Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

5

5.1

5.2

A structured VHDL design method

Introduction

TheVHDL languagd22] wasdevelopedo allow modellingof digital hardwarelt can
be seenasa super-sebf Ada, with a built-in messaggassingnechanisncalledsig-
nals. The languagewasdefinedin the mid-1980’sasa respondo the difficulties of
developing,validatingand co-simulatingincreasinglycomplexdigital devicesdevel-
opedwithin theVHSIC[23] program.Themainfocuswasto beableto write executable
specificationsandallow specificationgor models)from different providers(compa-
nies) to be simulated together.

Whenthelanguagevasfirst putto use,it wasusedfor high-levelbehaviourakimula-
tion only.’Synthesis’into VLSI devicesvasmadeby manuallyconvertingthemodels
into schematicsisinggatesandbuilding blocksfrom atargetlibrary. Howevermanual
conversiontendedto be error-proneandwaslikely to invalidatethe effort of system
simulation.To addresghis problem,VHDL synthesidoolsthatcould convertVHDL
codedirectly to atechnologynetliststartedto emergeon the marketin the beginingof
1990’s.Sincethe VHDL codecould now be directly synthesisedthe developmenof
themodelswasprimarily madeby digital hardwaredesignersatherthansoftwareengi-
neersThehardwareengineersvereusedo schemati@ntryasdesignmethod andtheir
usageof VHDL resembledhe dataflowdesignstyle of schematicsThe functionality
wascodedusinga mix of concurrenistatmentsand shortprocessesachdecribinga
limited pieceof functionalitysuchasaregister multiplexer,adderor statemachineln
theearly1990’s,suchadesignstylewasacceptablsincethecomplexityof thecircuits
wasrelativelylow (< 50Kgates)andthesynthesigoolscouldnothandlemorecomplex
VHDL structuresHowever todaythedevicecomplexitycanreachseveraimillions of
gatesandthesynthesigoolsacceptamuchlargerpartof theVHDL standardlt should
thereforebepossibleo useamoremodernandefficientVHDL designmethodthanthe
traditional’dataflow’ version.This chaptemwill describesuchamethodandcomparet
to the 'dataflow’ version.

The problems with the 'dataflow’ design method

The mostcommonlyuseddesign’style’ for synthesisabl&HDL modelsis whatcan
be calledthe 'dataflow’ style. A largernumberof concurrentvHDL statementand
smallprocessesonnectedhroughsignalsareusedo implemenethedesiredunction-
ality. ReadingandunderstandinglataflowVHDL codeis difficult sincetheconcurrent
statementandprocessedo not executen the ordertheyarewritten, butwhenany of
theirinput signalschangevalue.lt is notuncommorthatto extractthe functionality of
dataflowcode,a block diagramhasto be drawnto indentify the dataflowanddepend-
eciesbetweerthe statementsThereadabilityof dataflowVHDL codecancomparedo
an ordinary schematicwhere the wires connectingthe various blocks have been
removed, and the block inputs and outputs are just labeled with signal names!

Belowis asmall(butreal)exampleof dataflowcodetakenfrom thememorycontroller
of a 32-bit processorThe memorycontroller containsapproximately2,000of these
smallprocesseandconcurrenstatementanakingit very difficult for anengineethat
did not design to code to understand and maintain it:

41

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler

CBandDatat_LatchPROCO9F: process(MDLE, CB_In, Reset_Out_N)
begin
if Reset_Out_N =0’ then
CBLatch_F 1 <="0000"
elsif MDLE =1’ then
CBLatch_F_1 <= CB_In(3 downto 0);
end if;
end process;

gBandDatat_LatchPROClOF: process(MDLE, CB_In, DParlO_In, Reset_Out_N)
egin
if Reset_Out_N ='0’ then
CBLatch_F_2 <="0000"
elsif MDLE =1’ then
CBLatch_F_2(6 downto 4) <= CB_In(6 downto 4);
CBLatch_F_2(7) <= DParlO_lIn;
end if;
end process;

