprot_close function declaration

Proto int memprot_close(struct memprot_priv *d)

About Closes a previously opened device.

d [IN] pointerParam

Device identifier. Returned from memprot_open.

Return int. DRV_OK

Memory protection configuration is not changed by the open and close functions. In particular, memory pro-
tection is not disabled by close.

15.5. Operation mode

The driver always operates in one of two modes: started or stopped,

This translates directly to whether the memory protection unit is enabled or disabled.

• Started is equivalent to PCR.EN=1. It means that the memory protection unit is enabled.
• Stopped is equivalent to PCR.EN=0. It means that the memory protection unit is disabled.

All API functions are available in both operation modes.

15.5.1. Starting and stopping

The memprot_start() function places the driver in started mode. The function memprot_stop() makes
the driver core leave the started mode and enter stopped mode. memprot_isstarted() is used to determine
the driver operation mode.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 107

Table 15.5. memprot_start function declaration

Proto int memprot_start(struct memprot_priv *priv)

About Start driver.

d [IN] pointerParam

Device handle returned by memprot_open.

int.

Value Description

DRV_OK Device was started by the function call.

Return

DRV_BUSY Device already in started mode. Nothing performed.

Table 15.6. memprot_stop function declaration

Proto int memprot_stop(struct memprot_priv *priv)

About Stop driver.

d [IN] pointerParam

Device handle returned by memprot_open.

int.

Value Description

DRV_OK Device was stopped by the function call.

Return

DRV_BUSY Device already in stopped mode. Nothing performed.

Table 15.7. memprot_isstarted function declaration

Proto int memprot_isstarted(struct memprot_priv *d)

About Get current MEMPROT driver running state

d [IN] PointerParam

Device identifier. Returned by memprot_open.

int. Status

Value Description

0 Stopped

Return

1 Started

15.6. Reset

Opening the driver does not change any of the units configuration. To reset the memory protection unit to a known
accept-all state, the function memprot_reset() can be used.

Table 15.8. memprot_reset function declaration

Proto int memprot_reset(struct memprot_priv *d)

About Reset memory protection unit.

This function disables the unit and disables all segment configurations.

d [IN] PointerParam

Device identifier. Returned by memprot_open.

Return int. DRV_OK

15.7. Segment configuration

15.7.1. Number of segments

The number of implemented segments can be retrieved with the function memprot_nseg().

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 108

Table 15.9. memprot_nseg function declaration

Proto int memprot_nseg(struct memprot_priv *d)

About Retrieve number of implemented memory segments for memory protection device.

d [IN] PointerParam

Device identifier. Returned by memprot_open.

Return int. Number of memory segments supported. This is the value of the constant register field
PCR.NSGEG.

15.7.2. Data structures

struct memprot_seginfo is used by the application to describe individual memory protection segments.
The structure is available in drv/memprot.h and describes how the driver shall configure the segment.

/* User representation of one memory protection segment */
struct memprot_seginfo{
 uintptr_t start;
 uintptr_t end;
 uint32_t g;
 int en;
};

Table 15.10. memprot_seginfo data structure declaration

start Start address

end End address

Exclusive write grant Gi. This is a bit mask. See GR716-DS-UM for bit definitions of Gi.

Bit Description

0 G0 - Grant master 0 exclusive write access.

1 G1 - Grant master 1 exclusive write access.

g

i Gi - Grant master i exclusive write access.

Disable or enable segment.

Value Description

0 Disable this segment.

en

1 Enable this segment.

15.7.3. Set

An individual memory segment can be configured by calling the function memprot_set() with a user supplied
as struct memprot_seginfo parameter. The following example configures segment 2.

 struct memprot_seginfo si;
 si.start = 0x80004000;
 si.end = 0x800040ff;
 si.g = 1 << 2;
 si.en = 1;

 memprot_reset(dev);
 memprot_set(dev, 2, &si);
 memprot_start(dev);

For any segment configuration to be in effect, the device must be in started operation mode.

Closing the driver does not cancel the configured memory protections.

Table 15.11. memprot_set function declaration

Proto int memprot_set(struct memprot_priv *d, int segment, const struct
memprot_seginfo *seginfo)

About Configure a memory protection segment.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 109

The information contained in the seginfo is installed in the hardware registers corresponding to the
segment number.

d [IN] PointerParam

Device identifier. Returned by memprot_open.

segment [IN] IntegerParam

Target segment number.

Must be in the range 0 to memprot_nseg()-1.

seginfo [IN] PointerParam

User representation of segment configuration.

Return int. DRV_OK

15.7.4. Get

Memory protection segments can be read back from hardware into a struct memprot_seginfo record with
the function memprot_get(). Everything in the record is qualified with the en field.

Protection segments are not affected when opening the driver which means that the previous configuration can
be read out.

Table 15.12. memprot_get function declaration

Proto int memprot_get(struct memprot_priv *d, int segment, struct
memprot_seginfo *seginfo)

About Read back memory protection segment configuration from hardware.

The configuration contained in the hardware registers corresponding segment indexed by segment is
read back and written to the seginfo.

d [IN] PointerParam

Device identifier. Returned by memprot_open.

segment [IN] IntegerParam

Target segment number.

Must be in the range 0 to memprot_nseg()-1.

seginfo [OUT] PointerParam

User representation of segment configuration.

Return int. DRV_OK

15.7.4.1. Example

The following example function printall() prints information on all memory protection segment of a partic-
ular device. In addition to the en field, isstarted() can be used as a global qualifier to determine if a segment
is in effect.

static void printsi(const struct memprot_seginfo *si)
{
 printf(" start = %08x\n", (unsigned) si->start);
 printf(" end = %08x\n", (unsigned) si->end);
 printf(" g = %08x\n", (unsigned) si->g);
 printf(" en = %d (%s)\n", si->en, si->en ? "enabled" : "disabled");
}

void printall(struct memprot_priv *dev)
{
 const int nseg = memprot_nseg(dev);
 for (int i = 0; i < nseg; i++) {
 struct memprot_seginfo si;
 printf("SEGMENT %d\n", i);
 memprot_get(dev, i, &si);
 printsi(&si);
 puts("");

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 110

 }
}

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 111

16. Memory scrubber

16.1. Introduction

This section describes the Memory Scrubber (MEMSCRUB) driver for SPARC/LEON processors.

16.1.1. Hardware Support

The MEMSCRUB core hardware interface is documented in the GRIP Core User's manual. The MEMSCRUB
core is used to monitor the memory AHB bus and can be programmed to scrub a memory area.

16.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the driver source tree
src/libdrv.

Table 16.1. MEMSCRUB driver source location

Location Description

src/include/drv/memscrub.h MEMSCRUB user interface definition

src/memscrub MEMSCRUB driver implementation

16.1.3. Examples

There is an example available that uses the MEMSCRUB driver to scrub a memory area and log the different
events. The example is part of the driver distribution, it can be found under examples/memscrub.

16.2. Software design overview

The driver provides a function interface, an API, to the user.

The API is not designed for multi-threading, i.e. multiple threads operating on the driver independently. The
driver does not contain any lock or protection for SMP environments. Changing the MEMSCRUB configuration
is not intended to be done extensively at runtime or independently of the rest of the system, since it usually has
a system-level impact. Therefore the user must take care of any impact that the different actions might have on
other parts of the system (such as threads, CPUs, DMAs, ...).

16.2.1. Driver usage

The driver provides a set of functions that allow to start and stop the scrubber in different modes. The first step is
to setup the memory range (or memory ranges) in which the scrubber is going to act (see Section 16.3.3).

After setting up the range we can start the scrubber in one of the three modes available (see Section 16.3.4):

• Init mode: Initialize the memory area.
• Scrub mode: Scrub the memory area.
• Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for

correcting many errors.

Note that scrub and regen mode can be changed on the fly.

The driver provides functions to check if the scrubber is active and to stop it (see Section 16.3.4).

When dealing with errors, the drivers provides two different interfaces:

• Interrupts (see Section 16.3.6): Allows the user to install an Interrupt Service Routine (ISR) that will be exe-
cuted whenever an error exceeds its corresponding threshold. Also the MEMSCRUB core allows to generate
an interrupt when its done.

• Polling (see Section 16.3.7): Allows the user to poll the error status to check if an error have occurred.

