
GRFPU Floating-point controller (GRFPC): Store Forwarding Error
After Single-precision Loads to Adjacent Registers

Technical note 2015-10-27

Doc. No GRLIB-TN-0006

Issue 1.0

Te
m

p
la

te
: G

Q
M

S
-T

P
LT

-1
-1

-0

Doc. No: GRLIB-TN-0006

Issue: 1 Rev.: 0

Date: 2015-10-27 Page: 2 of 10

CHANGE RECORD

Issue Date Section / Page Description

1.0 2015-10-27 First issue under this document name. This document replaces
the document GRFPC-STORE-ERRATA (latest released version
was issue 1 revision 6).

TABLE OF CONTENTS

1 INTRODUCTION... 3
1.1 Scope of the Document..3
1.2 Distribution..3
1.2.1 Contact...3

2 AFFECTED PRODUCTS... 4
2.1 General...4
2.2 Aeroflex components...4
2.3 How to check if LEON3/LEON3FT design is affected...5

3 IMPACT.. 5

4 ERRATA DESCRIPTION... 6
4.1 Cause... 6
4.2 Trigger sequence..6
4.3 Examples... 7

5 SOLUTIONS... 8
5.1 Assembler-level workarounds... 8
5.2 Compiler workarounds.. 8
5.3 Scan scripts.. 8

6 TEST PROGRAM... 9

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0006

Issue: 1 Rev.: 0

Date: 2015-10-27 Page: 3 of 10

1 INTRODUCTION

1.1 Scope of the Document

This document describes a design errata in certain versions of the GRFPC floating point controller,
which is the hardware used to interface the GRFPU floating point unit with the LEON3 and
LEON3FT processors. The impact of the error, which versions are affected, and possible
workarounds are described.

1.2 Distribution

LEON3, LEON3FT, LEON4 and LEON4FT users are free to use the material in this document in
their own documents and to redistribute this document. Please contact Cobham Gaisler for inquires
on other distribution.

1.2.1 Contact

For questions on this document, please contact Cobham Gaisler support at support@gaisler.com.
When requesting support include the part name if the question is a specific device or the full
GRLIB IP library package name if the question relates to a GRLIB IP library license.

© Cobham Gaisler AB

mailto:support@gaisler.com

Doc. No: GRLIB-TN-0006

Issue: 1 Rev.: 0

Date: 2015-10-27 Page: 4 of 10

2 AFFECTED PRODUCTS

2.1 General

This errata applies to LEON3/LEON3FT-based devices made using GRLIB revisions earlier than
revision b3680, and where the GRFPU high performance floating-point unit is enabled in the
processor. There are also additional limitations on which IP configurations are affected.

If the below description is not clear enough to determine if you are affected by the errata, contact
Cobham Gaisler support.

2.2 Aeroflex components

Aeroflex components affected are:
• UT699

Aeroflex components NOT affected are:
• UT699E NOT affected, made from a newer revision of GRLIB
• UT700 NOT affected, made from a newer revision of GRLIB
• GR712 NOT affected, made from a newer revision of GRLIB
• LEON3FT-RTAX NOT affected, none of these configurations use the GRFPU
• LEON4-N2X NOT affected, made from a newer revision of GRLIB

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0006

Issue: 1 Rev.: 0

Date: 2015-10-27 Page: 5 of 10

2.3 How to check if LEON3/LEON3FT design is affected

If you are licensing GRLIB for use in your own FPGA or ASIC design, you can check the following
conditions in the design's VHDL source to see if the erratum applies to your system:

1. Check the GRLIB revision. This can be seen in the file name of the downloaded release
package, in the directory name after unpacking the release, and in the file
lib/grlib/stdlib/version.vhd in the release file tree (constant grlib_build). If this is higher than
3680, you are NOT affected by this error. Otherwise, continue with the following step.

2. Check if you are using the GRFPU by looking at the value of the fpu generic passed into the
LEON3/LEON3FT instantiation. If this has values 1-7 or 17-23, you may have the error. If
the fpu generic has values 0, 8-16, 24-31, you are NOT affected by this error.

