
Handling denormalized numbers with the GRFPU

Application note 2015-11-26

Doc. No GRLIB-AN-0007

Issue 1.0

Te
m

p
la

te
:

G
Q

M
S

-T
P

LT
-1

-1
-0

Doc. No: GRLIB-AN-0007

Issue: 1 Rev.: 0

Date: 2015-11-26 Page: 2 of 10

CHANGE RECORD

Issue Date Section / Page Description

1.0 2015-11-26 All First issue

TABLE OF CONTENTS

1 INTRODUCTION...3
1.1 Scope of the document..3
1.2 Reference documents...3

2 ABBREVIATIONS...3

3 DENORMALIZED NUMBER OVERVIEW...4

4 BEHAVIOR OF LEON SYSTEM COMPONENTS..5
4.1 GRFPU behavior...5
4.2 Operating system runtime behavior...5
4.3 Compiler behavior...5

5 SOURCES OF DENORMALIZED NUMBERS..6

6 RECOMMENDATIONS...6

7 MANUAL FLUSHING ROUTINE..7
7.1 C header, flushfp.h...7
7.2 Assembler source, flushfp.S..7

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0007

Issue: 1 Rev.: 0

Date: 2015-11-26 Page: 3 of 10

1 INTRODUCTION

1.1 Scope of the document

This document describes issues relating to handling of denormalized floating-point numbers on
systems using the LEON processors together with the GRFPU high-performance floating-point
unit.

The work has been performed by Cobham Gaisler AB, Göteborg, Sweden.

1.2 Reference documents

[RD1] “IEEE Standard for Binary Floating-Point Arithmetic”, IEEE Std 754-1985
[RD2] GRLIB IP Core User's Manual, Cobham Gaisler AB,

http://www.g aisler.com/products/grlib/grip.pdf

2 ABBREVIATIONS

FPU Floating Point Unit

TBC To Be Confirmed

TBD To Be Defined

© Cobham Gaisler AB

http://www.gaisler.com/products/grlib/grip.pdf
http://www.gaisler.com/products/grlib/grip.pdf

Doc. No: GRLIB-AN-0007

Issue: 1 Rev.: 0

Date: 2015-11-26 Page: 4 of 10

3 DENORMALIZED NUMBER OVERVIEW

This section provides some background on the floating-point format. Please see the original IEEE-
754 standard [RD1] for more detail.

Floating-point numbers consist of a sign bit, an exponent part and a fraction (or mantissa) part. In
the normal case, the fraction represents a real number between 0.5 and 1.0 (excluding the exact
value 1). The exponent then allows this to be scaled with a factor 2^n, and the sign bit allows
negation. Numbers defined this way are in normalized format.

For the lowest supported exponent, the IEEE standard allows a linear range towards zero. This is
done by interpreting the lowest exponent value (binary 0) as a special case. The numbers in this
extended range are called denormal or subnormal (except for the special case of absolute zero).

The minimum values in the normal and denormal ranges are tabulated below.

Format Single precision Double precision

Bits 1 sign, 8 exponent, 23 fraction 1 sign, 11 exp, 52 fraction

Minimum normal 2-126 2-1022

Minimum denormal 2-149 2-1074

© Cobham Gaisler AB

Illustration 1: Diagram of denormal range (dotted line) and lowest part of normal range

Doc. No: GRLIB-AN-0007

Issue: 1 Rev.: 0

Date: 2015-11-26 Page: 5 of 10

4 BEHAVIOR OF LEON SYSTEM COMPONENTS

4.1 GRFPU behavior

As specified in the GRFPU documentation, the GRFPU hardware does not support denormalized
numbers as input to operations. The FPU will generate a floating-point exception with the floating-
point trap type field set to unfinished_Fpop whenever an operation on a denormal is attempted. This
provides a "hook" where software can implement emulation of denormalized calculations if desired.
However this requires understanding of the intricate details in the SPARC standard regarding the
FPU deferred floating-point queue.

The GRFPU can be set to a mode where denormalized numbers are treated as if they were zero.
This is done by setting the NS bit in the FSR register to enable non-standard mode. The only effect
of non-standard mode is the treatment of denormalized numbers when given as input to the FPU.

The GRFPU never generates denormalized numbers as output. Results in the denormalized range
are rounded to a normal number or to zero and the underflow bit is set.

Note that GRFPU will only generate unfinished_FPop on input of denormalized numbers. No other
sources for this exception exist.

4.2 Operating system runtime behavior

The only operating system that handles the unfinished_FPop trap and emulates the operation is
Linux. Other operating systems and runtimes (BCC, RTEMS, VxWorks) will treat the floating point
trap as a fatal error.
Neither of the ports as provided by Cobham Gaisler enable nonstandard mode in the FPU.

It is in theory possible to also emulate denormalized output generation by trapping on every FPU
underflow and emulating the operation. However no operating system implements this.

4.3 Compiler behavior

GCC can produce floating-point constant in the denormal range if specified directly in the code.
Constants in the denormal range can also be introduced indirectly, if the compiler can optimize out
a computation that has known input values and a denormalized result. The compiler does the
computation in software on the host, and does not know of this limitation of the runtime system.

Floating point parsing routines in the C library (such as scanf, strtod) may produce denormals if the
string value is in that range, depending on how the specific C library implementation.

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0007

Issue: 1 Rev.: 0

Date: 2015-11-26 Page: 6 of 10

It is possible to modify GCC and define the floating-point format for LEON so that the compiler
knows that the hardware does not support denormalized numbers. Precomputed values produced by
the compiler would in this case be zero instead of a denormalized number. This has not been done
for the toolchains provided by Cobham Gaisler since this change could hide poorly scaled floating-
point arithmetic. In most cases the use of denormalized numbers is an indication of a bug or design
error in software. Users who have analyzed their application and can accept treatmeant of
denormalized numbers as zero can instead enable non-standard mode for GRFPU.