CBLatch_F <= CBLatch_F_2 & CBLatch_F_1;

BullEn_PROC: process(Mem_Test, ByteSel)
begin

BullEn <= not (ByteSel(0) and ByteSel(1) and ByteSel(2) and ByteSel(3)) or Mem_Test;
end process;

IUChk_Out_Gen: process (IlUDataLatch_F, ChkGen_Data, BullEn, CB_bull)
Variable lUGen_Chk : std_logic_vector(7 downto 0);

begin
I1UGen_Chk(6 downto 0) := ChkGen (IlUDataLatch_F);
IUGen_Chk(7) := ChkGen_Data(32);

CB_Out_Int <= mux2 (BullEn, IUGen_Chk, CB_bull);
end process;

A problemwith thedataflowmethods alsothelow abstractiorlevel. Thefunctionality
is codedwith simpleconstructdypically consistingof multiplexers bit-wise operators
and conditionalassignmentgif-then-else).The overall algorithm (e.g. non-restoring
division) might be very difficult to recognize and debug.

Yet anotherissueis simulationtime: the assignmenbf a signaltakesapproximately
100timeslongerthanassigningavariablein aVHDL processThisis because¢hevar-
ioussignalattributesmustbeupdatedandthedriving eventaddedo theeventgeueue.
With many concurrentstatmentsand processesa larger proportionof the simulator
time will be spentmanagingsignalsandschedulingof processeandconcurrenstate-
ments.

5.3 Thegoals and means of the ' two-process design method

To overcomethe limitations of the dataflowdesignstyle,a new 'two-process’coding
methodis proposed.The methodis applicableto any synchrounoussingle-clock
design,which representghe majority of all designs.The goal of the two-process
method is to:

* Provide uniform algorithm encoding

* Increase abstraction level

 Improve readability

* Clearly identify sequential logic

» Simplify debugging

 Improve simulation speed

* Provide one model for both synthesis and simulation

42

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaigler

5.4

The above goals are reached with suprisingly simple means:
 Using record typesin all port and signal declarations

* Only using two processes per entity

 Using high-level sequential statements to code the algorithm

Thefollowing section will outline how the two-process method works and how it com-
pares with the traditional dataflow method.

Using two processes per entity

The biggest difference between a program in VHDL and standard programming lan-
guage such C, isthat VHDL allows concurrent statements and processes that are sched-
uled for execution by events rather than in then order they are written. This reflects
indeed the dataflow behaviour of real hardware, but becomes difficult to understand
and analyse when the number of concurrent statments passes some threashold (e.g. 50).
On the other hand, analysing the behaviour of programs witten in sequential program-
ming languages does not become a problem even if the program tends to grow, since
there is only one thread of control and execution is done sequentially from top to bot-
tom.

In order to improve readability and provide a uniform way of encode the algorithm of
aVHDL entity, the two-process method only uses two processes per entity: one process
that contains all combinational (asynchronous) logic, and one process that contains all
sequential logic (registers). Using this structure, the complete algorithm can be coded
in sequential (non-concurrent) statements in the combinational process while the
sequential process only contains registers, i.e. the state.

Combinational
D Q
Q=1yD,r) >
r o
rin=f.(D,r)
rin
r=rin
Clk

Sequential

Figure 20: Generic two-process circuit

Figure 20 above shows a block diagram of atwo-process entity. Inputsto the entity are
denoted D and connected to the combinational process. The inputs to the sequential
process are denoted rin and driven by the combinational process. In the sequential proc-
ess, the inputs (rin) are copied to the outputs (r) on the clock edge,

The functionality of the combinational process can be described in two equations:
Q="fyD, 1) rin=f.(D,r)

Given that the sequentia process only perform a latching of the state vector, the two
functions are enough to express the overall functionality of the entity.

