BCC COBHAM

ADVANCED ELECTRONIC SOLUTIONS

Bare-C Cross-Compiler

2020 User's Manual

The most important thing we build is trust

BCC User's Manual

BCC-UM 1 www.cobhamaes.com/gaisler

September 2020, Version 1.0.52

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

Table of Contents

O [gL oo [0 1o o TP PP PPPPPTRRPPPPN 3
S oo o PP PP TPPTPRT 3

1.2. BCC 1.0 [ife CYCIE SIAUS ...oeeeteieeiit et 3

L3 INSEATBIION oot ettt e e et e e e aee 3
1.3.1. HOSE FEQUITEIMENTS ...ttt et e et et e e et eeena s 3

1.3.2. LINUX / CYOWIN oottt ettt ettt e et e e e et e e e e e e e b 3

L33 WINOOWS ettt ettt e ettt e e et e et e et e e e e aaa s 3

1.4, BUIlAING TIrOM SOUMCE ...ttt ettt ettt e e ettt e e ettt e e e en e e e eran e eeees 4

TS T o] oo AP PP UPTIPRTPI 4

2. General develOpMENT FIOW ...t 5
2.0 OVEIVIBIW ettt ettt et ettt e s 5

2.2. GCC OPLIONS ..eiiitteeeeeti ettt et e ettt e ettt e et e et e e et e e ettt e e et aa s 5

2.3. FHoating-point CONSIAEIAHONScceutueeiiit ettt e ettt e ettt e ettt e e ettt e e e et e e e erb e e eenenaeeees 5

2.4, LEON SPARC V8 INSIIUCLIONS ciiitiieiiiti et e ettt e et e e et e e e 6

2.5. Alternate register windows organization (only for GCC 3.X) ...ooviiiiiiiiiiiiieiii e 6

2.6. SINGIE VECLON traPPING oeevuueierti et et e ettt ettt ettt e et e et e et et n e et et e e e e ea e e e e nba s 6

2.7. MEMOTY OFgaANIZAITON .oevuueeiiti ettt ettt et e et e e ettt e et et e et e bb e e e e b eeeera s 6

2.8. NGMP, RAM applications located at address 0 and multibus systems cccoveviiiiiiiiieinnn. 6

2.9. Recommended compiler options for LEON SYStEMS coouviiiiiiiiiiieiiiieeeeei e eeeei e 6

2.10. Making LEON DOO-PIOMS ciiiiieiiiiie ettt ettt e e e e e e e e ni e e enees 7

I I o= =TT OO UPPTTTPPPRIN 8
3L NEWIID @NA SEAIO .. 8

3.2, TIME FUNCHIONS ettt e ettt e ettt e e et et e e e et e e eenbanaeeens 8

3.3, TASK SWITCNING oeeeeeeeiit ettt ettt ettt ettt e ettt e e et e e et et e e e e n e e e et e eee 8

34, INterrupt NANAIING ooeeeeee e 8

3.5, EXtENded IFQCIIT e 10

3.6, INLETUPE NESLING .eeeeei ettt ettt ettt ettt et et e et et et e et aeeenna e eeenes 11

3.7. Installing custom irg handlersiiiii e 11

3.8, SMAEll DINAIY oo 11

3.9. AMDBA PLUG @N0 PLAY ittt 11

310, FrEERTOS ittt et 12

4. Execution and delUGOING oieeieeiiii s 13
4.1. TSIM simulator and GRMON debug MONITOr coevuiiiiiiiiieeiiii e 13

4.2. Running 0N the TSIM SIMUIBION iiiiit et e et e e e e e e e e 13

4.3. DebUgUING WITh GDB ...ttt ettt ettt e e et et e eee 13

4.4. Debugging on target NArOWEIEiiiiiii et 14

4.5. Using the DDD graphical front-end t0 GDB cooviiiiiiiiiic e 14

4.6. UsSiNg the INSIght dEDUGOEN ...eniiieii e 15

TS 06 1 PP UPTUPTIN 17
BCC-UM 2 www.cobhamaes.com/gaisler

September 2020, Version 1.0.52

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

1. Introduction

1.1. Scope

BCCisacross-compiler for LEON3 processors. It ishbased onethe GNU compiler tools and the Newlib standal one
C-library. The cross-compiler system allows compilation of both tasking and non-tasking C and C++ applications.
It supports hard and soft floating-point operations, as well as SPARC V8 multiply and divide instructions. BCC
can also be used to compile the eCos kernel.

BCC consists of the following packages:

¢ GNU GCC C/C++ compiler 3.4.4and 4.4.2

* GNU Binutils 2.19.51

e Newlib C-library 1.13.1

* Low-level I/O routines for LEON3, including interrupt support
* ulPlight-weight TCP/IP stack

» GDB debugger 6.4 with DDD and Insight Graphical front-end
¢ Linux and Windows/Cygwin hosts

LEONZ2 support has been dropped since BCC release 1.0.36d. LEONZ2 support is availablein BCC 2.

1.2. BCC 1.0 life cycle status

This document (BCC-UM 1.0.52) describes BCC version 1.0.52 which is part of the BCC 1.0 series (1.0.x).

¢ BCC 1.0.x with GCC 3.4.4 has reached End of life status as of year 2020 and is not recommended for new
development.

« BCC 1.0.x with GCC 4.4.2 has reached Legacy status and is not recommended for new development.

e BCC 2isthe current Production status bare-metal tool chain for LEON and is recommended for new devel-
opment.