5 SOURCES OF DENORMALIZED NUMBERS

Since the GRFPU does not produce floating point numbers, any denormalized numbers that come
into the application must come from the outside world.

Possible sources of reading in denormals are:
• Software bugs, reading variables that have not been initialized correctly before use or

invalid pointers to random data that happens to be denormal.
• Reading binary floating point data from an outside source that contains denormal numbers.
• Constructing manually denormalized floating-point numbers using (integer) code and then

reading it in.
• Floating point parsing routines in the C library (such as scanf, strtod) may produce

denormals if the string value is in that range.
• Denormal floating point constants directly in the C code causing the compiler to generate

denormal constants in the binary code.

A special corner case can happen if the code contains calculations with known input values that can
be precomputed by the compiler during optimization, where the input values are in the normal range
but the results are not. If the compiler optimizes the code, the compiler will precompute the
denormal value and store that in the binary code, leading to triggering the unfinished_fpop trap. If
the code is not optimized, the computation is done using the FPU hardware and will not
trigger the trap, but the output will underflow instead.

Another similar case can occur if double-precision constants that are in the denormal range for
single precision are converted to single precision, and this conversion can be precomputed by the
compiler resulting in a denormalized single-precision constant in the code if the optimization is
performed. This can sometimes be difficult to see since casts can be implicit, for example when
passing arguments to functions.

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0007

Issue: 1 Rev.: 0

Date: 2015-11-26 Page: 7 of 10

6 RECOMMENDATIONS

If you see unfinished_fpop traps when you run your program:
• Check first that you are not reading uninitialized variables.
• If a custom boot loader is used, make sure that the floating point register file is correctly

cleared during boot.
• The GRMON commands float and inst are useful for debugging.
• Check constants used in the code so that they are not close to the denormal ranges.
• If you need to read in untrusted floating-point numbers, they can be "flushed" using an

integer routine.
• As an alternative to the above, the GRFPU also supports a non-standard mode where

denormalized inputs are automatically treated as zero. This is enabled by setting the NS bit
in the FSR register.

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0007

Issue: 1 Rev.: 0

Date: 2015-11-26 Page: 8 of 10

7 MANUAL FLUSHING ROUTINE

Below are two small routines to manually scan an array for denormals and flush them to zero. The
routines are coded in assembler with a C-compatible calling interface.

7.1 C header, flushfp.h

void flushfps(float *array, int nelem);
void flushfpd(double *array, int nelem);

7.2 Assembler source, flushfp.S

#define EXPMASK_SP 0x7F800000
#define MANTMASK_SP 0x007FFFFF
#define EXPMASK_DP 0x7FF00000
#define MANTMASK_DP 0x000FFFFF

.global flushfps,flushfpd

flushfps:
set MANTMASK_SP, %o4
set EXPMASK_SP, %o5

2: subcc %o1, 1, %o1
bge,a 1f
 ld [%o0], %o2
retl
nop

1: addcc %o0, 4, %o0
andcc %o2, %o5, %g0
bne 2b
 andcc %o2, %o4, %g0
be 2b
 andn %o2, %o4, %o2
b 2b
 st %o2, [%o0-4]

flushfpd:
set MANTMASK_DP, %o4
set EXPMASK_DP, %o5

2: subcc %o1, 1, %o1
bge,a 1f
 ldd [%o0], %o2
retl
nop

1: addcc %o0, 8, %o0
andcc %o2, %o5, %g0
bne 2b
 and %o2, %o4, %g1
orcc %g1, %o3, %g0
bne 2b
 andn %o2, %o4, %o2
set 0, %o3
b 2b
 std %o2, [%o0-8]

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0007

Issue: 1 Rev.: 0

Date: 2015-11-26 Page: 9 of 10

7.3 Test program, flushfp_test.c

#include <stdio.h>
#include <string.h>
#include "flushfp.h"

float farr[] = { 0.0f, 1.0f, 1.0e-40f, -1.0e-40f };
float fexpres[] = { 0.0f, 1.0f, 0.0f , -0.0f };

double darr[] = { 0.0, 1.0, 1.0e-40, 1.0e-350, -1.0e-350 };
double dexpres[] = { 0.0, 1.0, 1.0e-40, 0.0, -0.0 };

int main(void)
{

flushfps(farr,4);
if (memcmp(farr,fexpres,sizeof(farr))) { puts("fail float"); return 1; }
flushfpd(darr,5);
if (memcmp(darr,dexpres,sizeof(darr))) { puts("fail double"); return 1; }
puts("Success");
return 0;

}

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0007

Issue: 1 Rev.: 0

Date: 2015-11-26 Page: 10 of 10

Copyright © 2015 Cobham Gaisler.

Information furnished by Cobham Gaisler is believed to be accurate and reliable. However, no
responsibility is assumed by Cobham Gaisler for its use, or for any infringements of patents or other
rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Cobham Gaisler.

All information is provided as is. There is no warranty that it is correct or suitable for any purpose,
neither implicit nor explicit.

© Cobham Gaisler AB

	1 Introduction
	1.1 Scope of the document
	1.2 Reference documents

	2 Abbreviations
	3 Denormalized number overview
	4 Behavior of LEON system components
	4.1 GRFPU behavior
	4.2 Operating system runtime behavior
	4.3 Compiler behavior

	5 Sources of denormalized numbers
	6 Recommendations
	7 Manual flushing routine
	7.1 C header, flushfp.h
	7.2 Assembler source, flushfp.S
	7.3 Test program, flushfp_test.c