3. If your design matches step 1 and 2 above, you may be affected by the bug depending on the
value of the tech generic and any custom changes done to the technology mapping layer.
Please contact Aeroflex Gaisler for more information

If source for the design is not available, you can instead find out this information from inside the
design:

1. The build ID can be found at memory address 0xfffffff0, in the top half word (bits 31:16).
This is also read out and reported by GRMON when connecting to the system (except when
the device ID matches a known device, in that case the device name is printed instead).

2. The LEON3:s %asr17 register has an FPU field at bits 11:10 which are set to “01” if the
GRFPU is used in the system.

Instead of using the methods above, a small program can be used to checks if the system it is
running on is affected by this errata. See section 6 for the full listing or contact Aeroflex Gaisler
Support for an electronic copy.

3 IMPACT

On systems where the errata is applicable and not using any of the workarounds described in this
document, the impact is that certain single-precision floating-point stores can store incorrect data,
leading to software error.

With compiler workarounds enabled, existing source code can be recompiled unchanged to avoid
the errata.

Assembler code will need to be reviewed for triggering code sequences and may then need minor
modifications to avoid the error. In the majority of cases this can be done without performance or
size penalty.

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0006

Issue: 1 Rev.: 0

Date: 2015-10-27 Page: 6 of 10

4 ERRATA DESCRIPTION

4.1 Cause

The error is caused by logic inside the GRFPC floating point controller designed to avoid
simultaneous read and write to the floating point register file. This logic can in a special case,
described below, behave incorrectly causing incorrect data to be stored out from the FPC.

4.2 Trigger sequence

The errata triggers only on single-precision floating point stores satisfying certain criteria. Stores
not satisfying these critera will be unaffected.

The errata depends on both the current instructions before the store that are in the execution
pipeline, and which last two floating-point operations (real operations that enter the FPU, not loads
and stores) that went into the pipeline before the store. This can be expressed as two different
execution “patterns” that must be satisfied at the same time in order for the bug to trigger. In order
to avoid triggering the bug, the code should be arranged so at least one of the two patterns is
avoided.

Pattern 1:

1. single-precision load or single-precision FPOP to register %fX, where X is the same register
as the store being checked

2. single-precision load or single-precision FPOP to register %fY , where Y is the opposite
register in the same double-precision pair.

3. 0-3 instructions of any kind, except stores from %fX or %fY or operations with %fX as
destination.

4. The store (from register %fX) being considered

Pattern 2:

1. double-precision FPOP

2. Any number of operations on any kind, except no double-precision FPOP and at most one
(less than two) single-precision or single-to-double FPOPs

3. The store (from register %fX) being considered

For the purposes of this specific errata and the patterns above, the instructions are classed as
follows:

 single-precision load: ld to FP register
 single-precision store: st from FP register
 double-precision load: ldd to (even) FP register

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0006

Issue: 1 Rev.: 0

Date: 2015-10-27 Page: 7 of 10

 double-precision store: std from (even) FP register
 single-precision FPOP: fadds, fsubs, fmuls, fdivs, fsqrts, fcmps, fcmpes, fmovs, fnegs, fabss,

fitos, fstoi, fitod, fdtoi, fdtos
 single-to-double FPOP: fsmuld, fstod, fitod
 double-precision FPOP: faddd, fsubd, fmuld, fdivd, fsqrtd, fcmpd, fcmped

4.3 Examples

The following instruction sequence example will trigger the bug, note that the operations performed
are double precision;
 ld [%i0], %f0
 ld [%i1], %f1
 faddd %f4, %f6, %f8
 faddd %f8, %f9, %f10
 st %f0, [%i0]

The following instruction sequence will also trigger the bug:
 faddd %f4, %f6, %f8
 faddd %f8, %f9, %f10
 ld [%i0], %f0
 ld [%i1], %f1
 st %f0, [%i0]

This sequence will NOT trigger the bug, because both the two previous Fpops are single-precision:
 fadds %f4, %f6, %f8
 fadds %f8, %f9, %f10
 ld [%i0], %f0
 ld [%i1], %f1
 st %f0, [%i0]

This sequence will also NOT trigger the bug, because double precision store is used
 ld [%i0], %f0
 ld [%i1], %f1
 std %f0, [%i2]

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0006

Issue: 1 Rev.: 0

Date: 2015-10-27 Page: 8 of 10

5 SOLUTIONS

5.1 Assembler-level workarounds

Either of these workarounds can be used to avoid the problem, only one of them needs to be used:

• For potentially dangerous sequences, swap registers so the two adjacent loads are done to
non-neighbouring registers.