For more information about LEON software life cycle and software options, please visit the Cobham Gaider
website or contact Cobham Gaisler support (Chapter 5).

1.3. Installation

1.3.1. Host requirements
BCCisprovided for two host platforms: GNU Linux/x86 and Microsoft Windows. Thefollowing are the platform

system requirements:

Linux: Linux-2.6.x, glibc-2.11 (or higher)

1.3.2. Linux / Cygwin

BCC is provided as a bzipped tar-file. It should be uncompressed in the/ opt directory of the host:

$ nkdir /opt
$ tar -C/opt -xjf sparc-elf-[version-nunber].tar.bz2

After installation, add / opt / sparc-el f-[gcc-versi on- nunber]/ bi n to the PATH variable. This
should be done by adding the following line to thefile. pr of i | e in the home directory:

export PATH=/ opt/sparc-el f-[gcc-version-nunber]/bin: $PATH
On Cygwin hosts, al installation steps should be done in a cygwin shell window. See http://www.cygwin.com
for information on Cygwin.
1.3.3. Windows

BCC for Windows is provided for native Windows (MinGW) and for the Cygwin environment. For the Cygwin
version see previous section. The native version will not require any additional packages and can be run from a
standard Command Prompt.

BCC-UM 3 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

http://www.cygwin.com

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

The native Windows version of BCC is packaged with zip. Use atool like WinZip to uncompressit to adirectory,
e.g., C. \ opt . Note that the directory must not contain spaces (or any other non-ASCI| characters) as this will
confuse the compiler.

To usethe compiler thebi n subdirectory, e.g., C. \ opt \ bi n, must be added to the PATH environment variable.
This can be done from the Control Panel:

System - > Advanced -> Environnment Variables...

Se http://lwww.mingw.org for more information on MinGW and the optional MSY S environment.

1.4. Building from source

The source code for BCC isavailable from the Cobham Gaisler website. To build BCC from source, the following
steps shall be performed:

e Untar the source archiveto[di r] .
* |ssue:

$ cd [dir]; make downl oad

Thiswill download the original GCC, binutils and newlibc sources.
e Issue

$ cd [dir]; make install

Thiswill untar al the downloaded original archivesover the current sourcetree, preserving the LEON specific
files.
* |ssue

$ cd [dir]; make all

Thiswill build the GCC 4.4.2 and 3.4.4 toolchains. The default prefix is/ opt .

1.5. Support

BCC is provided freely without any warranties. Technical support can be obtained from Cobham Gaisler through
the purchase of technical support contract. Please contact sales@gaid er.com for more details.

BCC-UM 4 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

http://www.mingw.org

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

2. General development flow

2.1. Overview

Compilation and debugging of applicationsistypically done in the following steps:
1. Compile and link the program with GCC
2. Debug program using a simulator (gdb connected to TSIM/GRSIM)
3. Debug program on remote target (gdb connected to GRMON)
4. Create boot-prom for a standalone application with mkprom?2

BCC supports both tasking and non-tasking C/C++ programs. Compiling and linking is done in the same manner
aswith ahost-based GCC, and will not be explained here. The produced binaries will run on LEON3 and LEON4
systems, without requiring any switches during compilation.

2.2. GCC options

All GCC options are described in detail in the GCC manual. Some useful options are:

-g generate debugging information - must be used for debugging with GDB.
-nsoft-fl oat emul ate floating-point - must be used if no FPU exists in the system.
-ncpu=v8 generate SPARC V8 mul/div instructions - needs hardware multiply and divide.
-2,-Bor-0s optimize code for maximum performance or minimal code size.

- gsvt use the single-vector trap model.

-nfi x- b2bst enable workarounds for GRLIB technical note GRLIB-TN-0009.
-nfix-tn0013 enable workarounds for GRLIB technical note GRLIB-TN-0013.
-nfix-gr712rc enable workarounds applicable to GR712RC. - nf i x- gr 712r ¢ enables

workarounds for the following technical notes:

* GRLIB-TN-0009
* GRLIB-TN-0012
* GRLIB-TN-0013

-nfix-ut 700 enable workarounds applicable to UT700 and UT699E. - nf i x- ut 700 enables
workarounds for the following technical notes:

* GRLIB-TN-0009
* GRLIB-TN-0013

- m une=ut 699 set UT699 specific parameters (gce-3.4.4 and gec-4.4.2).
-gfi x-tn0018 Enable workarounds for GRLIB technical note GRLIB-TN-0018.

Note that in GCC version 3.4.4 - ntpu=v8 wascaled - nv8 and - nf | at is present:

-mv8 generate SPARC V8 mul/div instructions - needs hardware multiply and divide.
-nfl at do not use register windows (i.e. no save/restore instructions). This optionsis on-

ly availablein gcc-3.4.4.
Ordinary C programs can be compiled without any particular switches to the compiler driver:

$ sparc-elf-gcc -nsoft-float -g -2 hello.c -0 hello.exe

Thedefault link addressis start of RAM, i.e. 0x40000000 for LEON. Other link addresses can be specified through
the - Tt ext option (see GCC manual).

2.3. Floating-point considerations
If the targeted LEON processor has no floating-point hardware, then all applications must be compiled and linked

with the - nsof t - f| oat option to enable floating-point emulation. When running the program on the TSIM
simulator, the ssimulator should be started with the - nf p option (no floating-point) to disable the FPU.