Only one of these interfaces can be used at a given time.

The different errors that the MEMSCRUB can report are:

• AHB correctable error.
• AHB uncorrectable error.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 112

• Scrubber run count errors.
• Scrubber block count errors.

There are functions that allow to configure the error count thresholds for each type of error individually (see
Section 16.3.5). When the error count for a certain type exceeds the threshold, the error status is updated and an
interrupt is generated. If a threshold is disabled, the error status is not updated and no interrupt is generated.

16.3. Memory scrubber user interface

16.3.1. Return values

 MEMSCRUB_ERR_OK
 MEMSCRUB_ERR_EINVAL
 MEMSCRUB_ERR_ERROR

All the driver function calls return the following values when an error occurred:

• MEMSCRUB_ERR_OK - Successful execution.
• MEMSCRUB_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
• MEMSCRUB_ERR_ERROR - Internal error. Can have different causes.

16.3.2. Opening and closing device

A MEMSCRUB device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using memscrub_dev_count. A particular device can be
opened using memscrub_open and closed memscrub_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal_ldstub
from the OSAL. Protection is used by all MEMSCRUB devices on opening and closing. It is assumed that at most
one thread operates on one MEMSCRUB device at a time.

During opening of a MEMSCRUB device the following steps are taken:

• The device is marked opened to protect the caller from other users of the same device.
• Internal data structures are initialized.
• Error and interrupt status is cleared.

The example below prints the number of MEMSCRUB devices to standard output. It then opens and closes the
first MEMSCRUB device present in the system.

int print_memscrub_devices(void)
{
 struct memscrub_priv *device;
 int count;

 count = memscrub_dev_count();
 printf("%d MEMPROT device(s) present\n", count);

 device = memscrub_open(0);
 if (!device) {
 return -1; /* Failure */
 }

 memscrub_close(device);
 return 0; /* success */
}

Table 16.2. memscrub_dev_count function declaration

Proto int memscrub_dev_count(void)

About Retrieve number of devices registered to the driver.

Return int. Number of devices registered in system, zero if none.

Table 16.3. memscrub_open function declaration

Proto struct memscrub_priv *memscrub_open(int dev_no)

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 113

About Opens a MEMSCRUB device. The device is identified by index. The returned value is used as input
argument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by memscrub_dev_count.

Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which MEMPROT device.

Table 16.4. memscrub_close function declaration

Proto int memscrub_close(struct memscrub_priv *d)

About Closes a previously opened device.

d [IN] pointerParam

Device identifier. Returned from memscrub_open.

Return int. MEMSCRUB_ERR_OK

Hardware configuration is not changed by the memscrub_open() function, apart from clearing the error
and interrupt status at open. memscrub_close() does not change the current hardware configuration.

16.3.3. Configuring the memory range

 int memscrub_range_set(struct memscrub_priv *priv, uint32_t start, uint32_t end)
 int memscrub_range_get(struct memscrub_priv *priv, uint32_t * start, uint32_t * end)
 int memscrub_secondary_range_set(struct memscrub_priv *priv, uint32_t start, uint32_t end)
 int memscrub_secondary_range_get(struct memscrub_priv *priv, uint32_t * start, uint32_t * end)
 int memscrub_scrub_position(struct memscrub_priv *priv, uint32_t * position)

The driver uses these functions to setup the primary and secondary memory ranges of the MEMSCRUB core. The
scrubber will act on the range from address start to end, both inclusive.

The position function shows the actual position of the MEMSCRUB within the memory range.

These functions return a negative value if something went wrong, as explained in Section 16.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 16.5. memscrub_range_set function declaration

Proto int memscrub_range_set(struct memscrub_priv *priv, uint32_t start,
uint32_t end)

About Set the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 16.3.3.

start [IN] IntegerParam

32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] IntegerParam

32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.6. memscrub_range_get function declaration

Proto int memscrub_range_get(struct memscrub_priv *priv, uint32_t *
start, uint32_t * end)

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 114

About Get the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 16.3.3.

start [IN] PointerParam

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] PointerParam

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.7. memscrub_secondary_range_set function declaration

Proto int memscrub_secondary_range_set(struct memscrub_priv *priv,
uint32_t start, uint32_t end)

About Set the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 16.3.3.

start [IN] IntegerParam

32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] IntegerParam

32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.8. memscrub_secondary_range_get function declaration

Proto int memscrub_secondary_range_get(struct memscrub_priv *priv,
uint32_t * start, uint32_t * end)

About Get the secondary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dresses start and end, both inclusive. See Section 16.3.3.

start [IN] PointerParam

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0’.

end [IN] PointerParam

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.9. memscrub_scrub_position function declaration

Proto int memscrub_scrub_position(struct memscrub_priv *priv, uint32_t *
position)

About Get the position of the scrubber within the memory range. See Section 16.3.3.

position [IN] PointerParam

Pointer to the 32-bit position address.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

16.3.4. Starting/stopping different modes.

 int memscrub_init_start(struct memscrub_priv *priv, uint32_t value, uint8_t delay, int options)
 int memscrub_scrub_start(struct memscrub_priv *priv, uint8_t delay, int options)
 int memscrub_regen_start(struct memscrub_priv *priv, uint8_t delay, int options)
 int memscrub_stop(struct memscrub_priv *priv)
 int memscrub_active(struct memscrub_priv *priv)

The driver uses these functions to start or stop the different modes of the MEMSCRUB core:

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 115

• Init mode: Initialize the memory area.
• Scrub mode: Scrub the memory area.
• Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for

correcting many errors.

All the modes act on the configured memory range (see Section 16.3.3).

The active functions checks if the scrubber is currently running.

These functions return a negative value if something went wrong, as explained in Section 16.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 16.10. memscrub_init_start function declaration

Proto int memscrub_init_start(struct memscrub_priv *priv, uint32_t value,
uint8_t delay, int options)

About Start the initialization mode of the scrubber. See Section 16.3.4.

value [IN] IntegerParam

32-bit value to be written into each memory position.

delay [IN] IntegerParam

8-bit delay value. Processor cycles delay time between processed blocks.

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.

MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).

MEMSCRUB_OPTIONS_EXTERNALSTART_ENABLE Enable external start.

MEMSCRUB_OPTIONS_EXTERNALSTART_DISABLE Disable external start (de-
fault).

MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.

MEMSCRUB_OPTIONS_LOOPMODE_DISABLE Disable loop mode (default).

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE Enable secondary memory
range.

Param

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE Disable secondary memory
range (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.11. memscrub_scrub_start function declaration

Proto int memscrub_scrub_start(struct memscrub_priv *priv, uint8_t delay,
int options)

About Start the scrubbing mode of the scrubber. See Section 16.3.4.

delay [IN] IntegerParam

8-bit delay value. Processor cycles delay time between processed blocks.

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.

Param

MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 116

MEMSCRUB_OPTIONS_EXTERNALSTART_ENABLE Enable external start.

MEMSCRUB_OPTIONS_EXTERNALSTART_DISABLE Disable external start (de-
fault).

MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.

MEMSCRUB_OPTIONS_LOOPMODE_DISABLE Disable loop mode (default).

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE Enable secondary memory
range.

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE Disable secondary memory
range (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.12. memscrub_regen_start function declaration

Proto int memscrub_regen_start(struct memscrub_priv *priv, uint8_t delay,
int options)

About Start the regeneration mode of the scrubber. See Section 16.3.4.

delay [IN] IntegerParam

8-bit delay value. Processor cycles delay time between processed blocks.

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.

MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).

MEMSCRUB_OPTIONS_EXTERNALSTART_ENABLE Enable external start.

MEMSCRUB_OPTIONS_EXTERNALSTART_DISABLE Disable external start (de-
fault).

MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.

MEMSCRUB_OPTIONS_LOOPMODE_DISABLE Disable loop mode (default).

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE Enable secondary memory
range.

Param

MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE Disable secondary memory
range (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.13. memscrub_stop function declaration

Proto int memscrub_stop(struct memscrub_priv *priv)

About Stop the scrubber. See Section 16.3.4.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.14. memscrub_active function declaration

Proto int memscrub_active(struct memscrub_priv *priv)

About Returns the active status of the scrubber. When the scrubber is active, it returns a non-zero positive
value. When the scrubber is stopped, it returns zero. See Section 16.3.4.