43

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaigler

5.5

The corresponding VHDL code for an 8-bit counter could look like the following:

library ieee
use ieee.std_|logic_1164.all
use ieee.std_logic_arith.all

entity count8 is

port (
clk : in std_logic
load : in std_logic
count : in std_logic;
d :in std_logic_vector(7 downto 0);
q : out std_logic_vector(7 dowto 0));
end,

architecture twoproc of test is

signal r, rin: std_logic_vector(7 dowmto 0);

begi n
conbi nati onal : process(load, count, d, r)
variable tnp : std_l ogic_vector(7 downto 0);
begi n

if load ='1 thentm :=d
elsif count ='1" thentmp :=r1 + 1
=r; endif;

else tnp :
rin <= tnp;
q <=r;
end process;
sequential : process(clk)

begi n
if rising_edge(clk) thenr <=rin; end if;
end process;

end;

Using record types

The above count8 exampleissimple, and the limited number of portsand signals makes
the code reasonably readable. However, the port interfacelist can for complex | P blocks
consist of several hundreds of signals. Using the standard dataflow method, the signals
are not grouped into more complex data types but just listed sequentially. The most
common data types are scalar types and one-dimentional arrays (buses). Having a port
list of several hundreds of signals makes it difficult not only to understand which sig-
nals functionally belong together, but also to add and remove signals. Each modifica-
tion to the interface list has to be made at three separe locations: the entity declaration,
the entity’ s componenent declaration, and the component instantiation (adding a port
map).

By using record types to group associated signal, the port list becomes both shorter and
more readable. The signals are grouped according to functionality and direction (in or
out). The record types can be declared in a common global ’interface’ package which
is imported in each module. Alternatively, the record types can be declared together
with the entity’ scomponent declaration in a’ component’ package. This packageisthen
imported into those modules where the component is used. A modification to the inter-
face list using record types corrsponds to adding or removing an element in one of the
record types. Thisis done only in one single place, the package where the record type
isdeclared. Any changesto this package will automatically propagate to the component
declaration and the entity’s component instantiation, avoiding time-consuming and
error-prone manual editing.

Similar problems arise when more registers are added. For each register, two signals
haveto be declared (register input and output), the register output signal hasto be added
to the sensitivity list of the combinational process, and an assignment statement added

44

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaigler

to the sequential process. By grouping all signalsused for registersinto one record type,
this becomes unnecessary. The rin and r signals becomes records, and adding register
is done by simply adding a new element in the register record type definition.

Below is the count8 example using records for port and register signals. The load and
count inputs are now latched before being used, and a zero flag has been added:

library ieee
use ieee.std_|logic_1164. all

package count8_conp is -- component decl arati on package
type count8_in_type is record
load : std_logic;
count : std_l ogic;

din : std_logic_vector(7 dowto 0);
end;
type count8_out _type is record
dout : std_logic_vector(7 downto 0);
zero : std_logic;
end;
conponent count 8
port (
clk : in std_logic;
d :in count8_in_type;

: out count8_ out _type);
end conponent;
end package

library ieee

use ieee.std_|logic_1164.all
use ieee.std_logic_arith.all
use wor k. count 8_conp. al |

entity count8 is

port (
clk : in std_logic;
d :in count8_in_type
q : out count8_out_type);
end

architecture twoproc of count8 is
type reg_type is record
oad

std_|l ogi c;
count: std_l ogic;
zero std_| ogic;
cval std_l ogi c_vector (7 downto 0)
end;
signal r, rin : reg_type
begi n
conb : process(d, r) -- conbi national process
variable v : reg_type
begi n
vV i=r; -- default assignnent
v.load := d.load; v.count := d.count; -- overriding assignnments
v.zero :="'0
if r.count ='1" then v.cval :=r.val + 1; end if; -- nodul e algorithm
if r.load ='1 then v.cval := d.data; end if;
if v.cval = "00000000" then v.zero :="'1"; end if;
rin <= v; -- drive register inputs
g.dout <= r.cval; q.zero <= r.zero; -- drive nodul e outputs
end process;
regs : process(clk) -- sequential process

begi n
if rising_edge(clk) thenr <=rin; end if;
end process;
end

Note the usage of the variable v in the combinational process. Thevariableis of the reg-
ister record type, and assigned in the begining of the processwiththevalueorr, i.e. the
current register values. At the end of the process, the register inputs rin are assigned
with v. Thismeansthat those elements of v which are not assigned during the execution
of the process will maintain their values, i.e. the register value will not change.