BCC-UM 5 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

2.4. LEON SPARC V8 instructions

LEONS3 processors can be configured to implement the SPARC V8 multiply and divide instructions. The BCC
compiler does by default not issue those instructions, but emulates them trough a library. To enable generation
of mul/div instruction, use the - ncpu=v8 switch during both compilation and linking. The - ncpu=v8 switch
improves performance on compute-intensive applications and floating-point emulation.

Both LEON3 and LEON4 can a so supports multiply and accumulate (MAC). The compiler will never issue those
instructions, they have to be coded in assembly. Note that the BCC assembler and other utilities are based on a
modified version of GNU binutils-2.15 that supports the LEON MAC instructions.

2.5. Alternate register windows organization (only for GCC 3.X)

The compiler normally produces binaries that assumes that the target processor has 8 register windows. However,
by compiling and linking with the - nf | at switch, it is possible to produce binaries that will run on processors
with only 2 register windows.

- nf | at affect performance and code size. Using - nf | at , the code size will increase with ~10%, and the per-
formance will decrease with the same amount. When creating boot proms (see below), it is essential that the same
- nf | at parameter is given to mkprom2, as was used when the binary was compiled. Any miss-match will pro-
duce afaulty prom image.

2.6. Single vector trapping

When the VHDL model is configured to support single vector trapping (SVT) the- qsvt switch can be used with
the linker to build an image that uses a dispatcher rather than a static trap table. The saving amountsto ~4KiB for
the trap table, however trap handling will be slower. The image will try to enable SVT on boot using %&asr 17.

2.7. Memory organization

The resulting executables are in ELF format and have three main segments; t ext , dat a and bss. Thet ext
segment is by default at address 0x40000000 for LEON3 and LEON4, followed immediately by the dat a and
bss segments. The stack starts at top-of-ram and extends downwards. The area between the end of bss and the
bottom of the stack is used for the heap.

2.8. NGMP, RAM applications located at address 0 and multibus systems
To create an application that is located at address 0, like when targeting a NGMP system, the option - W, -
nspar cl eon0 can be given to GCC or - mspar cl eon0 to Id. (Until BCC version 1.0.40: On systems with

multiple busses - qambapp can be given to GCC in the fina link. This activates the AMBA PnP scan. From
version 1.0.41 onward AMBA scanning is default).

2.9. Recommended compiler options for LEON systems

Table 2.1 contains recommended GCC 4.4.2 options related to code generation for LEON based systems. Options
in the table apply also to GCC 3.4.4 when - ncpu=v8 is changed to - nv8.

The recommendationsin Table 2.1 apply to BCC version 1.0.52. Other toolchains and other versions of BCC may
have other recommendations.

Table 2.1. Recommended compiler options for GCC 4.4.2

System Recommended optionsfor GCC 4.4.2

GR740 siliconrevision 1 -ntpu=v8 -W, - nsparcl eon0

GR740 silicon revision 0, LEON4-N2X -ncpu=v8 -W, -nsparcleon0 -nfix-tn0013
GR712RC -ncpu=v8 -nfix-gr712rc -qfi x-tn0018
UTG699E, UT700 -ncpu=v8 -nfix-ut700 -qfix-tn0018
BCC-UM 6 www.cobhamaes.com/gaisler

September 2020, Version 1.0.52

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

System Recommended optionsfor GCC 4.4.2
UT699/EPICA-NEXT, SCOC3 -ncpu=v8 - ntune=ut 699 -gfix-tn0018

LEON3FT and LEON3FT-RTAX systems with -ncpu=v8 -nfix-b2bst -nfix-tn0013 -
SPARC V8 mmul /di v based on GRLIB versionsup |qf i x-t n0018
to and including build 4174.

LEONS3FT and LEON3FT-RTAX systems with -ncpu=v8 -nfix-tn0013 -qgfix-tn0018
SPARC V8 mul /di v based on GRLIB version
4175 to 4206

LEONS3FT and LEON3FT-RTAX systems with -ncpu=v8 -qgfix-tn0018
SPARC V8 mmul /di v based on GRLIB version
4207 to 4248.

LEON3FT and LEON3FT-RTAX systems with -ncpu=v8
SPARC V8 nul /di v based on GRLIB version
4249 and later.

LEON3 systemswith SPARC V8 nul /di v imple- |- ntpu=v8
mented without cache parity protection.

For GRLIB version up to and including 4206, also add
e -nfix-tn0013

LEON3/LEONSFT systems without SPARC V8 Do not use - ntpu=v8, but otherwise follow the recom-
nmul /di v. mendationsin this table.

LEON2 systems (AT697) Not supported

2.10. Making LEON boot-proms

To make a boot-prom that will run from the prom on a standalone LEON3 or LEONA4 target, use the mkprom2
utility freely available at the Cobham Gaisler website. It will create a compressed boot image that will load the
application to the RAM, initialize various LEON registers, and finally start the application. mkprom2 will set al
target dependent parameters, such as memory sizes, memory waitstates, UART baudrate, and system clock. The
applications compiled with sparc-elf-gcc do not set these parameters themselves, and thus do not need to be re-
linked for different board architectures.

The example below creates a boot-prom for a system with 1 Mbyte RAM, one RAM waitstate, 3 waitstates for
ROM access, and 25 MHz system clock.