Return int. Positive value when successful. Otherwise, returns a negative value if something went wrong, as
explained in Section 16.3.1.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 117

16.3.5. Setting up error thresholds

 int memscrub_ahberror_setup(struct memscrub_priv *priv, int uethres, int cethres, int options)
 int memscrub_scruberror_setup(struct memscrub_priv *priv, int blkthres, int runthres, int options)

The driver uses these functions to setup the thresholds for AHB and scrub errors respectively. The following
thresholds can be enabled or disabled:

• AHB correctable error.
• AHB uncorrectable error.
• Scrubber run count errors.
• Scrubber block count errors.

If a threshold is disabled, no error status or interrupt will be generated for that type of error. If a threshold is
enabled, the error status or interrupt will be triggered when the error count exceeds the threshold value.

These functions return a negative value if something went wrong, as explained in Section 16.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 16.15. memscrub_ahberror_setup function declaration

Proto int memscrub_ahberror_setup(struct memscrub_priv *priv, int
uethres, int cethres, int options)

About Setup the AHB correctable and uncorrectable error thresholds for the MEMSCRUB core. See Sec-
tion 16.3.5.

uethres [IN] IntegerParam

AHB uncorrectable error threshold value (only 8 LSB used).

cethres [IN] IntegerParam

AHB correctable error threshold value (only 10 LSB used).

options [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS_AHBERROR_CORTHRES_ENABLE Enable AHB correctable er-
ror threshold.

MEMSCRUB_OPTIONS_AHBERROR_CORTHRES_DISABLE Disable AHB correctable
error threshold (default).

MEMSCRUB_OPTIONS_AHBERROR_UNCORTHRES_ENABLE Enable AHB uncorrectable
error threshold.

Param

MEMSCRUB_OPTIONS_AHBERROR_UNCORTHRES_DISABLE Disable AHB uncorrectable
error threshold (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.16. memscrub_scruberror_setup function declaration

Proto int memscrub_scruberror_setup(struct memscrub_priv *priv, int blk-
thres, int runthres, int options)

About Setup the scrubber run and block count error thresholds for the MEMSCRUB core. See Sec-
tion 16.3.5.

blkthres [IN] IntegerParam

Block count error threshold value (only 8 LSB used).

runthres [IN] IntegerParam

Run count error threshold value (only 10 LSB used).

Param options [IN] Integer

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 118

Options.

Value Description

MEMSCRUB_OPTIONS_SCRUBERROR_RUNTHRES_ENABLE Enable run count error
threshold.

MEMSCRUB_OPTIONS_SCRUBERROR_RUNTHRES_DISABLE Disable run count error
threshold (default).

MEMSCRUB_OPTIONS_SCRUBERROR_BLOCKTHRES_ENABLE Enable block count error
threshold.

MEMSCRUB_OPTIONS_SCRUBERROR_BLOCKTHRES_DISABLE Disable block count error
threshold (default).

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

16.3.6. Registering an ISR

 typedef void (*memscrub_isr_t) (
 void *arg,
 uint32_t ahbaccess,
 uint32_t ahbstatus,
 uint32_t scrubstatus
)
 int memscrub_isr_register(struct memscrub_priv *priv, memscrub_isr_t isr, void * data)
 int memscrub_isr_unregister(struct memscrub_priv *priv)

The driver uses these functions to register and unregister an ISR for error interrupts. When registering an ISR, in-
terrupts are enabled. To set the error thresholds that trigger interrupts use the functions described in Section 16.3.5.

These functions return a negative value if something went wrong, as explained in Section 16.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 16.17. memscrub_isr_register function declaration

Proto int memscrub_isr_register(struct memscrub_priv *priv,
memscrub_isr_t isr, void * arg)

About Registers an ISR for the MEMSCRUB core. See Section 16.3.6.

isr [IN] PointerParam

The ISR function pointer.

arg [IN] PointerParam

The ISR argument pointer.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.18. memscrub_isr_unregister function declaration

Proto int memscrub_isr_unregister(struct memscrub_priv *priv)

About Unregisters an ISR for the MEMSCRUB core. See Section 16.3.6.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

16.3.7. Polling the error status

 int memscrub_error_status(struct memscrub_priv *priv, uint32_t * ahbaccess, uint32_t * ahbstatus, uint32_t * scrubstatus)

The driver uses this function to poll the error status and clear the error status in case an error is found. To set the
error thresholds that trigger error status use the functions described in Section 16.3.5.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 119

This function returns a negative value if something went wrong, as explained in Section 16.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 16.19. memscrub_error_status function declaration

Proto int memscrub_error_status(struct memscrub_priv *priv, uint32_t *
ahbaccess, uint32_t * ahbstatus, uint32_t * scrubstatus)

About Poll the state of the error status registers. Returns the status registers and the AHB failing access reg-
ister. If a error has been detected the function automatically clears the status in order to catch new er-
rors. See Section 16.3.7.

ahbaccess [OUT] PointerParam

The value pointed will be updated with the AHB failing access.

ahbstatus [OUT] PointerParam

The value pointed will be updated with the AHB error status register content.

scrubstatus [OUT] PointerParam

The value pointed will be updated with the scrub error status register content.

Return int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

16.4. API reference

This section lists all functions part of the MEMSCRUB driver API, and in which section(s) they are described.
The API is also documented in the source header file of the driver, see Section 16.1.2.

Table 16.20. MEMSCRUB function reference

Prototype Section

int memscrub_range_get(struct memscrub_priv *priv, uint32_t *start,
uint32_t *end)

16.3.3

int memscrub_range_set(struct memscrub_priv *priv, uint32_t start,
uint32_t end)

16.3.3

int memscrub_secondary_range_get(struct memscrub_priv *priv,
uint32_t *start, uint32_t *end)

16.3.3

int memscrub_secondary_range_set(struct memscrub_priv *priv,
uint32_t start, uint32_t end)

16.3.3

int memscrub_scrub_position(struct memscrub_priv *priv, uint32_t
*position)

16.3.3

int memscrub_init_start(struct memscrub_priv *priv, uint32_t value,
uint8_t delay, int options)

16.3.4

int memscrub_scrub_start(struct memscrub_priv *priv, uint8_t delay,
int options)

16.3.4

int memscrub_regen_start(struct memscrub_priv *priv, uint8_t delay,
int options)

16.3.4

int memscrub_stop(struct memscrub_priv *priv) 16.3.4

int memscrub_active(struct memscrub_priv *priv) 16.3.4

int memscrub_ahberror_setup(struct memscrub_priv *priv, int
uethres, int cethres, int options)

16.3.5

int memscrub_scruberror_setup(struct memscrub_priv *priv, int blk-
thres, int runthres, int options)

16.3.5

int memscrub_isr_register(struct memscrub_priv *priv,
memscrub_isr_t isr, void * data)

16.3.6

int memscrub_isr_unregister(struct memscrub_priv *priv) 16.3.6

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 120

Prototype Section

int memscrub_error_status(struct memscrub_priv *priv, uint32_t *ah-
baccess, uint32_t *ahbstatus, uint32_t *scrubstatus)

16.3.7

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 121

17. SpaceWire Router Driver

17.1. Introduction

The SpaceWire router connects external SpaceWire ports and internal AMBA ports together using a non-blocking
switch matrix which can connect any input port to any output port. A single routing table is used for the whole
router. This chapter describes the API used configure the router. The AMBA port interfaces are controlled by the
SpaceWire driver (Chapter 6).

17.2. Driver sources

The driver sources and definitions are listed in Table 17.1. The path is given relative to the driver source tree at
src/libdrv.

Table 17.1. SpaceWire Router driver source location

Location Description

src/include/drv/grspwrouter.h SpaceWire Router driver interface

src/grspwrouter SpaceWire Router driver implementation

17.3. Routing

Packets can enter into the router from either the external SpaceWire ports or the internal AMBA ports. The router
looks at the first byte of the packet, the destination address, to determine where the package shall be routed. If it
is below 32, it is treated as a physical address and will be routed to either a SpaceWire port, an AMBA port, or
be spilled if there is no port available at the address. For logical addresses (32 and above), the router needs to be
provided route information to know to which port the packet shall be routed.

It is also possible to configure the router to do static routing, where all incoming packets on a specific port are
routed to a specific output port, regardless of the destination address in the packet.