45

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaigler

5.6

A large benefit with using record typesfor theregister signalsrinandr, isthat elements
can added or removed without requiring any other modifications to the code. The sen-
sitivity list of the combinational process does not have to be modified, and neither the
assignment of r <= rin in the sequential process. Thisis because the operation is per-
formed on the record as whole, regardless of how many elementsit has.

In larger blocks with many registers, readability can be improved by defining separate
record types for related registers. This is particularly usefull if several register of the
same type are used, in which case an array type of the’ sub-register’ can be defined:

type uart_rx_reg_type is record
par : std_l ogic;
frame : std_logic;
ready : std_| ogic;
data : std_logic_vector(7 downto 0);
end;
type uart _tx_reg_type is record
par std gic;
ena : std gi
std
std

lo
lo
lo
lo

type uart _rx_arr is array O to 3 of uart_rx_reg_type;
type uart_tx_arr is array 0 to 3 of uart_tx_reg_type;

type reg_type is record
rxregs : uart_rx_arr;
txregs : uart_tx_arr;
end;

signal r, rin : reg_type;

Clock and reset

In the examples above, the clock signal has not been included in the record types used
for ports. The clock istypically routed from an input pad and through the compl ete hier-
archy of modules. In a synchronous single-clock design, the clock may not be skewed
or the function cannot be guaranteed. If the clock was included in a record type, the
assignment to the record field would create adelta delay, skewing that part of the clock
tree. An other (less 'noble’) reason not to add the clock to arecord type is that many
CAD toolsused for clock-tree generation and timing analysis cannot handle aclock sig-
nal that is part of abus!

Also the reset signal has been |eft out from the record types, much for the same reasons
asthe clock signal. Thisreasoning isvalid if the reset is asynchronous, it must then be
treated as a clock both during routing and timing analysis. A synchronous reset signal
can be added to the record types since it behaves like any other non-clock input signal.

The two-process methodology can handle both synchronous and asynchronous reset,
but using different coding style. A synchronousreset istreated as any other input signal
and used in the combinational process. By placing the reset assignment last in the proc-
ess, it will have precedense before any other statments:

entity count8 is

port (
clk : in std_logic;
reset : in std_logic;
:in count8_in_type;
q : out count8_out_type);

end;

46

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaigler

S.7

architecture twoproc of count8 is

begi n
" conb : process(reset , d, r) -- conbi national process
variable v : reg_type;
begi n
vV i=r; -- default assignnent
v.load := d.load; v.count := d.count; -- overriding assignnments
v.zero :='0";
if r.count ='1" then v.cval :=r.val + 1; end if; -- nodul e algorithm
if r.load ='1 then v.cval := d.data; end if;
if v.cval = "00000000" then v.zero :="'1"; end if;
if reset ='0’ then -- reset condition
v.cval := (others =>'0"); v.zero :='0’;
end if;
rin <= v; -- drive register inputs
g.dout <= r.cval; q.zero <=r.zero; -- drive nodul e outputs

end process;

An asynchronous reset must be connected to the sequential process, sinceit will affect
the state (registers) regardiess of the clock:

regs : process(reset , clk) -- sequential process
begi n
if reset =0’ then
r.cval <= (others =>'0"); r.zero <="0’;
elsif rising_edge(clk) thenr <=rin; end if;
end process;

The reset signal must be added to the sequential process sensitivity list since reset
should occur regardless of the clock. The above coding styleis fully synthesisable and
will produce flip-flops with asynchronous reset with most synthesis tools. Asynchro-
nous set is created simply by changing the reset assignment value from’'0’ to’1’. The
polarity of the set/reset isdefined in the asynchronousreset condition (if reset="0'/"1").