$ nkpronR -ransize 1024 -ramws 1 -romns 3 -freq 25 hello.exe -nsoft-float

Note that mkprom2 creates ELF files. To create an SRECORD file for a prom programmer, use objcopy:

$ sparc-el f-objcopy -O srec hello.prom hello.srec

It is essential that the same - nf | at, - qsvt and - msof t - f | oat parameters are given to mkprom2, as was
used when the binary was compiled. Any miss-match will produce a faulty PROM image.

For more information on how to use mkprom2, see the mkprom2 users manual available at Cobham Gaisler
website.

BCC-UM 7 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

3. Libraries

3.1. Newlib and Stdio

BCC applications use Newlib, which is a POSIX compatible C-library with full math support. However, no file
or other 1/0 related functions are supported, with the exception of /O to stdin/stdout. Stdin/stdout are mapped on
UART A, accessible viathe usual stdio functions.

3.2. Time functions

The LEON timers are used to generate the system time. The function clock() will return the time expired in
microseconds. The gettimeofday(), time() and times() can aso be used to get the time. Before the time functions
can be used, leonbare _init_ticks() should be called to start the LEON timers and install the timer interrupt handler:

#i ncl ude <asm | eon/tiner.h>
void | eonbare_init_ticks();

Thiswill initialize Timerl and Timer2. Timerl is used to generate ticks at 100Hz while Timer2 is used to create
high resolution timer events. Timer1 ticks can be used by installing aticker callback at:

tickerhandl er ticker_call back;
Timer2 timer events can be generated by initializing a struct timerevent structure and calling

#i ncl ude <asm | eon/tiner.h>
int addtimer(struct tinerevent *e);

struct timerevent 'expire’ field is the timeposition at which the event should be triggered. The current time can be
retrieved using int gettimeofday(struct timeval *tv, struct timezone *t2);

3.3. Task switching

Task switching is supported by the functions:

#i ncl ude <contextswi tch. h>
int thread_setjnp(threadctx_t env, int val);
voi d thread_| ongj np(threadctx_t env, int val);

thread_longjmp() will save the current register windows to the stack and jump to the stack previously saved by
thread_setjmp() similar to clib's setjmp and longjmp construct. Y ou can create your own scheduler by using a
construct like:

voi d sched() {

thr ead_| ongj np(next());
}

if (Ithread_setjmp(self()))
sched();
3.4. Interrupt handling

Installing an interrupt handler is done by initializing member handler of a global variable struct irgaction and
caling:

#i ncl ude <asmleon/irq. h>
voi d chained_catch_interrupt (int irqg, struct irqgaction *a);

BCC-UM 8 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

where irq is the irg number (1 - 15). The supplied struct irgaction will be inserted in a list and therefore
should be global. The simple void *catch_interrupt(void func(int irq), int irg); is also supported which uses
chained catch_interrupt internally.

The source code for libgloss (I i bl eonbar e. a) canbefound inthesr c/ 1 i bgl oss directory.

For systems using the extended LEONS interrupt controller with support for up to 31 interruptsit is possible to
useirg 1-31 with catch_interrupt() and chained_catch_interrupt().

An example on how to install an interrupt handler is supplied in the sr ¢/ exanpl es/ c-i rq. ¢ example of
the BCC distribution.

Low-level interrupt processing takes around 40 instructions to set up the C enviroment for the interrupt handler
and another ~25 instruction to dispatch irq to the associated handler. If very fast processing is required, a custom
lowlevel assembly irgroutine can be installed using:

#i nclude <asm|leon/irq.h>
void lolevelirginstall (int irgnr,void (*handler)());

Thiswill install the instructions:

set hi %i (handl er), % 4;
j mpl %4 + % o(handler), 9%g0;
nop

at address traptable+0x100+(irgnr* 16). The callers low-level interrupt routine has to ensure proper enviroment
setup before calling a C routine. Thisincludes saving volatile register, checking for invalid windows and avoiding
nested irgs. An appropriate routine would be written in assembler.

In case of single vector trap schemes (- gsvt) you have to use the following funtion to insert an irq handler:
int svtlolevelirginstall(int trap,void (*handler)())
Incaseof - qsvt atableisused to dispatch the traps:

struct svt_trap_entry {
int start, end;
void (*func)(void);

e;<t ern struct svt_trap_entry trap_tabl e[28];
Where start and end specify the range of traps that handler func should process. The last entry in the table should
be{0,0,0}. Y ou can modify the table by hand or use svtlolevelirginstall to install ainterrupt handler for you. Note
that the irg number istrap number + 0x10. The symbol svt_trap table ext_end marksthe end of the trap dispatch
table. To insert atrap handler in - qsvt mode you can use the function:

int svtloleveltrapinstall(int trap,void (*handler)());

Using svtlolevelirginstall(irg,handler) is equivalent to svtloleveltrapinstall(irg+0x10,handler).