When routing a packet, the router can be instructed to drop the address byte (called header deletion). This can for
example be used to do path addressing, where the packet starts with the entire path through the network and the
first address in the path is dropped after every link to reveal the next step in the path.

17.4. Register and access driver

This driver uses the driver registration mechanism described in Chapter 5.

Table 17.2. grspwrouter_autoinit function declaration

Name grspwrouter_autoinit()

Proto int grspwrouter_autoinit()

About Register SpaceWire router devices using Plug-n-Play

Registers any available SpaceWire router devices and returns the number of devices found.

Return int - The number of devices found and registered

Table 17.3. grspwrouter_register function declaration

Name grspwrouter_register()

Proto drvret grspwrouter_register(struct grspwrouter_devcfg * devcfg)

About Manually register a single SpaceWire router device

The configuration must include the location of the register area and the interrupt number in de-
vcfg->regs. The devcfg->dev member is used be the driver to store information. The memo-
ry used by the devcfg argument must never be freed.

Param devcfg - [in] - Settings defining the router device

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 122

Name grspwrouter_register()

Return drvret - DRV_OK on success

When the driver has been registered a device can be accessed by calling grspwrouter_open(). The function
needs to be provided the system and SpaceWire frequency (in MHz) to be able to configure the scalers used to set
up the correct link rate used for initialisation and optional timeouts. The function will configure the timer prescaler
so that all router timers operate at 10KHz. This is done to be able to set reasonable timeout values using the API.

Table 17.4. grspwrouter_open function declaration

Name grspwrouter_open()

Proto grspwrouter_dev * grspwrouter_open(uint32_t index, uint32_t
spw_freq, int32_t sys_freq)

About Initialize handle to SpaceWire router driver

This function returns a handle to SpaceWire router driver for the device specified by index.

The spw_freq argument shall specify the SpaceWire clock frequency (in MHz) provided to the
router. This value is used to configure the initialization bit rate for the all the SpaceWire links. It is
also used by grspwrouter_port_link_start to set the run state speed of individual links.
Use the value 0 to keep the existing value.

The sys_freq arguments shall specify the system clock frequency (in MHz). This value is used to
configure the various timeout functionality provided by the router. This function will set the timer
scaler so that all timers run at 10KHz. Use the value 0 to keep the existing value.

For the GR740 the default internal SpaceWire clock frequency is 400MHz. This corresponds to an
external clock frequency for a SPW_CLK of 50 MHz if the default PLL configuration of 8x is used.

Param index - Index of the SpaceWire router device

Param spw_freq - SpaceWire clock frequency

Param sys_freq - System clock frequency

Return grspwrouter_dev *
• grspwrouter_dev - on success
• NULL - if no device with the provided index, or if already opened

Table 17.5. grspwrouter_close function declaration

Name grspwrouter_close()

Proto drvret grspwrouter_close(grspwrouter_dev * dev)

About Closes a previously opened device

The provided handle must have been previously opened by grspwrouter_open().

Param dev - [in] - A valid device handle

Return drvret
• DRV_OK - on success
• DRV_INVAL - if not previously opened by grspwrouter_open

17.5. Setup routing table

The router looks at the address of each incoming packet and uses that as an index in a routing table with
information on where to route the packet. The routing information for a specific address is set using the
grspwrouter_route_set(). It is possible to specify one or multiple target ports.

For each route it is possible to set the following options:

• Enable/disable header deletion

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 123

• Spill or wait if output port's link interface is not in run-state
• Set normal / high priority
• Enable packet distribution or group adaptive

Table 17.6. grspwrouter_route_set function declaration

Name grspwrouter_route_set()

Proto drvret grspwrouter_route_set(grspwrouter_dev * dev, uint8_t ad-
dress, uint32_t to_mask, bool header_deletion, bool spill_packet,
uint32_t options)

About Set up a route for incoming packets based on destination address

Incoming packets with the destination address address will be routed to the first available output
port of the ones specified in the to_mask. If packet distribution has been enabled the same packet
will be sent on all specified output ports.

The to_mask argument can be built using a mask where each bit index corresponds to the
SpaceWire port with the same index. The GRSPWROUTER_PORT() define can be used for this:

to_mask = GRSPWROUTER_PORT(3) | GRSPWROUTER_PORT(4)

On the GR740 the following defines can be used:

• AMBA port 0 (GRSPWROUTER_GR740_AMBA_0)
• AMBA port 1 (GRSPWROUTER_GR740_AMBA_1)
• AMBA port 2 (GRSPWROUTER_GR740_AMBA_2)
• AMBA port 3 (GRSPWROUTER_GR740_AMBA_3)
• SpaceWire port 1 (GRSPWROUTER_GR740_SPW_1)
• SpaceWire port 2 (GRSPWROUTER_GR740_SPW_2)
• SpaceWire port 3 (GRSPWROUTER_GR740_SPW_3)
• SpaceWire port 4 (GRSPWROUTER_GR740_SPW_4)
• SpaceWire port 5 (GRSPWROUTER_GR740_SPW_5)
• SpaceWire port 6 (GRSPWROUTER_GR740_SPW_6)
• SpaceWire port 7 (GRSPWROUTER_GR740_SPW_7)
• SpaceWire port 8 (GRSPWROUTER_GR740_SPW_8)

Packets sent to the AMBA ports are handled by the SpaceWire driver.

The router can be configured to automatically remove the first byte of the packet, the byte that con-
tains the destination address. This is called header deletion.

If the output port's link interface is not in run-state the router can be ordered to wait until the link is
up or to spill the packet.

The options argument can be built by or:ing the following defines:

• Set high priority when more than one packet is competing for the same output port
(GRSPWROUTER_ROUTE_PRIORITY)

• Enable packet distribution (default group adaptive) (GRSPWROUTER_PACKET_DIST)

Param dev - [in] - Valid router device handle

Param address - Route incoming packets with this destination address

Param to_mask - Route packets to these output ports

Param header_deletion - Remove the first byte of the packet when routing it

Param spill_packet - Spill the packet if the output port's link interface is not in run-state

Param options - Enable high priority (GRSPWROUTER_ROUTE_PRIORITY) and/or packet distribu-
tion (GRSPWROUTER_PACKET_DIST)

Return drvret
• DRV_OK - on success

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 124

Name grspwrouter_route_set()

• DRV_INVAL - if address is 0

Table 17.7. grspwrouter_route_disable function declaration

Name grspwrouter_route_disable()

Proto drvret grspwrouter_route_disable(grspwrouter_dev * dev, uint8_t
address)

About Disable a route for incoming packets based on destination address

PrSTATUS the router from routing packets with a specific destination address. Only logical ad-
dresses can be blocked. Packets with a physical destination address will still be routed.

Param dev - [in] - Valid router device handle

Param address - Packets with this logical destination address will not be routed (32 - 255)

Return drvret
• DRV_OK - on success
• DRV_INVAL - on non-logical address

The router also supports static routing in which all packets received on a certain port are always forwarded un-
modified to a specified port regardless of the target address in the packet. Static routing is enabled for a port by
grspwrouter_static_route_set().

Table 17.8. grspwrouter_port_static_route_set function declaration

Name grspwrouter_port_static_route_set()

Proto drvret grspwrouter_port_static_route_set(grspwrouter_dev * dev,
uint8_t port, uint32_t destination, bool use_route_info)

About Set up a static route for incoming packets on a specific port

This function enables static routing for a port where incoming packets are always routed unmodified
to a specific output port regardless of the address in the packet. By setting use_route_info to
true it is possible to use the normal route information to route the packet to multiple ports.

Param dev - [in] - Valid router device handle

Param port - Index of a valid port

Param destination - Target port

Param use_route_info - Use the target addresses configured by grspwrouter_route_set for
the target

Return drvret
• DRV_OK - on success
• DRV_INVAL - if static routing not supported, or invalid port or destination

Table 17.9. grspwrouter_port_static_route_disable function declaration

Name grspwrouter_port_static_route_disable()

Proto drvret grspwrouter_port_static_route_disable(grspwrouter_dev *
dev, uint8_t port)

About Disable static routing for the port

Disable static routing for the port.