Hierarchical design

Using record types for ports also simplifies hierarchichal design. The port map of
instantiated componentsis reduced to afew record signals, thereby increasing the read-
ability. Below is an example from the LEON2 processor, instantiating the processor
pipeline, floating-point unit and caches. With the traditional dataflow method, there
would be many hundreds of signalsin the port maps. Using record types reduces thisto
afew signals per component, and significantly improves readability:

cpu0 : cpu_sparc port map (rst, clk, ici, ico, dci, dco, fpui, fpuo);
fpuO : fpu_core port map (clk, fpui, fpuo);
cache0 : cache port map (rst, clk, ici, ico, dci, dco, ahbi, ahbo, ahbsi, cram, cranp);

cmrenD : cachemem port map (clk, cram, cranp);

a7

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaigler

5.8

I ncreasing the abstraction level

An important step towards a more efficient design methodology is to increase the
abstraction level in the design process. Describing an adder with a’+' rather a network
of AND, OR and XOR gatesis much more readable and also |ess error-prone. The two-
process method uses sequential VHDL statement to code the algorithm of a function,
and allows the usage of more complex and abstract syntax then avalable for concurrent
statements (in the dataflow method). Some ways of increasing the abtraction level for
common digital operations is described below.

5.8.1 leeenumeric_std package

The ieee.numeric_std package defines many usefull arithmetic operations, and is pro-
vided free of charge by IEEE. Most simulators and synthesis tools provide built-in,
optimised versions of this package which further improves performances and synthesis
results. In paricular the +, - and compare operators are mapped on the best implemen-
tation style for a given target technology, and the usage of these operators will guaran-
tee optimal design portability.

5.8.2 Loop statement

The loop statement is well suited to implement iterative algorithms, as well as priority
encoding, sub-bus extraction and bus index inversion. The loop statement is supported
by most synthesis tools as long as the loop range is constant. Some exampl es:

variable vl : std_logic_vector(0 to 7);
variable first_bit : natural

- find first bit set

for i in vl range | oop
if vi(i) ='1 then
first_bit :=1i; exit;
end if;
end | oop

- reverse bus
for in 0Oto 7 loop vil(i) := v2(7-i); end | oop

5.8.3 Multiplexing using integer conversion

Implementing multiplexers and decoders using integer conversion is a more compact
and scalable alternative to a large 'case’ statement. Generic multiplexers can for
instance be implemented as functions:

- generic nultiplexer

function genmux(s,v : std_ulogic_vector) return std_ulogic is
variable res : std_ulogic_vector(v'length-1 downto 0);

variable i : integer

begi n
res :=v; i :=0;
i 1= to_integer(unsigned(s));
return(res(i));

end
- generic decoder

function decode(v : std_ulogic_vector) return std_ul ogi c_vector is
variable res : std_ul ogic_vector((2**v’'length)-1 downto 0);

variable i : natural

begi n
res := (others =>'0"); i :=0
i := to_integer(unsigned(v));
res(i) :="'1";
return(res);

end

48

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaigler

5.8.4 State machines

Using sequential statements, a state machine can easily be implemented with a’ case’
statement. Using the two-process method with alocal varaible v to hold the next state,
both combinational and registered outputs from the state machine is possible:

architecture rtl of nmynodule is
type state_type is (first, second, last);
type reg_type is record
state : state_type
drive : std_logic
end record;

signal r, rin: reg_type

begi n
comb : process(...., r)
variable v : reg_type
begi n
vV i=r;

case r.state is
when first =>

if cond0 then v.state := second; end if;
when second =>
if condl then v.state := first;
elsif cond2 then v.state :=last; end if;
when ot hers =>
v.drive :='1"; v.state := first;
end case;
if reset =1 then v.state := first; end if;
nmodout . cdrive <= v.drive; -- conbinational output
nmodout . rdrive <= r.drive; -- registered output

end process;