1572 400001a0 ael0200a mov 10, %7
1579 400001a4 a1480000 mov Y%psr, %0

1580 400001a8 108022fc ba 0x40008d98

1581 40000lac a7500000 MoV omi m % 3

1582 40008d98 2d000004 set hi 9%i (0x1000), % 6

1587 40008d9c a02c0016 andn %0, %6, %0

1588 40008da0 2d100023 set hi 9%i (0x40008¢00), % 6

1595 40008da4 acl5ala8 or %6, Oxla8, %6

1596 40008da8 29100025 set hi 9%hi (0x40009400), 9% 4

BCC-UM 9 www.cobhamaes.com/gaisler

September 2020, Version 1.0.52

etraps.s save state

40008dac
40008db0
40009570
40009574
40009578
4000957¢
40009580
40009584
40009588
4000958c
40009590
40009594

check for inval

1654
1655
1656
1663
1664
1665
1673

back

check for

1674
1675
1676
1677
1678
1688
1691
1692
1693
1700
1701
1702

cal |

1703
1710
1711
1712
1713
1714
1715
1722
1723
1726
1727
1734
1735
1739
1748
1749
1750
1754
1761
1762
1764
1765
1775
1777

40009598
4000959¢
400095a0
400095a4
400095a8
400095f 0
400095f 4

inirqgtrap_
nested_irq flag

40008db0
40008db4
40008db8
40008dbc
40008dc0
40008dc4
40008dc8
40008dcc
40008dd0
40008dd4
40008dd8
40008ddc

81c52170
932de008
aa27al38
c2256074
c43d6078
€c83d6080
cc3d6088
15100029
d602a050
d6256134
960560b0
d622a050

d wi ndow

a8102001
a92d0010
808d0013
02800013
01000000
81c5a008
9¢100015

fast.s:

932de008
92140009
11100029
90122054
d0020000
80a00008
22800002
92126f 00
818a6020
01000000
01000000
01000000

jmp
sl
sub
st
std
std
std
set hi
Id
st
add
st

nov
sl
andcc
be
nop

nov

+ set

sl

or
set hi
or
Id
cnp
be, a
or
nov
nop
nop
nop

routine catch_interrupt.c:

40008de0
40008de4
40008de8
40008e84
40008e88
40008e8c
40008e90
40008e94
40008e98
40008e9c
40008ea0
40008ea4
40008ea8
40008ec0
40008ec4
40008ec8
40008ecc
40008ed0
40008ed4
40008ed8
40008edc
40008ee0
40008ee4
40008ee8

90100017
40000028
9203a0f 0
9de3bf 98
03100029
9b2e2002
82106228
e000400d
80a42000
02800018
a4102001
10800007
da040000
80a36000
02bffffa
23100029
c2046124
90100018
80a06000
12bffff5
94100019
d2042008
9f ¢34000
e4246124

-- installed irq handler
1780 40001260 9de3bf98

3.5. Extended IrqCtrl

nov
cal |
add
save
set hi
sl

or
Id
cnp
be
nov
ba
Id
cnp
be
set hi
Id
nov
cnp
bne
nov
Id
cal |
st

save

%4 + 0x170

% 7,
% p,
%1,
%2,
%4,
%96,

%i (0x4000a400) ,

8, %1

312, %5
[%5 + 0x74]
[%5 + 0x78]
[%5 + 0x80]
[%5 + 0x88]

[%2 + 0x50], %3

%3,
%5,
%3,

[%5 + 0x134]
176, %3
[%@2 + 0x50]

1, %4

% 4,
% 4,

%0, %4
%3, %0

0x400095f 0

%6 + 0x8

%5,

pil

%7,
%0,

%i (0x4000a400) ,

%0

9%sp

8, %1
%1, %01

0x54, %0

[%00], %0

%0

0x40008dd0

%1,
%1,

0oxf 00, %1
0x20, Y%psr

handl er _irq():

%7,

%0

0x40008e84

%sp,
%sp,

%i (0x4000a400) ,

% 0,
%1,

240, %1
-104, Y%p

2, %5
0x228, %gl

[%1 + %5], %0

%0

0x40008ef c
1, %2

0x40008ecO
[%40], %5

%5

0x40008eac

%i (0x4000a400) ,

[%1 + 0x124], %gl

% 0,
%91

%0

0x40008eac

% 1,

%02

[%40 + 0x8], %1

%5
% 2,

%sp,

[%1 + 0x124]

-104, %p

%02

%0

%91

%1

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

The extended irg functionality is activated by the following code. Extended irq number is 13 in this example.

BCC-UM

September 2020, Version 1.0.52

10

www.cobhamaes.com/gaisler

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

#i ncl ude <asmleon/irq.h>
extern struct irqnmp_type irqnp;

i rqmp. addr 0x80000200;
irqmp.eirq = 13;
enabl e_irq(13);

irgmp.addr isthe address of theirq controller, irgmp.eirq is the extended irq number. Having initialized the appli-
cation like this you can register an irg handler for an irq > 15 using catch_interrupt(). Note that the extended irq
number'sinterrupt handler itself isnot called but the handler of theirq indicated by the extended irq ctrl's extended
irq acknowledge register. Another possibility is of course to implement the extended irq handling yourself.

3.6. Interrupt nesting

The variable
extern unsigned int nestedirq;

canbesetto 1if irqnesteing isdesired. It isset to 0 by default. In case of 0the PSR's PIL will be set to 15 (highest)
to keep theirq processing uninterrupted. If nestedirgisset to 1 the PSR's PIL will be set to theincoming irg'slevel,
therefore causing higher level irg's to interrupt the current irq processing.