Param dev - [in] - Valid router device handle

Param port - Index of a valid port

Return drvret
• DRV_OK - on success

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 125

Name grspwrouter_port_static_route_disable()

• DRV_INVAL - if invalid port

17.5.1. GR716B

The SpaceWire router in GR716B can only use 1 logical address at a time. The current logical address that is
mapped can be read by gr716b_grspwrouter_mapped_adr_get()

If a logical address has already been selected then in order to change the currently mapped address it must first be
reset with gr716b_grspwrouter_mapped_adr_reset()

After the mapped address has been reset a new route can then be created with grspwrouter_route_set()

Table 17.10. gr716b_grspwrouter_mapped_adr_get function declaration

Name gr716b_grspwrouter_mapped_adr_get()

Proto uint8_t gr716b_grspwrouter_mapped_adr_get(grspwrouter_dev * dev)

About Return the current mapped address

Returns routers current mapped address. GR716b only.

Param dev - [in] - Valid router device handle

Return uint8_t - Current mapped address

Table 17.11. gr716b_grspwrouter_mapped_adr_reset function declaration

Name gr716b_grspwrouter_mapped_adr_reset()

Proto uint8_t gr716b_grspwrouter_mapped_adr_reset(grspwrouter_dev *
dev)

About Resets the current mapped adress

Reset the currently mapped address on GR716B. The currently mapped address needs to be reset
before a new address can be mapped.

Param dev - [in] - Valid router device handle

Return drvret
• DRV_OK - on success

17.6. Link handling

A SpaceWire link can be started with a desired link rate by calling the grspwrouter_port_link_start()
function.

Table 17.12. grspwrouter_port_link_start function declaration

Name grspwrouter_port_link_start()

Proto drvret grspwrouter_port_link_start(grspwrouter_dev * dev, uint8_t
port, uint32_t link_rate)

About Start the SpaceWire link

Configure the link rate to use and enable the link. The link rate shall be specified in MBits/s.

This function can only be called on a SpaceWire port, not an AMBA port.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param link_rate - The requested run-state link rate

Return drvret
• DRV_OK - on success

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 126

Name grspwrouter_port_link_start()

• DRV_INVAL - port is not a SpaceWire port or invalid link rate

Table 17.13. grspwrouter_port_link_stop function declaration

Name grspwrouter_port_link_stop()

Proto drvret grspwrouter_port_link_stop(grspwrouter_dev * dev, uint8_t
port)

About Stops the SpaceWire port link

This function can only be called on a SpaceWire port, not an AMBA port.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Return drvret
• DRV_OK - on success
• DRV_INVAL - port is not a SpaceWire port

The current state of the link can be checked by using grspwrouter_port_link_status(). Possible states
are:

• error reset (GRSPWROUTER_LINK_ERROR_RESET)
• error wait (GRSPWROUTER_LINK_ERROR_WAIT)
• ready (GRSPWROUTER_LINK_READY)
• started (GRSPWROUTER_LINK_STARTED)
• connecting (GRSPWROUTER_LINK_CONNECTING)
• run state (GRSPWROUTER_LINK_RUN_STATE)

Table 17.14. grspwrouter_port_link_status function declaration

Name grspwrouter_port_link_status()

Proto drvret grspwrouter_port_link_status(grspwrouter_dev * dev, uint8_t
port, link_state * status)

About Returns the link state of the SpaceWire port

This function can only be called on a SpaceWire port, not an AMBA port.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param status - [out] - The current link state

Return drvret
• DRV_OK - on success
• DRV_INVAL - port is not a SpaceWire port

An overview of the run state of all links can be read out by grspwrouter_link_status(), which return
a bitmask indicating which links are in run state.

Table 17.15. grspwrouter_link_status function declaration

Name grspwrouter_link_status()

Proto void grspwrouter_link_status(grspwrouter_dev * dev, uint32_t *
run_state)

About Return list of SpaceWire ports with links in runstate

The mask returned by the function indicates which SpaceWire port links are in runstate. Bit 1 is
SpaceWire port 1, bit 2 is SpaceWire port 2, and so on.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 127

Name grspwrouter_link_status()

Param dev - [in] - Valid router device handle

Param run_state - [out] - Mask indicating runstate of each link

The status of a port can be checked with grspwrouter_port_status(). This includes information on any
error events that have occurred and if the port is currently transmitting or receiving data.

Table 17.16. grspwrouter_port_status function declaration

Name grspwrouter_port_status()

Proto drvret grspwrouter_port_status(grspwrouter_dev * dev, uint8_t
port, uint32_t * status)

About Return the status of the port

This function returns the value of the status register for the port.

The status value can be parsed using the following defines:

• port type (SpaceWire/AMBA/FIFO/Custom)
(GRSPWROUTER_STATUS_PORT_TYPE(status))

• a packet for which this port was the input port has been spilled due to the packet length trunca-
tion feature (GRSPWROUTER_STATUS_ERR_TRUNC)

• a packet for which this port was the input port has been spilled due to the time-code / distribut-
ed interrupt code truncation feature (GRSPWROUTER_STATUS_ERR_INTTRUNC)

• an RMAP / SpaceWire Plug-and-Play command received on this port was spilled by the con-
figuration port (GRSPWROUTER_STATUS_ERR_RMAP)

• a packet received on this port was spilled due to the spill-if-not-ready feature
(GRSPWROUTER_STATUS_ERR_NOTRDY)

• this port either was started, or currently is trying to start, due to the link-start-on-request feature
(GRSPWROUTER_STATUS_START_REQUEST)

• a packet that is incoming on this port currently is being spilled
(GRSPWROUTER_STATUS_SPILL)

• a packet arrives at this port and the port has been given access to the routing table
(GRSPWROUTER_STATUS_ACTIVE_STATUS)

• the active SpaceWire ports if dual ports is implemented
(GRSPWROUTER_STATUS_ACTIVE_PORT)

• a packet for which this port was the input port was spilled due to a packet timeout
(GRSPWROUTER_STATUS_ERR_TIMEOUT)

• a memory error occur while accessing the on-chip memory in the ports
(GRSPWROUTER_STATUS_ERR_MEM)

• transmit FIFO on this port is full (GRSPWROUTER_STATUS_TX_FIFO_FULL)
• receive FIFO on this port is empty (GRSPWROUTER_STATUS_RX_FIFO_EMPTY)
• current link state (GRSPWROUTER_STATUS_LINK_STATE(status))
• the number of the input port for the current or last packet transfer on this port

(GRSPWROUTER_STATUS_INPUT_PORT(status))
• port is the input port of an ongoing packet transfer (GRSPWROUTER_STATUS_RX_BUSY)
• port is the output port of an ongoing packet transfer

(GRSPWROUTER_STATUS_TX_BUSY)
• an invalid address error occurred on this port (GRSPWROUTER_STATUS_ERR_ADRS)
• a credit error has occurred (GRSPWROUTER_STATUS_ERR_CREDIT)
• an escape error has occurred (GRSPWROUTER_STATUS_ERR_ESCAPE)
• a disconnect error has occurred (GRSPWROUTER_STATUS_ERR_DISCON)
• a parity error has occurred (GRSPWROUTER_STATUS_ERR_PARITY)

Param dev - [in] - Valid router device handle

Param port - Index of a valid port

Param status - [out] - The port status register

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 128

Name grspwrouter_port_status()

Return drvret
• DRV_OK - on success
• DRV_INVAL - port is not a valid port

17.7. Error handling

The grspwrouter_isr_register() function can be used to install a handler that will be called when spec-
ified error events occur on the port, or when a link enters run state. It is possible to specify for which events the
handler should be called, and for which ports.