• Before an instruction sequence that might trigger this issue, or at the beginning of a function
doing only single-precision computation, insert two dummy single-precision FPOPs.

• Keep the whole application in either double-precision or single-precision. Note that for C
programs, using only single-precision is complicated by the fact that standard library
routines such as printf convert to double-precision internally.

• When a dangerous sequence is found, insert NOPs between the loads and the store so the
number of instructions between are 4 or more.

5.2 Compiler workarounds

The Cobham Gaisler provided GCC tool-chains, from versions shown below, have integrated a
workaround for this bug into the existing -mtune=ut699 switch.

BCC (bare-C): BCC release 1.0.45 and newer (both GCC 3.4.4 and 4.4.2 based toolchains)

RCC (RTEMS): RCC release 1.2.15 and newer

VxWorks: GCC-4.1.2 based toolchain release 1.0.12 and newer

5.3 Scan scripts

A scan script can be provided to search binary files for dangerous sequences. The script is written in
TCL and takes as input disassembly output from running objdump -d on the binary or on individual
object files. Contact Aeroflex Gaisler support to obtain a copy.

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0006

Issue: 1 Rev.: 0

Date: 2015-10-27 Page: 9 of 10

6 TEST PROGRAM

The following test program will check for the FPU errata and report if it is found. It should be
compiled with the BCC compiler and run with GRMON.

#include <stdio.h>

static inline int chkfpu(void)
{
 unsigned long tmp;
 asm volatile (" mov %%asr17, %0\n" : "=r"(tmp));
 return ((tmp >> 10) & 3);
}

static inline int testfunc(void)
{
 unsigned long long buf[2];
 unsigned long tmp;
 buf[0] = 0x3ff0000000000000LL;
 buf[1] = 0x1234567800000000LL;
 asm volatile (" ldd [%1],%%f6\n"
 " faddd %%f6,%%f6,%%f8\n"
 " faddd %%f6,%%f6,%%f8\n"
 " ld [%1+8],%%f2\n"
 " ld [%1+8],%%f3\n"
 " st %%f2,[%1+8]\n"
 " ld [%1+8], %0\n"
 : "=r"(tmp) : "r"(buf) : "f6","f7","f2","f3","memory");
 return (tmp != 0x12345678);
}

int main(int argc, char **argv)
{
 int i;
 if (chkfpu() == 0) {
 puts("No FPU in system - errata not applicable");
 return 0;
 }
 for (i=0; i<2; i++) {
 if (testfunc()) {
 puts("Errata detected!");
 return 1;
 }
 }
 puts("Errata not detected!");
 return 0;
}

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0006

Issue: 1 Rev.: 0

Date: 2015-10-27 Page: 10 of 10

Copyright © 2015 Cobham Gaisler.

Information furnished by Cobham Gaisler is believed to be accurate and reliable. However, no
responsibility is assumed by Cobham Gaisler for its use, or for any infringements of patents or other
rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Cobham Gaisler.

All information is provided as is. There is no warranty that it is correct or suitable for any purpose,
neither implicit nor explicit.

© Cobham Gaisler AB

	1 Introduction
	1.1 Scope of the Document
	1.2 Distribution
	1.2.1 Contact

	2 Affected Products
	2.1 General
	2.2 Aeroflex components
	2.3 How to check if LEON3/LEON3FT design is affected

	3 Impact
	4 errata description
	4.1 Cause
	4.2 Trigger sequence
	4.3 Examples

	5 Solutions
	5.1 Assembler-level workarounds
	5.2 Compiler workarounds
	5.3 Scan scripts

	6 Test program