3.7. Installing custom irg handlers

To overwrite a compile-time generated traptable entry the function t r apt abl e_genj np() can be used:

#i ncl ude <asm | eon/|eon3. h>
extern void traptabl e_genjnp(unsigned long *p, int i, int arg, unsigned int fn);
extern unsigned int sparc_| eon23_get_tbr_base(void);

where p isthe traptable base, i the traptable index, ar g a 13 bit value in %l7 at the time of the traphandler call
and f n the assembly function address to be called. The routine spar c_| eon23_get _tbr_base() canbe
used to retrieve the current %tbr base value.

Below is a simple example that routesthewi ndow_over f | ow (0x5) trap call through mynewhandl er :

#i ncl ude <asm | eon/| eon3. h>

void wap(void) {
asm _ volatile__("\n.global nynewhandl er\nnynewhandl er:\n"
"mov %Wpsr, 9840\ n"
"ba _w ndow_overfl ow, nop\ n"
)
}
extern void mynewhandl er();
main () {
trapt abl e_genj np((void *)sparc_|l eon23_get _tbr_base(), 5, 0, (int)&ynewhandl er);

3.8. Small binary

Newlib at exi t () introduces a dependency on nal | oc() which will add ~10KiB extra code. If you want to
avoid thisyou canlink against | i bsnal | . a (-1 smal |).1ibsnmal | . a'sat exit () supportsonly static 32
exit-function entries. The C library newlib at exi t () function is declared weak and can be overridden.

The compiler option- | snmal | removesreferencestonal | oc() by overridingthenewlibat exi t () function.

3.9. Amba PLUG and PLAY

Up to BCC 1.0.40: The option -gambapp can be given to GCC to enable PLUG and PLAY scanning for UART,
timer and irg-ctrl across AHB2AHB bridges. The default setup only scanns the main BUS's configuration area
at Oxfff00000.

BCC-UM 11 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

From BCC 1.0.41 and upward: recursive scanning is enabled per default, -gnoambapp can be given to disable
recursive scaning.

3.10. FreeRTOS

The sheduling library FreeRTOS isincluded in the BCC distribution. The precompiled library | i bf reert os. a
was compiled using the configuration file supplied in [i nstal 1 dir]/sparc-elf/include/freer-
t os/ FreeRTOSConfi g. h.

To recompile it with another configuration, goto [installdir]/src/freertos/, update FreeRTOSConfig.h and issue
$ make reconpile

Additional sources can be added to $(LI BOBJ) .

Refer to the documentation available on the FreeRTOS website http://www.freertos.org for information on how
to use the FreeRTOS API.

BCC-UM 12 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

http://www.freertos.org

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

4. Execution and debugging
4.1. TSIM simulator and GRMON debug monitor

LEON applications can be debugged on either the TSIM simulator or on a hardware target connected with the
GRMON debug monitor. Both TSIM and GRMON can be connected to the GNU debugger (sparc-elf-gdb) to
perform source-level symbolic debugging.

For more information on GRMON and TSIM, see their respective user manuals.
4.2. Running on the TSIM simulator

To execute an application in the TSIM LEON simulator, use the load command to load the binary, and the run
command to execute the application:

$ tsimleon3
TSI M LEON SPARC sinmul ator, version 2.0.3 (professional version)

Copyright (C) 2001, Gaisler Research - all rights reserved.
using 64-bit tine

serial port A on stdin/stdout

al |l ocated 4096 K RAM nenory, in 1 bank(s)

al | ocated 2048 K ROM nenory

icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
tsinm> | oad hello. exe

section: .text at 0x40000000, size 35120 bytes
section: .data at 0x40008930, size 2080 bytes
section: .jcr at 0x400091b4, size 4 bytes

tsin> run

starting at 0x40000000
Hel l o worl d!

Program exi ted nornally.
tsinm

4.3. Debugging with GDB

To debug an application with GDB, start TSIM with the - gdb option (or issue the gdb command inside TSIM).
TSIM by default listens on port 1234 for a GDB connection. This can be changed to any port using the TSIM -
port switch at start-up.

$ tsimleon3 -gdb
TSI M LEON SPARC sinmul ator, version 2.0.3 (professional version)

Copyright (C) 2001, Gaisler Research - all rights reserved.
using 64-bit tinme

serial port A on stdin/stdout

all ocated 4096 K RAM nenory, in 1 bank(s)

al | ocated 2048 K ROM nenory

icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)

gdb interface: using port 1234

Then, start GDB in aseparate shell, load the application to the target, add optional breakpoints, and finally execute
the application using the GDB run command:

$ sparc-elf-gdb hello. exe

G\U gdb 5.3

Copyri ght 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
wel cone to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i 686-pc-linux-gnu --target=sparc-tsimelf"...
(gdb) target extended-renote |ocal host: 1234

Renot e debuggi ng using | ocal host: 1234

BCC-UM 13 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

0x00000000 in ?? ()

(gdb) | oad

Loadi ng section .text, size 0x8930 | nma 0x40000000
Loadi ng section .data, size 0x820 | ma 0x40008930
Loadi ng section .jcr, size Ox4 | nma 0x400091b4

Start address 0x40000000, |oad size 37204

Transfer rate: 297632 bits in <1 sec, 275 bytes/wite.
(gdb) break main

Breakpoint 1 at 0x40001384: file hello.c, line 4.
(gdb) run

The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

Starting program /home/jiri/sanples/hello.exe

Breakpoint 1, nmain () at hello.c:4

4 printf("Hello world!\n");
(gdb)

To re-execute the application, first re-load it to the target using the GDB load command and the issue run again.