Table 17.17. grspwrouter_isr_register function declaration

Name grspwrouter_isr_register()

Proto void grspwrouter_isr_register(grspwrouter_dev * dev, uint32_t
err_mask, uint32_t port_mask, grspwrouter_isr_func isr, void *
arg)

About Register handler for port events

Register a handler for the selected interrupt types. The defines below can be or:ed together to form
the mask argument:

• Generate an interrupt when a SpaceWire Plug and Play error has been detected in the configu-
ration port (GRSPWROUTER_INTERRUPT_CONF_PNP)

• Generate an interrupt when a packet has been spilled because of the spill-if-not-ready feature
(GRSPWROUTER_INTERRUPT_NOTRDY)

• Generate an interrupt when a SpaceWire link enters run-state
(GRSPWROUTER_INTERRUPT_RUN_STATE)

• Generate an interrupt when a packet has been spilled because of the time code / distributed in-
terrupt code truncation feature (GRSPWROUTER_INTERRUPT_INTTRUNC)

• Generate an interrupt when a packet has been spilled due to the packet length truncation fea-
ture (GRSPWROUTER_INTERRUPT_TRUNC)

• Generate an interrupt when a packet has been spilled due to the timeout mechanism
(GRSPWROUTER_INTERRUPT_TIMEOUT)

• Generate an interrupt when either a header CRC error, protocol ID error, pack-
et type error, early EOP, or early EEP has been detected in the configuration port
(GRSPWROUTER_INTERRUPT_CONF_PORT)

• Generate an interrupt when an error has been detected in the configuration port
for an RMAP command such that the PSTS.EC field is set to a non-zero value
(GRSPWROUTER_INTERRUPT_CONF_RMAP)

• Generate an interrupt when an invalid address error has occurred on a port
(GRSPWROUTER_INTERRUPT_ADRS)

• Generate an interrupt when a link error (parity, escape, credit, disconnect) has been detected on
a SpaceWire port (GRSPWROUTER_INTERRUPT_LINK)

• Generate an interrupt when a memory error occur in any of the router's on-chip memories
(GRSPWROUTER_INTERRUPT_MEM)

The define GRSPWROUTER_INTERRUPT_ALL can be used to enable all interrupt types and
GRSPWROUTER_INTERRUPT_NONE to disable all interrupt types.

Param dev - [in] - Valid router device handle

Param err_mask - Interrupts that the handler should trigger on

Param port_mask - Ports that the interrupts can be generated for

Param isr - [in] - Interrupt handler function pointer

Param arg - [in] - Custom argument to interrupt handler

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 129

17.8. Time codes

To make it possible to send time codes the time code support needs to be enabled both globally in the router and for
each port that shall send or receive them. The router will keep track of the current time code, but initiating a time
code change or handling interrupts codes must be done via an AMBA port using the SpaceWire driver (Chapter 6).

Time codes are enabled globally by grspwrouter_tc_enable() and per port by
grspwrouter_port_tc_enable(). Using the latter function the router can be configured to ignore the time
code values it receives from the AMBA port and instead always use its internal time representation.

Table 17.18. grspwrouter_tc_enable function declaration

Name grspwrouter_tc_enable()

Proto void grspwrouter_tc_enable(grspwrouter_dev * dev)

About Enable the handling of time codes

Enable the router time code support. Also needs to be enabled for each port that intend to use time
codes using grspwrouter_port_tc_enable.

Param dev - [in] - Valid router device handle

Table 17.19. grspwrouter_tc_disable function declaration

Name grspwrouter_tc_disable()

Proto void grspwrouter_tc_disable(grspwrouter_dev * dev)

About Disable time code support

Disable the router time code support.

Param dev - [in] - Valid router device handle

Table 17.20. grspwrouter_port_tc_enable function declaration

Name grspwrouter_port_tc_enable()

Proto drvret grspwrouter_port_tc_enable(grspwrouter_dev * dev, uint8_t
port, bool router_time)

About Enable time code support

This function enables time codes to be sent and received via the port. If router_time is true
the router will not look at the timer value and instead use its internal time representation.

Time code support also needs to be enabled globally using grspwrouter_tc_enable.

Param dev - [in] - Valid router device handle

Param port - Index of a valid port

Param router_time - If true, always use the routers time, never the incoming time

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

Table 17.21. grspwrouter_port_tc_disable function declaration

Name grspwrouter_port_tc_disable()

Proto drvret grspwrouter_port_tc_disable(grspwrouter_dev * dev, uint8_t
port)

About Disable time code support

Disables support for time codes for the port. Any time codes received will be dropped.

Param dev - [in] - Valid router device handle

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 130

Name grspwrouter_port_tc_disable()

Param port - Index of a valid SpaceWire port

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

The internal time representation can be read out with grspwrouter_tc_get() and set to 0 with
grspwrouter_tc_reset().

Table 17.22. grspwrouter_tc_get function declaration

Name grspwrouter_tc_get()

Proto uint8_t grspwrouter_tc_get(grspwrouter_dev * dev)

About Return the current time code

Returns routers internal time representation.

Param dev - [in] - Valid router device handle

Return uint8_t - Current time code

Table 17.23. grspwrouter_tc_reset function declaration

Name grspwrouter_tc_reset()

Proto void grspwrouter_tc_reset(grspwrouter_dev * dev)

About Set the current time code to 0

Sets the routers internal time representation to 0.

Param dev - [in] - Valid router device handle

17.9. Interrupt codes

The routing of interrupt-codes needs to be enabled both for the router and per port. For the router it is enabled by
grspwrouter_ic_enable(). When enabling the interrupt code support it is possible to set a time out that
will trigger an interrupt if an acknowledge reply is not received within the specified time period (100µs - 6.5s).

It also possible to set a cooldown period to protect against being flooded by interrupt codes (100µs - 25ms). A new
interrupt-code will not be registered until the cooldown has expired. Both the timeout and cooldown are optional
and can be disabled by setting the time period to 0.

Table 17.24. grspwrouter_ic_enable function declaration

Name grspwrouter_ic_enable()

Proto drvret grspwrouter_ic_enable(grspwrouter_dev * dev, uint32_t time-
out, uint32_t cooldown)

About Enable interrupt code support

Enable the router interrupt code support. Also needs to be enabled for each port that intend to send
or receive interrupt codes using grspwrouter_port_ic_enable.

A timer can be configured that will trigger an interrupt when an acknowledge reply is not received
within the specified time period (100µs - 6.5s).

A cooldown period can be configured that prevents new interrupts from being submitted until the
specified time period has passed (100µs - 3.1ms).

Set the timeout to zero to disable.

Param dev - [in] - Valid router device handle

Param timeout - Timeout in microseconds (or 0 to disable) (100 - 6553500 in steps of 100)

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 131

Name grspwrouter_ic_enable()

Param cooldown - Cooldown period in microseconds (or 0 to disable) (100 - 3100 in steps of 100)

Return drvret
• DRV_OK - on success
• DRV_INVAL - if the timeout or cooldown value is too big

Table 17.25. grspwrouter_ic_disable function declaration

Name grspwrouter_ic_disable()

Proto void grspwrouter_ic_disable(grspwrouter_dev * dev)

About Disable interrupt code support

Disable interrupt code support for all ports in router

Param dev - [in] - Valid router device handle

The per port interrupt-code support is enabled by grspwrouter_port_ic_enable(). By default it enables
forwarding of both interrupt codes and interrupt acknowledgement codes in both directions, but it is possible to
disable the transmission or reception of interrupt or interrupt acknowledgement codes.

Table 17.26. grspwrouter_port_ic_enable function declaration

Name grspwrouter_port_ic_enable()

Proto drvret grspwrouter_port_ic_enable(grspwrouter_dev * dev, uint8_t
port, uint32_t options)

About Enable interrupt code support for port

By default forwarding of both interrupt codes and interrupt acknowledgement codes in both direc-
tion are enabled. This can be changed by or:ing the defines below together to form an options ar-
gument:

• Disable the transmission of interrupt codes (GRSPWROUTER_IC_DIS_TX_INT)
• Disable the reception of interrupt codes (GRSPWROUTER_IC_DIS_RX_INT)
• Disable the transmission of interrupt acknowledgement codes

(GRSPWROUTER_IC_DIS_TX_ACK)
• Disable the reception of interrupt acknowledgement codes

(GRSPWROUTER_IC_DIS_RX_ACK)

Interrupt code support also needs to be enabled globally using grspwrouter_ic_enable.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param options - Options mask

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

Table 17.27. grspwrouter_port_ic_disable function declaration

Name grspwrouter_port_ic_disable()

Proto drvret grspwrouter_port_ic_disable(grspwrouter_dev * dev, uint8_t
port)

About Disable interrupt code support for port

Disables support for interrupt codes for the port. Any interrupt codes received will be dropped.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 132

Name grspwrouter_port_ic_disable()

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

Using the grspwrouter_port_code_truncation() function it is possible to abort the currently received
packet when an interrupt code or time code with a specified value is received. The packet will be truncated and
marked with an EEP.