5.8.5 Sub-programs

Using sub-programs (procedures and functions) isapowerfull method to hide complex-
ity and improve readability. Sub-programs are readily supported by synthesistools, but
may normally not contain sequential (clocked) logic. This restriction fits well with the
two-process method which only contains combinational logic in the algorithm part.
Tested and reusable sub-programs can be kept in a separate package and use as a IP
library of small algorithms. Below is an example from the LEON3 processor pipeline:

exception_detect(r, v.r.ctrl.trap, v.r.ctrl.tt);

op_gen(r, rfo.datal, ex_alu_res, me_bp res, zero32, r.r.rsl, false
v.e.opl, v.e.ldbpl);

op_gen(r, rfo.data2, ex_alu_res, me_bp_res, immdata(r, rf_icc),
r.r.rs2, immselect(r.r.ctrl.inst), v.e.op2, v.e.ldbp2);

alu_op(r, v.e.opl, v.e.op2, v.e.aluop, v.e.alusel, v.e.aluadd, v.e.shcnt, v.e.snsb,
v.e.shleft);
v.e.alucin := cin_gen(v, r);

su_et_select(r, v.r.su, v.r.et);

v.r.ctrl.wicc := wite_icc(r.d.inst);

de_cwp := cwp_select(r);

v.r.ctrl.cwp := ncwp_gen(r.d.inst, de_cwp);
cwp_ctrl(r,v.r.ctrl.cwp, v.r.ctrl.wewp, v.r.wovf, v.r.wnf);
v.r.ctrl.rd :=regaddr(v.r.ctrl.cwp, r.d.inst(29 dowto 25));
de_rsl :=rsl_gen(r);

49

Copyright Gaisler Research, all rights reserved.

Fault-tolerant Microprocessors for Space Applications Jiri Gaisler
5.9 Dataflow vs. two-process comparison

To illustrate the usefullnessof the two-processmethod,a comparisonof common
development tasks has been made with the standard dataflow design style:

Two-process method Dataflow coding

« Addfield ininterfacerecordtype e Add port in entity declaration

* Add port to sensitivity list (input)
Adding ports * Add port in component declaration

» Add signal to port map of component

» Add definition of signal in parent

e Add field in register record type |+ Add two signal declaration (d & q)

* Add g-signal in sensitivity list

* Add driving signal in comb. process

» Add driving statement in seq. process
* Puta breakpointon first line of * Analyze how the signal(s)of interestare

Adding registers

combination processand step generated
Debugging forward e Puta breakpointon eachprocessor con-
¢« New signal values visible in current statment in the path
local variable v + New signal value not immediately visible
* Trace the r-signal (state) » Findall signalsthatareusedto implement
* Automaticpropagatiorof added registers
Tracing or deleted record elemenets » Trace all found signals
» Re-iterateafter eachaddedor deletedsig-
nal

Table 16: Datafl vs. two-process comparison

Fromthetable,it canbeseerthatcommondevelopmentasksaredonewith lessediting
or manual procedures, thereby improving efficiency and reducing coding errors.

5.10 Summary and conclusions

The presentedwo-processmethodis a way of producingstructuredand readable
VHDL code,suitablefor efficient simulationand synthesisBy defininga common
codingstyle, the algorithmcan be easily identified andthe codeanalysedand main-
tainedalsoby otherengineerghanthe main designerUsing sequentiaMHDL state-
mentsto codethe algorithmalsoallows the useof complexstatementsanda higher
abtractionlevel. Debuggingand analysisis simplified dueto the serial executionof
statements, rather than the parallel flow used in dataflow coding.

50

Copyright Gaisler Research, all rights reserved.