4.4. Debugging on target hardware

To connect GRMON to a LEON system, stat GRMON on the command line in a terminal shell. By defaullt,
GRMON will connect to the processor debug support unit (DSU) using a seria port of the host (ttySO or com1).
See the GRMON manual for more information on how to connect via JTAG, PCI, ethernet or Spacewire. Once
connected, the application can be downloaded and executed using the same procedure as when the ssimulator is
used:

$ grnon -u

GRMON - The LEON multi purpose nonitor v1.0.7

Copyright (C) 2004, Gaisler Research - all rights reserved.
For | atest updates, go to http://ww. gaisler.conl

Comrents or bug-reports to support @aisler.com

using port /dev/ttySO @ 115200 baud

initialising

Conponent Vendor

Leon3 SPARC V8 Processor Gai sl er Research

AHB Debug UART Gai sl er Research

Et hernet DSU interface Gai sl er Research
LEON2 Menory Control | er Eur opean Space Agency
AHB/ APB Bri dge Gai sl er Research
Leon3 Debug Support Unit Gai sl er Research
Ceneric APB UART Gai sl er Research

Ml ti-processor Interrupt Cirl Gai sl er Research
Modul ar Timer Unit Gai sl er Research

Use command 'info sys' to print a detailed report of attached cores

grrmon[grlib]> |oad hello.exe

section: .text at 0x40000000, size 35120 bytes
section: .data at 0x40008930, size 2080 bytes
section: .jcr at 0x400091b4, size 4 bytes
total size: 37204 bytes (99.4 kbit/s)

read 110 synbol s

entry point: 0x40000000

grmon[grlib]> run
Hell o worl d!

Program exi ted normal ly.
grmon[grlib]>

Connecting GDB to GRMON when attached to areal LEON target is done in the same way as when using the
simulator. GRMON uses port 2222 by default to communicate with GDB.

4.5. Using the DDD graphical front-end to GDB

DDD is agraphical front-end to GDB, and can be used regardless of target. DDD must be started with the - -
debugger switch to select the sparc debugger, rather than the native GDB:

BCC-UM 14 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

ddd --debugger sparc-elf-gdb --attach-w ndow

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

For further details on DDD operation, see the DDD web site: http://www.gnu.org/software/ddd/. DDD aso has a
built-in manual under the HEL P menu in the main window.

fized = fized + gueensbase*xtimes[3];
floated = floated + queensbase*xtimes[3]
printfi"
fized = fized + intmmbase*xtimes [4];
floated = floated + intmmbase*stimes[4];

Intmm"}; timer = Getclock(d; Intem{};

Fil DDD: foplirtems/srciexamplesisamples/s EEEE'Y -4 DDD: Registers X
File Edit View Progran Commands Status Source Data Help | Registers
03:[nain e B @ o : T 5T yIRE: 040 0 A
~— Lookup Find:» Break MWatch Print Display Plot Shou Roi=te 38t Undsn g1 01 1
0 92 OxEDD0DE 393222
1fnt e a3 Oxa 10
il 8 a4 0x1 1
fived = 0.0; floated = 0.0;
printf{"Starting \n"J; 93 Oxadd 2778
A* rewrite Coutput); =/ 96 0x1 1
printf(" Perm"d; timer = Getclock(d: Perm(); xtimes[1] = Getclock(d—timer; 97 0x=0 1]
fixed = fized + permbase®ztimes[1]; [ili} 0x2? 33
floated = floated + permbase*ztimes[1]; . . ol 0x407d%71a 1081968410
printf{" Towers"); timer = Getclock():; Towers(); xtimes[2] = Getclock(l-timer; 02 0%9999999a —1 717986918
fixed = fixed + towersbhase*wtimes[2]; 03 OuFFFEFFFE —1
floated = floated + towershase*xtimes[2]; /
printf{" Queens"d; timer = Getclock(): Queens(); xtimes[3] = Getclock(d-timer; =] -

stimes[4] = Getclock{3—timer;

“ Integer registers -~ All registers

printfi" Mn"d; timer = Getclock(d:
fixed = fixed + mmbase*xtimes[5]1;

floated = floated + fpmmbase*utimes [5];
printf{" Puzzle"d; timer
fixed = fized + puzzlehase*wtimes[B];

Ml

Getclock(d; Puzzle(): xtimes([E]

®times[5]

Getclock(-timer;

Getclock(-timer;

Close |

Help |

Floated = Flosted puzelebasetines s]; 2 - N
printf{" Quick®d; timer = Getelock(): Quick(l;
8 Starting
Pern Towers Oueens Intmn M Puzzle Quick Bubble Tree FFT

Dump of assembler code from 0x2000800 to 0x2000300 100 1332 23 267 150 BE7 g3 150 583 250

2000800 <text_start+20485: ta 0

0x2000804 <text_start+2052>: nop Morfloating point composite is 318

0x2000808 <text_start+2056%: nap

0x200080¢ <text_start+2060>: nop Floating point composite is 472

Reading symbols from stanford.exe...done.
(gdb) tar extended-remote localhost:1234
Remote debugging using localhost:1234
0x2000800 in” text_start ()

(gdby |

Program exited normally.
tsinl per

Cycles 33308682
Instructions @ 23306849
Overall CPI 1,43

A Disassembling location 0x2000800 to 0x2000900...done.