Table 17.28. grspwrouter_port_code_truncation function declaration

Name grspwrouter_port_code_truncation()

Proto drvret grspwrouter_port_code_truncation(grspwrouter_dev * dev,
uint8_t port, bool enable, uint8_t value, uint8_t mask)

About Abort packet on time/interrupt code

Configure the port to abort the current packet if a time or interrupt code with the specified value is
received.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param enable - Enable packet truncation

Param value - The value that can cause truncation

Param mask - Mask for the value

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

17.10. Configure timeouts

The packet timeout functionality is enabled by grspwrouter_port_timeout(). It possible to enable it
for overruns (when the input port has data available, but the output port(s) can not accept data fast enough) and
underruns (when the output port(s) can accept more data, but the input port can not provide data fast enough). It
is also possible to use it to automatically stop the link if it has not been used within the specified time.

Table 17.29. grspwrouter_port_timeout function declaration

Name grspwrouter_port_timeout()

Proto drvret grspwrouter_port_timeout(grspwrouter_dev * dev, uint8_t
port, uint32_t timeout, bool overrun, bool underrun, bool autodis-
connect)

About Enable timeouts

Enable a timeout for packets transfers (overrun and underrun) and auto-disconnect per port.

An overrun timeout occurs when the input port has data available but the output port(s) can not ac-
cept data fast enough. An underrun timeout occurs when the output port(s) can accept more data but
the input port can not provide data fast enough. The timeout can be set to between 100µs - 6.5s.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param timeout - The timeout in microseconds (100 - 6553500 in steps of 100)

Param overrun - Enable for overrun

Param underrun - Enable for underrun

Param autodisconnect - Enable for auto disconnect (Only for SpaceWire ports)

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 133

Name grspwrouter_port_timeout()

Return drvret
• DRV_OK - on success
• DRV_INVAL - if trying to enable auto disconnect on non-SpaceWire port, or if invalid

port, or if the timeout value is too big

17.11. Configure packet max length

A max packet length can be configured for each port. If a packet exceeds this length it will be trun-
cated by the router and get an error end of packet (EEP). The max packet length is set by the
grspwrouter_port_max_length() function.

Table 17.30. grspwrouter_port_max_length function declaration

Name grspwrouter_port_max_length()

Proto drvret grspwrouter_port_max_length(grspwrouter_dev * dev, uint8_t
port, uint32_t length)

About Set the maximum length of packets

If an incoming packets is larger it will be truncated and marked with an EEP. Use the length 0 to ac-
cept any length.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param length - The maximum length of the packet or 0 to disable

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid port

17.12. Configure Plug-and-Play

The router supports the SpaceWire Plug-and-Play protocol which can be used to discover devices on the network.
The grspwrouter_pnp_set() function is used to set the vendor id, product id, and serial number of the
device which is presented to any device scanning the network using the protocol.

Table 17.31. grspwrouter_pnp_set function declaration

Name grspwrouter_pnp_set()

Proto void grspwrouter_pnp_set(grspwrouter_dev * dev, uint16_t
vendor_id, uint16_t product_id, uint32_t serial, bool
keep_instance_id)

About Set the SpaceWire Plug-and-Play information

Sets the serial number, vendor id, and product id that is presented when accessing this device using
the SpaceWire Plug-and-Play protocol. Bits 3:0 of the serial number can be set using the INSTAN-
CEID[7:0] signal. Use keep_instance_id to preserve this part of the serial number.

Param dev - [in] - Valid router device handle

Param vendor_id - Custom vendor id

Param product_id - Custom product id

Param serial - Custom serial number

Param keep_instance_id - Use reset value for bits 3:0 of serial number

17.13. Read out credit counters

The credit counter for a SpaceWire port can be read out using grspwrouter_port_cred(). It can only be
called on a SpaceWire port and will return an error if used on an AMBA port.

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 134

Table 17.32. grspwrouter_port_cred function declaration

Name grspwrouter_port_cred()

Proto drvret grspwrouter_port_cred(grspwrouter_dev * dev, uint8_t port,
uint8_t * in, uint8_t * out)

About Read the credit counters for the port

Returns the current credit counters for the SpaceWire port. Can not be used on an AMBA port.

Param dev - [in] - Valid router device handle

Param port - Index of a valid SpaceWire port

Param in - [out] - Incoming credit

Param out - [out] - Outgoing credit

Return drvret
• DRV_OK - on success
• DRV_INVAL - if invalid SpaceWire port

https://www.frontgrade.com/gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 135

Frontgrade Gaisler AB
Kungsgatan 12
411 19 Göteborg
Sweden
frontgrade.com/gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

Frontgrade Gaisler AB, reserves the right to make changes to any products and services described herein at any time without
notice. Consult the company or an authorized sales representative to verify that the information in this document is current before
using this product. The company does not assume any responsibility or liability arising out of the application or use of any product
or service described herein, except as expressly agreed to in writing by the company; nor does the purchase, lease, or use of
a product or service from the company convey a license under any patent rights, copyrights, trademark rights, or any other of
the intellectual rights of the company or of third parties. All information is provided as is. There is no warranty that it is correct or
suitable for any purpose, neither implicit nor explicit.

Copyright © 2023 Frontgrade Gaisler AB

https://www.frontgrade.com/gaisler
https://www.frontgrade.com/gaisler

	
	Table of Contents
	1. Introduction
	1.1. Installing Zephyr
	1.1.1. Extracting the archive
	1.1.2. Installing kernel improvements
	1.1.3. Installing GRLIB drivers into Zephyr

	1.2. Archive content

	2. Zephyr kernel
	2.1. Kernel patches
	2.1.1. Applying the patches

	3. GRLIB device drivers
	3.1. Drivers included in the package
	3.2. Enabling the drivers
	3.3. Application configuration
	3.3.1. Example

	4. Support
	Part I. Device drivers reference
	5. Driver registration
	5.1. Manual registration
	5.2. System specific device registration tables

	6. GRSPW Packet driver
	6.1. Introduction
	6.1.1. Hardware Support
	6.1.2. Driver sources
	6.1.3. Driver registration
	6.1.4. Examples
	6.1.5. Known driver limitations

	6.2. Software design overview
	6.2.1. Overview
	6.2.2. Initialization
	6.2.3. Link control
	6.2.4. Time Code support
	6.2.5. RMAP support
	6.2.6. Port support
	6.2.7. SpaceWire node address configuration
	6.2.8. User DMA buffer handling
	6.2.8.1. Buffer List help routines

	6.2.9. Driver DMA buffer handling
	6.2.9.1. DMA Queues
	6.2.9.2. DMA Queue operations

	6.2.10. Polling mode and interrupts
	6.2.11. Starting and stopping DMA

	6.3. Device Interface
	6.3.1. Opening and closing device
	6.3.2. Hardware capabilities
	6.3.3. Link Control
	6.3.4. Node address configuration
	6.3.5. Time-control codes
	6.3.6. Port Control
	6.3.7. RMAP Control
	6.3.8. Interrupt handling

	6.4. DMA interface
	6.4.1. Opening and closing DMA channels
	6.4.1.1. Static buffer allocation

	6.4.2. Starting and stopping DMA operation
	6.4.3. Packet buffer description
	6.4.4. Packet buffer lists
	6.4.5. Sending packets
	6.4.6. Receiving packets
	6.4.7. Transmission queue status
	6.4.8. Queue flushing
	6.4.9. Statistics
	6.4.10. DMA channel configuration
	6.4.11. DMA channel status

	6.5. API reference
	6.5.1. Data structures
	6.5.2. Device functions
	6.5.3. DMA functions

	6.6. Restrictions

	7. GRCAN CAN driver
	7.1. Introduction
	7.1.1. User Interface
	7.1.2. Driver registration
	7.1.3. Examples
	7.1.4. Known driver limitations

	7.2. Opening and closing device
	7.2.1. Static buffer allocation

	7.3. Operation mode
	7.3.1. Starting and stopping

	7.4. Configuration
	7.4.1. Channel selection
	7.4.2. GRCAN Timing parameters
	7.4.3. GRCANFD Timing parameters

	7.5. Receive filters
	7.5.1. Data structures
	7.5.2. Acceptance filter
	7.5.3. Sync filter

	7.6. Driver statistics
	7.7. Device status
	7.8. CAN bus transfers
	7.8.1. Data structures
	7.8.2. Transmission
	7.8.3. Reception
	7.8.4. Bus-off recovery
	7.8.5. AHB error recovery