Figure4.1. DDD with TSM

CPU perfornance (1d.0 MHz}
Simulated time 3
Processor utilisation b4
Real-time / simulator-time
Simulator performance 8
Used time (sys + user) 8

J teiny zdb

fedb interface: using port 1234

3 100,00 %

9,80 MOPS { 9,63 MIPS.
2379,19 ms

0,16 HMFLOPS?

171,18
8290,24 KIPS
2,81 =

Attaching to TSIM or GRMON is donein the same manner as when using sparc-elf-gdb without DDD. The GDB
commands are entered in the bottom command window. Remember to load the application first, before issuing a
run command. On Cygwin hosts, the Cygwin X-server must first be started by issuing startx in a Cygwin terminal.
Thiswill open an Xterm window, from which DDD should be started with the options mentioned above.

4.6. Using the Insight debugger

The Insight debugger is based on GDB-6.4 with an TCL/TK based graphical front-end. It can be used on both
Linux and Cygwin hosts. The debugger is started with:

sparc-el f-insight app.exe

Thiswill create the Insight main window:

BCC-UM
September 2020, Version 1.0.52

15

www.cobhamaes.com/gaisler

http://www.gnu.org/software/ddd/

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

[l stanford.c - Source Window

[of =] =]

Eile RBun Miew Control Preferences Help

FNTE0| DT A eE e | 2o
Ista.nford. G ﬂ Imain ﬂ ISDU‘RDE ﬂ
- 1023 For (1= 1; 1 <= 20; 1+4) N
1024 {
- 1025 Fft (fftsize, =, w, e, 0 06EL);
1026 J* Printcomplex(6, 99, =, 1, 256, 17); */
1027 I
- 1028 } /* ascar */ ;
1029
1030 main ()
- 1031 ¢
1032 int 1;
= 1033 fixed = 0.0;
- 1034 floated = 0.0;
- 1035 printf ("Starting “n"};
1036 /* rewrite (oukput); */
- 1037 printf (" Perm") ;
- 1038 timer = Getclock {();
- 1039 Parm ();
- 1040 xtimes[1l] = Getclock () - timer;
- 1041 fixed = fixed + permbase * xtimes[l]; —
- 1042 floated = floated + permbase * xtimes[l]:
- 1043 printf (" Towers"); v |

IPrUgram I3 Funning.

4DDD4d38| 1033
Il

Figure 4.2. Insight main window

Clicking on the RUN button (or selecting Run->Connect) will open the Connect to target menu:

[]| Target Selection o]
Connechion W Set breakpoint at 'main’
Target: IRBthe,-"TDP ﬂ I Set breakpoint at 'exit'
Hostname I]_Uca]_hgst o Set breakpoint at |_exit
Port: I1234 I Display Download Dialog
| Use xterm as inferior's tky
[} More Options
[1]:9 | Cancel Help

Figure 4.3. Insight target selection window

To connect to TSIM, select Remote/TCP and port 1234. To connect to GRMON, select port 2222. Enable the

breakpoint on mai n, but disable the breakpoint on exi t . Before clicking on OK

, make sure that you have started

TSIM or GRMON in aseparate terminal, and entered GDB mode. I nsight automatically downl oads the application
to the target when needed, so the load command does not have to be issued manually. To restart the application,

just click on the run button again.

Insight requires at least TSIM version 2.0.5 or GRMON version 1.1.12,

BCC-UM 16
September 2020, Version 1.0.52

www.cobhamaes.com/gaisler

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

5. Support
For support contact the Cobham Gaisler support team at support@gaisler.com.

When contacting support, pleaseidentify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support service is only for paying customers with a support contract.

BCC-UM 17 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

COBHAM

ADVANCED ELECTRONIC SOLUTIONS

Cobham Gaisler AB
Kungsgatan 12

411 19 Gothenburg

Sweden
www.cobhamaes.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described
herein at any time without notice. Consult Cobham or an authorized sales representative to verify that
the information in this document is current before using this product. Cobham does not assume any
responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product
or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no
warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2020 Cobham Gaisler AB

BCC-UM 18 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

	
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. BCC 1.0 life cycle status
	1.3. Installation
	1.3.1. Host requirements
	1.3.2. Linux / Cygwin
	1.3.3. Windows

	1.4. Building from source
	1.5. Support

	2. General development flow
	2.1. Overview
	2.2. GCC options
	2.3. Floating-point considerations
	2.4. LEON SPARC V8 instructions
	2.5. Alternate register windows organization (only for GCC 3.X)
	2.6. Single vector trapping
	2.7. Memory organization
	2.8. NGMP, RAM applications located at address 0 and multibus systems
	2.9. Recommended compiler options for LEON systems
	2.10. Making LEON boot-proms

	3. Libraries
	3.1. Newlib and Stdio
	3.2. Time functions
	3.3. Task switching
	3.4. Interrupt handling
	3.5. Extended IrqCtrl
	3.6. Interrupt nesting
	3.7. Installing custom irq handlers
	3.8. Small binary
	3.9. Amba PLUG and PLAY
	3.10. FreeRTOS

	4. Execution and debugging
	4.1. TSIM simulator and GRMON debug monitor
	4.2. Running on the TSIM simulator
	4.3. Debugging with GDB
	4.4. Debugging on target hardware
	4.5. Using the DDD graphical front-end to GDB
	4.6. Using the Insight debugger

	5. Support