	7.9. Interrupt API
	7.9.1. Interrupt generation

	8. SPI driver
	8.1. Introduction
	8.2. Driver registration
	8.3. Opening and closing device
	8.4. Status service
	8.5. Transfer Configuration
	8.6. Transfer Interface
	8.7. Synchronous TX/RX mode
	8.8. Slave select
	8.9. Restrictions

	9. AHB Status Register driver
	9.1. Introduction
	9.2. Driver registration
	9.3. Opening and closing device
	9.4. Register interface
	9.5. Interrupt service routine

	10. Clock gating unit driver
	10.1. Introduction
	10.2. Driver registration
	10.3. Opening and closing device
	10.4. Operation
	10.5. Core reset
	10.6. Probe clock gating status
	10.7. CPU override

	11. GR1553B Driver
	11.1. Introduction
	11.1.1. Considerations and limitations
	11.1.2. GR1553B Hardware
	11.1.3. Software driver
	11.1.4. Driver Registration

	12. GR1553B Bus Controller Driver
	12.1. Introduction
	12.1.1. GR1553B Bus Controller Hardware
	12.1.2. Software driver
	12.1.3. Driver registration

	12.2. BC Device Handling
	12.2.1. Device API
	12.2.1.1. Data Structures
	12.2.1.2. gr1553bc_open
	12.2.1.3. gr1553bc_close
	12.2.1.4. gr1553bc_start
	12.2.1.5. gr1553bc_pause
	12.2.1.6. gr1553bc_resume
	12.2.1.7. gr1553bc_stop
	12.2.1.8. gr1553bc_indication
	12.2.1.9. gr1553bc_status
	12.2.1.10. gr1553bc_ext_trig
	12.2.1.11. gr1553bc_irq_setup

	12.3. Descriptor List Handling
	12.3.1. Overview
	12.3.2. Example: steps for creating a list
	12.3.3. Major Frame
	12.3.4. Minor Frame
	12.3.5. Slot (Descriptor)
	12.3.6. Changing a scheduled BC list (during BC-runtime)
	12.3.7. Custom Memory Setup
	12.3.8. Interrupt handling
	12.3.9. List API
	12.3.9.1. Data structures
	12.3.9.2. gr1553bc_list_init
	12.3.9.3. gr1553bc_list_alloc
	12.3.9.4. gr1553bc_list_free
	12.3.9.5. gr1553bc_list_config
	12.3.9.6. gr1553bc_list_link_major
	12.3.9.7. gr1553bc_list_set_major
	12.3.9.8. gr1553bc_minor_table_size
	12.3.9.9. gr1553bc_list_table_size
	12.3.9.10. gr1553bc_list_table_init
	12.3.9.11. gr1553bc_list_table_alloc
	12.3.9.12. gr1553bc_list_table_free
	12.3.9.13. gr1553bc_list_table_build
	12.3.9.14. gr1553bc_major_init_skel
	12.3.9.15. gr1553bc_major_alloc_skel
	12.3.9.16. gr1553bc_list_freetime
	12.3.9.17. gr1553bc_slot_alloc
	12.3.9.18. gr1553bc_slot_free
	12.3.9.19. gr1553bc_mid_from_bd
	12.3.9.20. gr1553bc_slot_bd
	12.3.9.21. gr1553bc_slot_irq_prepare
	12.3.9.22. gr1553bc_slot_irq_enable
	12.3.9.23. gr1553bc_slot_irq_disable
	12.3.9.24. gr1553bc_slot_jump
	12.3.9.25. gr1553bc_slot_exttrig
	12.3.9.26. gr1553bc_slot_transfer
	12.3.9.27. gr1553bc_slot_dummy
	12.3.9.28. gr1553bc_slot_empty
	12.3.9.29. gr1553bc_slot_update
	12.3.9.30. gr1553bc_slot_raw
	12.3.9.31. gr1553bc_show_list

	13. GR1553B Remote Terminal Driver
	13.1. Introduction
	13.1.1. GR1553B Remote Terminal Hardware
	13.1.2. Driver registration

	13.2. User Interface
	13.2.1. Overview
	13.2.1.1. Accessing an RT device
	13.2.1.2. Introduction to the RT Memory areas
	13.2.1.3. Sub Address Table
	13.2.1.4. Descriptors
	13.2.1.5. Data Buffers
	13.2.1.6. Event Logging
	13.2.1.7. Interrupt service
	13.2.1.8. Indication service
	13.2.1.9. Mode Code support
	13.2.1.10. RT Time

	13.2.2. Application Programming Interface
	13.2.2.1. Data structures
	13.2.2.2. gr1553rt_open
	13.2.2.3. gr1553rt_close
	13.2.2.4. gr1553rt_config_init
	13.2.2.5. gr1553rt_config_alloc
	13.2.2.6. gr1553bm_config_free
	13.2.2.7. gr1553rt_start
	13.2.2.8. gr1553rt_stop
	13.2.2.9. gr1553rt_status
	13.2.2.10. gr1553rt_indication
	13.2.2.11. gr1553rt_evlog_read
	13.2.2.12. gr1553rt_set_vecword
	13.2.2.13. gr1553rt_set_bussts
	13.2.2.14. gr1553rt_sa_setopts
	13.2.2.15. gr1553rt_list_sa
	13.2.2.16. gr1553rt_sa_schedule
	13.2.2.17. gr1553rt_irq_err
	13.2.2.18. gr1553rt_irq_mc
	13.2.2.19. gr1553rt_irq_sa
	13.2.2.20. gr1553rt_list_init
	13.2.2.21. gr1553rt_list_alloc
	13.2.2.22. gr1553rt_bd_init
	13.2.2.23. gr1553rt_bd_update

	14. GR1553B Bus Monitor Driver
	14.1. Introduction
	14.1.1. GR1553B Remote Terminal Hardware
	14.1.2. Driver registration

	14.2. User Interface
	14.2.1. Overview
	14.2.1.1. Accessing a BM device
	14.2.1.2. BM Log memory
	14.2.1.3. Accessing the BM Log memory
	14.2.1.4. Time
	14.2.1.5. Filtering
	14.2.1.6. Interrupt service

	14.2.2. Application Programming Interface
	14.2.2.1. Data structures
	14.2.2.2. gr1553bm_open
	14.2.2.3. gr1553bm_close
	14.2.2.4. gr1553bm_config_init
	14.2.2.5. gr1553bm_config_alloc
	14.2.2.6. gr1553bm_config_free
	14.2.2.7. gr1553bm_start
	14.2.2.8. gr1553bm_stop
	14.2.2.9. gr1553bm_time
	14.2.2.10. gr1553bm_available
	14.2.2.11. gr1553bm_read

	15. GR716 memory protection unit driver
	15.1. Introduction
	15.1.1. User Interface
	15.1.2. Features
	15.1.3. Limitations

	15.2. Driver registration
	15.3. Examples
	15.4. Opening and closing device
	15.5. Operation mode
	15.5.1. Starting and stopping

	15.6. Reset
	15.7. Segment configuration
	15.7.1. Number of segments
	15.7.2. Data structures
	15.7.3. Set
	15.7.4. Get
	15.7.4.1. Example

	16. Memory scrubber
	16.1. Introduction
	16.1.1. Hardware Support
	16.1.2. Driver sources
	16.1.3. Examples

	16.2. Software design overview
	16.2.1. Driver usage

	16.3. Memory scrubber user interface
	16.3.1. Return values
	16.3.2. Opening and closing device
	16.3.3. Configuring the memory range
	16.3.4. Starting/stopping different modes.
	16.3.5. Setting up error thresholds
	16.3.6. Registering an ISR
	16.3.7. Polling the error status

	16.4. API reference

	17. SpaceWire Router Driver
	17.1. Introduction
	17.2. Driver sources
	17.3. Routing
	17.4. Register and access driver
	17.5. Setup routing table
	17.5.1. GR716B

	17.6. Link handling
	17.7. Error handling
	17.8. Time codes
	17.9. Interrupt codes
	17.10. Configure timeouts
	17.11. Configure packet max length
	17.12. Configure Plug-and-Play
	17.13. Read out credit counters

